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ABSTRACT 

 
A polarization ray tracing algorithm which calculates intensities of rays propagating in uniaxial birefringent media is 
presented. Calculations in this algorithm are performed on vectors in the global coordinate system, obviating the need 
for frequent conversions between global and local coordinate systems. For the first time, to the best of author’s 
knowledge, a full ray tracing analysis of a Wollaston prism is presented as a calculation example. 
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1. INTRODUCTION  

 
Ray tracing analysis of optical setups containing uniaxial brefringent components is an established optical design 
technique. In most cases only paths of rays propagating in the analyzed optical setup are calculated, while directions and 
amplitudes of electric and magnetic field vectors remain unknown. Therefore, Poynting vectors cannot be calculated and 
intensity of propagating rays cannot be determined, thus depriving the designer of information important in certain 
applications, such as interferometry and polarimetry.  
A ray tracing algorithm providing amplitudes of field vectors should be compact and should perform calculations in the 
global coordinate system, contrary to well-established approaches1. Its complexity can be further reduced, without 
substantial loss of functionality, by limiting its analysis capabilities to isotropic and uniaxial materials, as the great 
majority of optical components are made from these two materials classes.  
The primary objective of this paper is to devise a compact ray tracing algorithm for isotropic and uniaxial media which 
allows for calculation of Poynting vectors of propagating rays. Section 2 gives an outline of theory needed to introduce, 
in Section 3, expressions for wave and ray vectors’ directions. In Section 4 expressions for field vectors are derived and 
the algorithm is presented. Finally, in Section 5 the algorithm is applied to analysis of a Wollaston prism.  
 

2. THEORY  

 
Light propagation in a homogeneous nonconducting medium is described by the Maxwell equations and two material 
equations: 
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where E – electric field vector, H – magnetic field vector, D – electric displacement vector, B – magnetic induction 
vector, ε0, ε – absolute and relative electric permittivites, respectively, µ0, µ – absolute and relative magnetic 
permittivities, respectively. 
In an isotropic medium both permittivities are scalars and relative electric permittivity ε is equal to the square of the 
refractive index n of the medium: 

2
n=ε  (2) 

In a nonabsorbing and non-optically active uniaxial medium ε is a symmetric tensor whose elements are real numbers. 
For such a tensor a coordinate system exists in which only the diagonal elements of the tensor are non-zero, i.e. 
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where no – ordinary refractive index of the medium and ne – extraordinary refractive index. In this coordinate system, 
referred to as the principal coordinate system, the z axis is parallel to the optical axis of the medium. In order to 
facilitate subsequent discussion, a unit vector A parallel to the z axis of the principal coordinate system is introduced. 
Additionally, at surfaces where optical properties (i.e. refractive indices or direction A of the optical axis) change, field 
vectors must satisfy certain boundary conditions. Since in optics we can safely assume that neither surface charge (ρ=0) 
nor surface current (j=0) are present on the boundary, the conditions can be written as (2, pp. 1÷7): 

1°, the normal component of the magnetic induction vector is continuous across the boundary, i.e.: 

0)(
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where η – unit vector normal to the boundary between the two media, B(1) – magnetic induction vector on the 
boundary in the first medium, B(2) – magnetic induction vector on the boundary in the second medium.  

2°, the normal component of the electric displacement vector is continuous across the boundary, i.e.: 
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=−⋅ DDη  (5) 

where D(1), D(2) – electric displacement vector on the boundary, in the first and in the second medium, respectively. 
3°, the tangential component of the electric field vector is continuous across the boundary, i.e.: 
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where E(1), E(2) – electric field vector on the boundary, in the first and in the second medium, respectively, 
4°, the tangential component of the magnetic field vector is continuous across the boundary, i.e.: 
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=−× HHη  (7) 

where H(1), H(2) – magnetic field vector on the boundary, in the first and in the second medium, respectively. 
In ray tracing analysis a plane harmonic wave is considered, whose electric field vector E is (2, p. 667): 
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where E0 – direction of electric field vector, ω – angular frequency, s – unit wave vector (i.e. unit wave-normal), r –
position vector, vp – phase velocity, t – time. Similar expressions can be written for vectors B, H and D. The unit wave 
vector s is normal to the surfaces of constant phase (called also wave surfaces) of the wave. 
Direction of energy transport, which is the ray direction in ray tracing analysis, is given by Poynting vector S: 

