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PACS 76.30.-v – Electron paramagnetic resonance and relaxation
PACS 76.30.Pk – Conduction electrons
PACS 81.05.ue – Graphene

Abstract – A theory of spin relaxation in graphene including intrinsic, Bychkov-Rashba, and
ripple spin-orbit coupling is presented. We find from spin relaxation data by Tombros et al.
(Nature, 448 (2007) 571) that intrinsic spin-orbit coupling dominates over other contributions
with a coupling constant of 3.7meV. Although it is 1–3 orders of magnitude larger than those
obtained from first principles, we show that comparable values are found for other honeycomb
systems, MgB2 and LiC6; the latter is studied herein by electron spin resonance (ESR). We assess
the feasibility of bulk electron spin resonance spectroscopy on graphene and identify experimental
conditions where such experiments are realizable.

Copyright c© EPLA, 2010

Introduction. – The discovery of graphene [1] stimu-
lated enormous interest due its fundamentally and techno-
logically important properties. One potential application
is in spintronics [2], i.e. when the electron spin degree
of freedom is utilized as information carrier. The princi-
pal parameter governing spintronic usability is the spin
relaxation time (also referred to as spin-lattice relaxation
time), τs, which characterizes how an injected non-thermal
equilibrium spin state decays. For realistic applications, τs
longer than 10–100 ns is required. A general, often cited
concept is that “pure materials made of light elements”
can reach this limit. The huge mobility of charge carriers in
graphene (approaching 106 cm2/V s [3]), the light nature of
carbon, and the low-dimensionality of this material are the
reasons for the high expectations for its spintronic appli-
cations. This is supported by the long spin relaxation time
in light metals such as, e.g., Li [4] or in low-dimensional
conductors [5].
Therefore it came as a surprise that τs as short as

60–150 ps are observed in spin transport experiments
on graphene [6,7], which renders it unusable for such
applications. The understanding of this experimental
result is therefore of great importance. Theories of spin
relaxation are split into two different classes: materials
with inversion symmetry (e.g., Na or Si) and materials
where the inversion symmetry is broken either in the

(a)E-mail: ferenc.simon@univie.ac.at

bulk (e.g., III–V semiconductors such as GaAs) or in
two-dimensional heterostructures. The Elliott-Yafet (EY)
theory [8,9] explains the former case, where only intrinsic
(i.e., atomic) spin-orbit coupling (SOC) is present, Li, and
predicts that spin (Γs = �/τs) and momentum relaxation
rates (Γ = �/τ , τ is the momentum relaxation time) are

proportional: Γs = αi
L2i
∆2Γ. Here αi = 1, . . . , 10 is band

structure dependent [4], ∆ is the energy separation of a
neighboring and the conduction band.
The relaxation for broken inversion symmetry is ex-

plained by the Dyakonov-Perel (DyP) theory. It applies
either when the symmetry breaking is in the bulk (the
Dresselhaus SOC [10], LD) or when it happens for a
heterolayer structure (the Bychkov-Rashba SOC [11,12],
LBR). The DyP theory shows that the spin and momen-
tum relaxation rates are inversely proportional: Γs =
αD/BRL

2
D/BR/Γ, where αD/BR ≈ 1.

A link between the EY and the DyP was found re-
cently [13]: for metals with inversion symmetry but rapid
momentum scattering, the generalization of the EY theory

leads to Γs = αi
L2i

∆2+Γ2Γ, which gives a DyP-like spin
relaxation when Γ>∆.
Three sources of SOC are present in graphene: intrinsic,

BR type (due to the symmetry breaking by a perpendi-
cular electric field), and the ripple related (which is due
to the inevitable ripples in graphene). However, the role
and magnitude of these SOC parameters is a debated
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issue. Estimates for the intrinsic SOC ranges two orders
of magnitude; 0.9–200µeV [14–16], whereas the value of
the BR SOC appears to be settled to 10–36µeV perV/nm
(refs. [15] and [14], respectively). Alternative scenarios for
the anomalous spin-relaxation such as the effect of the
substrate [17] and impurities [18] were also suggested.
Here, we present the theory of spin relaxation in

graphene including intrinsic, BR, and ripple spin-orbit
coupling. We analyze the spin transport data from
refs. [6,7,19] and we find that the intrinsic SOC domi-
nates the relaxation with a large, unexpected magnitude.
We discuss two similar honeycomb systems: MgB2 and
LiC6, and show that they exhibit similar intrinsic SOC.
The result predicts a strong anisotropy of the spin relax-
ation time. We study the feasibility of bulk electron spin
resonance (ESR) spectroscopy on graphene and pinpoint
experimental conditions when it is possible. ESR would
allow a direct, spectroscopic measurement of τs (ref. [20]),
which underlines its importance [21].

Experimental. – We prepared Li-intercalated HOPG
graphite by the “immersion into molten Li” method [22].
The golden color of the samples attested the LiC6 inter-
calation level [23]. Freshly cleaved samples were sealed
under He in quartz tubes for the ESR experiment.

Spin relaxation in graphene. – Low-energy exci-
tations around the K point of the Brillouin zone are
described by a two-dimensional Dirac equation:

H = vF(σxpx+σypy), (1)

with the vF ≈ 106m/s Fermi velocity [1]. The spin-orbit
interaction in graphene is given by [14]

HSO =LiσzSz +
LBR+Lripple(r)

2
(σxSy −σySx), (2)

where Li, LBR, and Lripple are the SOCs of the intrinsic,
BR, and ripple terms, respectively. Lripple(r) is a Gaussian
correlated random variable, 〈Lripple(r)Lripple(r′)〉 ∼
δ(r− r′).
The spin relaxation rates induced by these SOCs are

additive in lowest order provided max(Li, LBR, Lripple)�
max(Γ, µ):

Γs =Γs,i+Γs,BR+Γs,ripple. (3)

The contributions from the intrinsic (Γs,i), BR (Γs,BR), and
ripple (Γs,ripple) relaxation rates are obtained using the
Mori-Kawasaki formula similar to that used in ref. [24]
considering the conical band structure and the K, K ′

degeneracy:

Γs,i = δν,‖
L2i arctan(µ/Γ)

2πµ · µ̃(µ,Γ) Γ, (4)

Γs,BR =

(
2δν,⊥+ δν,‖

)
L2BR

16πµ̃(µ,Γ)

[
1+

(
µ

Γ
+
Γ

µ

)
arctan

(µ
Γ

)]
,

(5)

Γs,ripple =

(
2δν,⊥+ δν,‖

)
π

32
L2rippleρ(µ,Γ), (6)

ν =‖, or⊥ is the spin polarization direction with respect to
the graphene plane; e.g. ν =‖ in the spin transport exper-
iments [6]. Here, µ is the chemical potential and µ̃(µ,Γ) =

−Γ
π
ln(µ

2+Γ2

D2
)+ |µ|(1− 2

π
arctan( Γ|µ| )) is the pseudo chem-

ical potential (D≈ 3 eV is the cutoff in the continuum
theory) which appears in the expression of the density of
states (DOS), ρ(µ,Γ), with finite µ and Γ:

ρ(µ,Γ) =
2Acµ̃(µ,Γ)

π�2v2F
(7)

with Ac = 5.24 Å
2/(2 atoms) being the elementary cell and

ρ(µ,Γ) is measured in units of states/eV · atom.
The intrinsic contribution disappears when spins are

polarized perpendicular to the plane and the BR and
ripple terms have a 2:1 anisotropy for the ⊥:‖ direc-
tions. For the intrinsic part, Γs,i ≈ L2i

(2µ)2Γ when µ� Γ,
which is an Elliott-Yafet–like result with αi = 1 since
the band-band separation, ∆= 2µ. In the vicinity of the
Dirac point, DP, (i.e. µ≈ 0 and Γ finite) it returns a
Dyakonov-Perel–like result of Γs,i =

L2i
4 ln(D/Γ)