HES ×=  (9) 

instead of which a unit ray vector t, defined as 

S

S
t =  (10) 

is often used. In isotropic media the ray vector equals the wave vector (i.e. t=s), while in anisotropic media, directions of 
these vectors differ (t≠s). 
Phase velocity vp of the plane wave given by (8) propagating in an isotropic medium does not depend on direction of s. 
It can be expressed as: 
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where c – velocity of light in vacuum, n – refractive index of the medium. In an anisotropic medium two types of waves, 
an ordinary wave and an extraordinary wave, can exist for a given unit wave vector s. Their phase velocities, vo and ve 
respectively, are given by: 
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where no – ordinary refractive index, ne – extraordinary refractive index, ψ – angle between the unit vector A and the 
unit wave vector s. From Eq. (12) follows that while the velocity of the ordinary wave is independent of s (like that of a 
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wave in an isotropic medium), the velocity of the extraordinary wave ve is a function of the angle between A and s. 

Multiplying the expression for ve by ( )2/cnnn
oe

 and using identity ψψ
22

cos1sin −=  we arrive at: 
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Dividing the resulting equation (Eq. (13)) by 2

o
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which will be later used in calculation of directions of wave and ray vectors. 
Vector D of a wave propagating in an isotropic medium is perpendicular to the wave vector s, but its direction in that 
plane can be arbitrary. As a result, it is impossible to determine the direction of D of such a wave based on s. In contrast, 
directions of vectors D of the ordinary and extraordinary wave propagating in an anisotropic medium can be 
conveniently expressed relative to the principal plane, i.e. the plane containing wave vector s and the optical axis vector 
A (cf.2, p. 680). The direction of the vector D of the ordinary wave (D1 in Eq. (15)) is perpendicular to the principal 
plane, while the direction of the vector D of the extraordinary wave (D2 in Eq. (15)) lies in that plane and is 
perpendicular to s, viz.: 
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where |D1| and |D2| are amplitudes of corresponding vectors and i1 and i2 unit vectors in their directions. It should be 
noted here that amplitudes | D1| and | D2| can assume also negative values, since D1 and D2 can have directions opposite 
to those defined by Eq. (15).  
Relations (15) reduce to 0/0 when s is parallel to A. This case corresponds to propagation along the optical axis, where 
the direction of D cannot be obtained from (15) and should be calculated using boundary conditions (4)÷(7).   
 

3. CALCULATION OF WAVE AND RAY VECTORS 

 
Formulae for wave and ray vectors directions of rays refracted on and reflected from the boundary surface of two media 
of different optical properties are derived, based on the elegant approach presented in3. Not requiring any local 
coordinate system, the algorithm presented therein can be used for tracing both ordinary and extraordinary rays at 
boundaries between two media, both of which can be isotropic or uniaxial anisotropic. We will first consider refraction 
and reflection of the extraordinary ray on a boundary between two uniaxial media, shown in Fig. 1, and subsequently 
explain how resulting formulae can be applied to other cases.  
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Fig. 1. Reflection and transmission of incident wave on the boundary between two uniaxial 

anisotropic media (explanations in the text). 

 
Let us start from the condition stating that phases of the fields given by Eq. (8) on both sides of the boundary must be 
equal in any point r on the boundary and for any time t, viz.:  
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where the indices i, r and t correspond to incident, reflected and transmitted wave, respectively. Eq. (16) can be 
expressed as 
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Using Eq. (17) it can be shown that sr and st lie in the plane of incidence, i.e. the plane containing si and a unit vector η 

perpendicular to the boundary and that vectors ( )
ttii

nn ss −  and ( )
rrii

nn ss −  are perpendicular to the boundary, i.e.: 
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where ni, nr, nt – refractive indices of incident, reflected and transmitted wave respectively,  
Γ1 and Γ2 are scaling constants which, depending on direction of η and values of refractive indices, can assume positive 
or negative values. Introducing normalized wave vector N, given by: 

sNsN == n  (19) 

and rewriting Eq. (18) in terms of it yields 
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In order to calculate normalized wave vectors Nt and Nr, expressions for Γ1 and Γ2 in terms of a priori known quantities 
must be found. These quantities are: no1 and ne1 – ordinary and extraordinary refractive index of the first medium (cf. 
Fig. 1), no2 and ne2 – ordinary and extraordinary refractive index of the second medium, A1 and A2 – directions of the 
optical axis in the first and second medium, and normalized wave vector Ni of the incident ray. 
Let us start by taking the dot product of each of Eq. (20) with itself, viz.: 
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Using definition (19) of normalized wave vectors Nr and Nt Equation (14) can be rewritten as: 
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By substituting (20) into the right hand side of Eq. (22) we obtain 
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Since 
2

NNN =⋅ , we can substitute right hand sides of Eq. (23) into Eq. (21), which, after collecting terms of Γ, 

becomes  
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All vectors and scalars in Eq. (25), apart from scaling constants Γ1 and Γ2, are known, therefore Eq. (25) is a set of two 
quadratic equations, from which Γ1 and Γ2 can be calculated.  
If direction of η is from medium 1 to medium 2 (as shown in Fig. 1), i.e. 

0≥⋅ ηN  (26) 

then scaling constant Γ1 for reflected ray is obtained with the negative square root in quadratic formula, while scaling 
constant Γ2 for transmitted ray is obtained with the positive square root, viz.: 
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where a1, b1, c1, a2, b2 and c2 are respective coefficients in Eq. (25). Finally, knowing Γ1 and Γ2, vectors Nt and Nr are 
calculated from Eq. (20).  
Formulae (20)÷(27) can be used also to calculate directions of ordinary rays or directions of rays propagating in 

isotropic media. When an ordinary reflected ray is to be calculated, substitution 
11 oe

nn ← is performed, q1 becomes zero 

and |Nr| becomes no1 (cf. Eq. (23)). Nr is then computed using Eqs. (25), (27) and (20). Similarly, for an ordinary 

transmitted ray, substitution 
22 oe

nn ←  is done, after which q2 becomes zero, |Nt| becomes no2 and Eqs. (25), (27) and 

(20) are employed to obtain Nr. In order to find directions of rays propagating in isotropic media, substitutions 

11 oe
nn ← or 

22 oe
nn ←  are used for reflected and transmitted ray respectively, after which q1 or q2 become zero. 

Inspecting Eq. (25) we note that when qi=0 (i=1,2), all terms containing Ai vanish, since they are multiplied qi. 
Therefore, any Ai can be used in calculations, which was to be expected since isotropic media do not have optical axis. 
Because numerical calculations are conducted with finite precision, it is advisable to use a zero vector Ai, in order to 
minimize errors arising when computer representation of qi differs from its correct value.  
Directions σr, σt of reflected and transmitted rays are calculated from 

( )

( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ⋅−
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⋅
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ⋅−
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⋅
=

t

tt

o

t

t

et

r

rr

o

r

r

er

nn

nn

N

AANN
A

N

AN
σ

N

AANN
A

N

AN
σ

222

22

22

2

112

11

12

1

 (28) 

which expressed in terms of wave vectors s becomes  
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Directions of reflected or transmitted ordinary rays, or rays propagating in isotropic media, can be calculated by 

applying substitutions 
11 oe

nn ←  or 
22 oe

nn ← . Using definition (19) in Eq. (29) we can show that in these cases σr, σt 

are equal to no1·Nr and no2·Nt respectively. Therefore, it is possible to calculate σr, σt using Nr and Nt along with Eq. 
(19), viz.:  

tttrrr
NNσNNσ == . (30) 