1
Γ . This is in

agreement with the generalized Elliott-Yafet theory which
predicts a similar crossover when the momentum scat-
tering rate overcomes other energy scales [13]. Interest-
ingly, the intrinsic contribution can be well fitted with

a Lorentzian: Γs,i ≈ α′ L
2
i Γ
′

µ2+Γ′2 , where α
′ ≈ 0.2, . . . , 0.4 and

Γ′/Γ≈ 1, . . . , 2 for typical values of µ and Γ.
The BR term is only present if a perpendicular electric

field, E, is applied, which induces a BR SOC of LBR = κE
with κ values between 10 [15] and 36µeV/(V/nm) [14].
The electric field changes µ through: µ=

√
nπ�2v2F, where

n= βE is the carrier density and β = 0.22 (V ·nm)−1 for
SiO2 gate insulator [25]. This yields the BR SOC as a
function of µ: LBR(µ)≈ κµ2 · 3.4 V

eV2nm
.

The ripple relaxation contribution depends on Γ only
if µ� Γ, where it resembles an EY relaxation: Γs,ripple ∝
L2rippleΓ ln(D/Γ). We note however, that the calculation
does not include the change of the local graphene co-
ordinates due to the ripples. The deformation of graphene
intermixes the z and x, y coordinates which can lead to a
significant modification of the anisotropy such as observed
experimentally [7].

Analysis of the spin transport data. – In the
following, we analyze the available spin transport
data [6,7,19] in the framework of the above calculation.
Values of τs = 60, . . . , 125 ps were found around the
charge neutrality point (depending on the sample), with a
typical Γ≈ 75meV [19]. Figure 1 shows the measured and
calculated spin relaxation rate data for ν =‖. Γ = 75meV,
that is independent of µ, was used for the calculated
curves. First-principles calculations of the intrinsic SOC
scatter more than two orders of magnitude with values
of 0.9µeV [14,26,27]), 24µeV [15], and 200µeV [16].
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Fig. 1: (Color online) a) Experimental (symbols, from ref. [19])
and calculated spin-lattice relaxation rates, Γs, as a function of
µ in graphene for in-plane spin polarization. Upper (lower) solid
and dotted curves are the maximal (minimal) estimates for
the intrinsic and BR contributions with SOC values from
refs. [14–16], respectively. The dashed curve is the ripple
contribution with Lripple from ref. [14]. The upmost thin solid
line is a fit to the data as explained in the text. b) The same
experimental data shown as τs along with the fit (solid curve).
For comparison, τs calculated with Γ= 12meV (dashed curve)
is shown. Arrows depict the crossover of the DyP and EY
mechanisms as a function of µ.

Values for the BR SOC, LBR = κE, vary between
κ= 10, . . . , 36µeV/(V/nm). This gives rise to the
minimal and maximal estimates for both types of the
contributions as shown in fig. 1. The ripple SOC was
estimated to be 17µeV in ref. [14].
Clearly, the first-principles–based relaxation rates

fall short of explaining the experimental observation.
Of the three contributions, only the intrinsic one has
a µ-dependence that mimics the experiment, whereas
the other two shows the opposite. It may appear that
a fit to the data is ill defined, given the relatively large
number of free parameters (Γ and 3L’s). However to our
surprise, the fit consistently yields the same, robust set of
parameters, irrespective of starting values or the method
used (least-squares fitting or combined with a simulated

annealing), which are: Li = 3.7(1)meV, LBR =Lripple = 0,
Γ= 120(5)meV. This robustness originates from the quali-
tative difference between the µ-dependence of the different
contributions. The obtained values satisfy the criterion for
the perturbative approach and the value of Γ determined
herein is in agreement with that obtained in ref. [19].
The intrinsic SOC opens a bandgap of Li in the exci-