To conclude, directions of wave vectors are calculated from Eqs. (20)÷(27), applying substitutions 
11 oe

nn ←  for 

reflected ordinary rays or reflected rays in isotropic media, or 
22 oe

nn ←  for transmitted ordinary rays or transmitted 

rays in isotropic media. Following, ray vectors are computed from formulae (28) or (29) for extraordinary rays, and 
from Eq. (30) for ordinary rays or rays propagating in isotropic media. 
 

4. CALCULATION OF FIELD VECTORS  

 
The method presented here uses tree steps to find vectors E and D of reflected and transmitted rays. First, directions of 
wave (s) and ray (σ) vectors are calculated using the method discussed in the previous Section. Second, directions of D 
and E vectors in anisotropic media are computed. Third, amplitudes of D and E vectors in anisotropic media and 
directions and amplitudes of D and E vectors in isotropic media are calculated. Based on D and E it is possible to 
calculate the Poynting vector S as well as H and B vectors.  
Following discussion of the two latter steps will cover all types of boundaries in which at least one medium is 
anisotropic, viz.: 1º, boundary between isotropic and anisotropic medium, 2º, boundary between two anisotropic media, 
and 3º, boundary between anisotropic and isotropic medium (The boundary between two isotropic media is not 
discussed here, as it has been extensively treated elsewhere, e.g.2). We also assume that directions of wave (s) and ray 
(σ) vectors of incident ray are known and those of reflected and transmitted rays have been calculated. Since the 
equations for each type of boundary differ, the discussion will be divided into three subsections.  
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4.1. Boundary between isotropic and anisotropic medium  
Let us consider a ray propagating in an isotropic medium in the direction of its wave vector s. Incident on a plane 
boundary Σ with an anisotropic medium, as shown in Fig. 2, this ray gives rise to a reflected ray whose wave vector is 
s
(I), propagating in the isotropic medium, and two transmitted rays in the anisotropic medium. Wave vectors of the 

transmitted rays are s(1) and s(2) for ordinary and extraordinary ray respectively.  
 

s
(2)

s s
(I)

η

w1

s
(1)

ne2

w2n1

A2

no2

Σ
medium 1

medium 2

 
Fig. 2. Reflection and transmission of incident wave on the boundary Σ between an isotropic 

medium 1 and a uniaxial anisotropic medium 2 (explanations in the text). 

 
Unit direction vectors id1 and id2 of electric displacement vectors D

(1) and D
(2) of the transmitted ordinary and 

extraordinary rays can be obtained from (15)  
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Direction idI of electric displacement vector D(I) of the reflected ray in the isotropic medium cannot be determined in this 
way. It will be calculated using boundary conditions, together with magnitudes (amplitudes) of the D(1), D(2) and D(I) 
vectors.  
In order to facilitate writing of boundary conditions, let us introduce a coordinate system w2w1η defined as follows: η - 
unit vector perpendicular to the boundary Σ pointing from medium 1 to medium 2, as shown in Fig. 2, w1 – unit vector 
given by  

sη
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w
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and w2 – unit vector perpendicular to η and w1  

ηww ×=
12

. (33) 