tation spectrum [15,16] therefore it is natural to ask: why
is not this gap observed experimentally? Two interrelated
answers are in order: first, best-quality samples to date are
ballistic only on the (sub)micron scale, giving a momen-
tum scattering rate of the order of meV’s (or bigger),
which can mask the gap [28]. Second, charge inhomo-
geneities (the so-called puddles) prevent us from reaching
the Dirac point, the average minimal charge density is esti-
mated [29] as 109 cm−2, which gives an average µ∼ 4meV,
capable of overwhelming the obtained gap.
The present analysis allows for the design of graphene-

based spintronic devices. For spins polarized perpendicular
to the graphene plane, the intrinsic contribution vanishes
thus resulting in a substantially longer spin relaxation
time. For spins polarized in the graphene plane, fig. 1.
shows that around the Dirac point purer samples (i.e.
smaller Γ) decreases τs rather than increasing it, thus
deteriorating performance. This, somewhat counterintu-
itive phenomenon, is the consequence of the Dyakonov-
Perel–like behavior of the intrinsic contribution around
the DP.
The large value obtained for the intrinsic SOC is

surprising as it is an order of magnitude larger than the
largest theoretical estimate [16] and up to 3 orders of
magnitude larger than other results [14,26,27]). However,
given that the experimental µ-dependence of Γs dictates
the dominant role of the intrinsic coupling, Li yields
necessarily a large value. In the following, we consider two
similar systems, MgB2 and Li-doped graphite and show
that therein similar values of the intrinsic coupling are
obtained.
In MgB2, the boron atoms form a honeycomb lattice

with four p-shell electrons, such as in graphene, which
highlights the similarity of the two materials. Therein, an
intrinsic SOC of Li(MgB2) = 2.8meV of the π-orbitals was
found [24]. It was shown by Grüneis and coworkers [30]
and confirmed [31] that alkali-atom–intercalated graphite
is an excellent model system of biased graphene as the two-
dimensional electron dispersion is retained due to the weak
interlayer coupling. The Li-intercalated stage-I graphite
compound LiC6 [23] is particularly suitable to determine
the intrinsic SOC as Li is the lightest alkali metal and its
contribution to the spin relaxation is undetectable [4].
In fig. 2, we show the temperature-dependent ESR

linewidth, ∆B, for an HOPG LiC6 along with previ-
ous data on a powder LiC6 sample [32] and schema-
tics of the band structure. A linear fit to the data yields
∆B = 0.205 (mT)+T × 6 · 10−5 (mT/K). Of these terms,
the temperature-dependent one is associated with the
homogeneous broadening, ∆Bhom, due to SOC, which
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Fig. 2: (Color online) High-temperature ESR linewidth in
HOPG LiC6 (full symbols) and linear fit to the data (solid line).
We show similar data from ref. [32] (open symbols) on a LiC6
powder sample. The inset shows the schematics of the LiC6
band structure according to the PES measurements [30,31] and
the ∆= 1.65 eV parameter.

gives Γs = gµB∆Bhom (g≈ 2 is the g-factor, µB is the
Bohr magneton) and is Γs = 2.1 · 10−9 eV at 300K. Since
Li-doped graphite resembles biased graphene [30,31], the
above theory of the intrinsic SOC applies, i.e. Γs =
L2i
∆2Γ. With the values of ∆= 1.65 eV [31] and a typical
Γ(300K) = 4.4meV [23], we obtain Li(LiC6) = 1.1meV.
Although it is debated whether SOC in graphite is applica-
ble for graphene [14], the similar result for these three
systems leads us to conclude that the intrinsic SOC is
properly determined in graphene.

Detectability of ESR on graphene. – With the
SOC parameters and the theory of spin relaxation at hand,
we assess the feasibility of ESR spectroscopy on graphene.
It is determined by the sample amount, the magnitude of
the spin-susceptibility, and the ESR linewidth. The ESR
signal is proportional to the amount of magnetic moments:
χ0V B/µ0, where B is the magnetic field, χ0 is the volume
spin-susceptibility (dimensionless in SI units), V is the
sample volume, and µ0 is the permeability of vacuum. For
graphene with area A, the amount of magnetic moments is
χ0,grAB/µ0 with χ0,gr having a unit of meters. The Pauli
spin-susceptibility of graphene is χ0,gr = µ0µ