For the case of normal incidence (i.e. η||s), Eq. (32) cannot be used due to its singularity in such a case. Instead, the unit 
direction vector id of the incident ray can be used as w1:  

d
iw =

1
 (34) 

as it is perpendicular to s (and therefore to η). Subsequently, w2 is calculated from (33). 
Electric displacement vector D(I) of the reflected ray is perpendicular to its wave vector s(I). It can therefore be expressed 
as a linear combination of two vectors perpendicular to s(I) and perpendicular to each other, e.g.:  
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where α, β –coefficients of the linear combination. 
Now boundary condition (6) can be expressed in the w2w1η coordinate system as: 
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where E1 – electric field vector in the first medium, E2 – electric field vector in the second medium, E(I) – electric field 
vector of the reflected ray, E(1), E(2) – electric field vectors of the ordinary and extraordinary ray, respectively. 
Similarly, boundary condition (7) can be expressed in the w2w1η coordinate system as: 
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where H1 – magnetic field vector in the first medium, H2 – magnetic field vector in the second medium, H(I) – magnetic 
field vector of the reflected ray, H(1), H(2) – magnetic field vectors of the ordinary and extraordinary ray, respectively. 
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Equations (36) and (37) will be presently used to calculate amplitudes and directions of unknown E, D and H vectors. 
We begin with expressing E and H vectors appearing in these equations in terms of D vectors. 
Since the first medium is isotropic, electric field vector E(I) can be expressed as: 
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where n1 – refractive index of the first medium. Magnetic field vector H(I) then becomes 
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Similar set of equations can be written for the ordinary ray in the second medium, viz.: 
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where no2 – ordinary refractive index of the second medium,  
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For the extraordinary ray we use the approach presented in (2, p. 671), i.e. first we will find the component D⊥ of vector 
D

(2) which is perpendicular to the vector E(2):  

( ) ( )[ ] )2()2()2(

2

)2(

2

)2()2()2()2()2()2(
eDtitiDtDtDD =⋅−=⋅−=

⊥ dd
 (42) 

where e(2) – direction of D⊥, defined as:  

( ))2(2

)2(

2

)2(
titie ⋅−=

dd
. (43) 

We should note that e(2) is not in general a unit vector, therefore it is not referred to as ie2. Following, we can express E(2) 

in terms of D⊥.: 
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where nr2 – ray refractive index of the extraordinary ray, given by: 
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where nn2 – refractive index of the extraordinary ray. Knowing E(2), we can express magnetic field vector H(2) as: 
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Using electric and magnetic field vectors given by Eqs. (38)÷(46) in boundary conditions (36) and (37), we arrive, after 
lengthly but relatively straightforward calculations, at the system of equations:  
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Solving this system we obtain amplitudes of electric displacement vectors D(1) and D(2) as well as coefficients α and β 
using which vector D(I) is calculated. Finally, E and H vectors are calculated using Eqs. (38)÷(46).  
 

4.2. Boundary between two anisotropic media  
Let us consider a ray propagating in an anisotropic medium in the direction of its wave vector s. Incident on a plane 
boundary Σ with another anisotropic medium, as shown in Fig. 3, this ray gives rise to four rays: two reflected rays 
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whose wave vectors are s(I) and s(II), for ordinary and extraordianry ray respectively, and two transmitted rays. Wave 
vectors of the transmitted rays are s(1) and s(2) for the ordinary and extraordinary ray respectively.  
 

medium 1

s
(I)

η

w1 w2

s
(2)

s
(1)

s
(II)

ne2no2

A2

s

ne1

A1

no1

medium 2
Σ

 
Fig. 3. Reflection and transmission of incident wave on the boundary Σ between a uniaxial 

anisotropic medium 1 and a uniaxial anisotropic medium 2 (explanations in the text). 

 
Unit direction vectors idI and idII of electric displacement vectors D

(I) and D
(II) of the transmitted ordinary and 

extraordinary rays can be obtained from (15): 
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Similarly, unit direction vectors id1 and id2 of electric displacement vectors D(1) and D(2) of the reflected ordinary and 
extraordinary rays can be written as: 
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In order to facilitate writing of boundary conditions, let us introduce a coordinate system w2w1η defined, as in the 
previous sub-section, using Eqs. (32)÷(34).  
Now boundary condition (6) can be expressed in the w2w1η coordinate system as 
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Similarly, boundary condition (7) can be expressed as: 
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Using equations (50) and (51) amplitudes and directions of unknown E, D and H vectors will presently be calculated. 
We begin with expressing E and H vectors appearing in these equations in terms of D vectors. 
We can express electric field vector E(I) of the ordinary reflected ray as: 
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and its magnetic field vector H(I) as: 
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For the extraordinary reflected ray we will employ again the method presented in (2, p. 671), obtaining: 
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Following, we can express E(II) in terms of D⊥:  
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where nr1 – ray refractive index of the reflected extraordinary ray given by: 
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where nn1 – refractive index of the reflected extraordinary ray. Knowing E(II), we can express H(II) as: 
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For the ordinary ray in the second medium, we have:  
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where no2 – ordinary refractive index of the second medium,  
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For the extraordinary ray in the second medium, we can write: 
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where e(2) – direction of D⊥, defined as:  
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We should note that e(2) is not in general a unit vector, therefore it is not referred to as ie2. Following, we can express E(2) 

in terms of D⊥.:   
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where nr2 – ray refractive index of the extraordinary ray, given by: 
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where nn2 – refractive index of the extraordinary ray. Knowing E(2), we can express magnetic field vector H(2) as: 
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Using electric and magnetic field vectors given by Eqs. (52)÷(64) in boundary conditions (50) and (51), we arrive, after 
lengthly but relatively straighforward calculations, at the system of four linear equations:  
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By solving the system (65), amplitudes of all four electric displacement vectors D(I), D(II), D(1) and D(2) are obtained, 
allowing us to calculate E and H vectors using Eqs. (52)÷(64).  
 

4.3. Boundary between anisotropic and isotropic medium  
Finally, let us consider a ray propagating in an anisotropic medium in the direction of its wave vector s. Incident on a 
plane boundary Σ with an isotropic medium, as shown in Fig. 4, this ray gives rise to two reflected rays whose wave 
vectors are s(I) and s(II), for ordinary and extraordianry ray respectively, and a transmitted ray having wave vector s(1).  
Unit direction vectors idI and idII of electric displacement vectors D

(I) and D
(II) of the transmitted ordinary and 

extraordinary rays can be obtained from (15): 
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Fig. 4. Reflection and transmission of incident wave on the boundary Σ between a uniaxial 

anisotropic medium 1 and an isotropic medium 2 (explanations in the text). 

 
Direction id1 of electric displacement vector D(1) of the transmitted ray in the isotropic medium cannot be determined in 
this way. It will be calculated using boundary conditions, together with magnitudes of the D(I), D(II) and D(1) vectors.  
Introducing again a coordinate system w2w1η defined using Eqs. (32)÷(34), we can express boundary condition (6) as: 
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Similarly, boundary condition (7) can be expressed as: 
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Using equations (67) and (68) amplitudes and directions of unknown E, D and H vectors will presently be calculated. 
We begin by expressing E and H vectors appearing in these equations in terms of D vectors. 
We can express electric field vector E(I) of the ordinary reflected ray as: 
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and its magnetic field vector H(I) as: 
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For the extraordinary reflected ray we will employ again the method presented in (2, p. 671), obtaining: 
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Following, we can express E(II) in terms of D⊥:  
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where n
r1 – ray refractive index of the reflected extraordinary ray given by: 
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where n
n1 – refractive index of the reflected extraordinary ray. Knowing E(II), we can express magnetic field vector H(II) 

as: 
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Furthermore, electric displacement vector D(1) of the transmitted ray in the isotropic medium can be expressed as a 
linear combination of two vectors perpendicular to s(1) and perpendicular to each other, e.g.: 
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Using Eq. (75) we can express electric field vector E(1) terms of D(1):  
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and, subsequently, write magnetic field vector H(1) as: 
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Using electric and magnetic field vectors given by Eqs. (69)÷(77) in boundary conditions (67) and (68), we arrive, after 
lengthly but relatively straighforward calculations, at the system of four linear equations:  
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. (78) 

 
By solving the system (78), amplitudes of electric displacement vectors D(I), D(II), are obtained. Additionally, two 
coefficients, α and β of linear combination forming D(1) are also obtained, allowing D(1) to be calculated from (75). 
Finally, E and H vectors are calculated using Eqs. (66), (69)÷(77).  
 