2
Bρ(µ,Γ)

N
A
, N

is the number of carbons and the DOS, ρ(µ,Γ), is given
above.
ESR spectrometer performance is given by the limit-

of-detection (LOD0) i.e. the number of S = 1/2 non-
interacting spins at 300K which give a signal-to-noise
of S/N = 10 ratio for ∆B = 0.1mT linewidth, and
1 s/spectrum-point time constant. For state-of-the-art

Fig. 3: (Color online) Limit of ESR detection for graphene as a
function of µ and Γ in units of the graphene area (upper panel)
for an in-plane magnetic field. The arrows show the maximum
chemical potential by gate bias and by chemical doping and
the solid curve indicates the 100mm2 area border. Expected
ESR linewidth, ∆B‖ (lower panel), solid lines show two selected
linewidths, 1 and 10mT.

spectrometers LOD0 = 10
10 spins/0.1mT. The spin-sus-

ceptibility of such spins is χCurie = µ0µ
2
B
Ns
V
/(kBT ), where

Ns spins occupy a volume of V , which gives an LOD for
graphene:

LODgr =LOD0 · f(∆B)

26meV× ρ (µ,Γ) (8)

in units of number of carbons. Here, 26meV is the ther-
mal energy at 300K and the f(∆B = 0.1mT)= 1 function
describes that the ESR S/N decreases as 1/∆B if ∆B <
1mT (the typical magnetic-field modulation limit) and as
1/(∆B)2 if ∆B � 1mT. For µ> Γ, the DOS is well approx-
imated by ρ(µ) = 0.0385µ · (states/eV2 atom) which yields
a compact result: LODgr ≈ 1000LOD0 · f(∆B)/µ with µ
in eV units.
Clearly, a sizeable DOS and narrow linewidth are

prerequisites to observe ESR on graphene. Large DOS can
be achieved by moving µ away from the DP or by inducing
defects. The latter yields, however, increased scattering
thus larger linewidth. Shifting µ by a gate bias is limited
to ∼0.2 eV due to breakdown in the most common SiO2
insulator around E ≈ 0.1V/nm. With chemical doping
using K, up to µ∼ 1.35 eV can be achieved [30]. The ESR
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linewidth is expected to be strongly anisotropic with a
minimum, ∆B⊥, for a perpendicular magnetic field, its
magnitude however remains unknown. In fig. 3, we show
the calculated LOD for graphene as a function of µ and
Γ in units of the graphene area along with the calculated
linewidth for an in-plane magnetic field. The LOD can
be two orders of magnitude smaller for a perpendicular
magnetic field if the corresponding ESR linewidth is an
order of magnitude smaller. Therefore ESR experiments
should be attempted with the perpendicular orientation
first. This experiment would yield directly the magnitude
of the BR and ripple relaxation contributions from ∆B⊥.
An important benchmark, that indeed the intrinsic ESR

signal of graphene is observed, is the angular dependence
of the ESR linewidth: ∆B(θ) = sin2(θ)∆B‖+cos2(θ)∆B⊥
as a function of the asimuth angle, θ. Finally, we note that
the anisotropy could reconcile the narrow ESR linewidth
in the perpendicular geometry [21] with the short τs in the
spin transport experiment [6].
In conclusion, we presented a theory of spin relax-

ation in graphene which takes into account intrinsic,
Bychkov-Rashba, and ripple spin-orbit coupling-induced
spin relaxation. The analysis of spin relaxation data shows
that the intrinsic contribution dominates the relaxation
with a coupling constant that is orders of magnitude
larger than theoretical estimates but it is not unusu-
ally large compared to other honeycomb systems. The
result predicts a large anisotropy of the spin relaxation.
We presented under what circumstances bulk ESR spec-
troscopy can be observed in graphene.
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[6] Tombros N., Józsa C., Popinciuc M., Jonkman
H. T. and van Wees B. J., Nature, 448 (2007) 571.

[7] Tombros N., Tanabe S., Veligura A., Józsa C.,
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