 

5. COMPUTATIONAL EXAMPLE 

 
First, a series of tests, aimed at detection of errors, was conducted for various combinations of isotropic and anisotropic 
materials, and for different orientations of boundary surface. Following, a ray tracing in a Wollaston prism, shown in 
Fig. 5, was performed. A highly birefringent material YVO4 (ne=2.2154 and no=1.9929 for λ=633 nm) has been chosen 
in order to determine the impact of high birefringence of the prism’s material on the intensities of two beams emerging 
from the prism. Thickness of the prism was assumed to be 4 mm and the apex angle α=20° was chosen. Calculations 
were performed for the case of normal incidence. The opical ray incident on the prism was linearly polarized in the 
plane inclined at 45° to the plane of the Fig. 5. and its intensity was 1.0. 

α

ε

 
Fig. 5. Wollaston prism used in the ray tracing. α – apex angle of the prism, 

ε – angle between the beams emerging from the prism. 

 
Conducted calculations yielded intensities of the two rays leaving the prism to be I1=0.3766 and I2=0.3887. Their 
intensities differ by about 3.2%, which may adversely affect performance of optical setups using such prisms as 
beamsplitters and relying on the equal power or amplitude division, as is often the case in e.g. Optical Coherence 
Tomography balanced detection setups.  
Let us now consider the effect of this intensity difference on the performance of optical setups in which interference of 
these beams is used, such as the detection setup for polarization interferometric sensors5 presented in Fig. 6. Intensity I 
of interfering beams can be expressed as (2, p. 259): 

ϕϕ cos2)(
2121
IIIII ++=  (79) 

where I1 and I2 – intensities of interfering beams, φ – phase difference between them. Visibility V then becomes: 
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and in our case is equal 0.999876. The visibility is very close to unity, being much higher than expected. Therefore, the 
influence of intensity difference on the performance of this class of optical setups is in most cases negligible. 
 

Wollaston prism

WP

Detectors

Fringe pattern 
on detectors

Analyser
A

Beams from
interferometer

Beam 
expander

BE

α

 
Fig. 6. Polarization interferometer detection setup using Wollaston prism.  

 

Finally, the angle ε between the beams emerging from the prism was calculated using scalar product of their s vectors 
and was found to be equal to 9.28527°. This value was subsequently compared with angle ε calculated using well-
known formula4: 

)tan(2 αε
oe

nn −=  (81) 

which for the prism yielded result 9.28001°. Since both results agree only to within 6 parts in 10000, the source of this 
difference is worth investigating. On consulting6, one can find that in the derivation of (81) the use is made of 

approximations 1)cos( ≈x  and xx ≈)sin(  which are valid only for small angles. This explains the obtained difference. 

 

6. CONCLUSIONS 

 
Presented method allows for the calculation of amplitudes of rays transmitted and reflected from a boundary between 
two media of which at least one is uniaxial, birefringent and non-absorbing. Being based on a vectorial formulation, and 
extending approach developped by Trollinger et. al.

3, the method provides a compact framework which can be used to 
gain new insights from ray tracing analysis of existing and new optical setups. 
Calculation results obtained for a Wollaston prism made from a highly birefringent material indicate that the intensity 
difference of the two beams emerging from such prism may adversely affect operation of optical setups relying on the 
equal power or amplitude division performed by such prisms. Observed intensity difference has little impact on the 
performance of optical setups in which interference of these beams is used, such as detection setups for polarization 
interferometric sensors or polarization optical fiber sensors. 
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