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1. Introduction 

Advances in nanometer technologies, i.e. epitaxial layer growth techniques, high-resolution 
submicrometer lithography, and etching techniques make it possible to realize electronic 
systems in which the synthesized carrier gases have a dimensionality varying between three 
and zero. This progress has stimulated enormous activities in the study of low-dimensional 
systems. 

In semiconductor microstructures such as metal-oxide-semiconductor (MOS) systems, 
single heterostructure (HS) and semiconductor quantum wells (QW), and on the surface of 
liquid helium, electrons can be confined in very narrow one-dimensional potential wells 111. 
Following, in single quantum wells (SQW), the motion of the carriers (electrons, holes) is 
quasi-free parallel to the heterointerfaces, but confined within a narrow channel perpen- 
dicular to the heterointerfaces. Hence, the electrons or holes of these systems form a 
quasi-two-dimensional electron or hole gas (Q2DEG or Q2DHG). Because the width of 
this channel is usually in the order of the de Broglie wavelength of the carriers and at low 
temperatures much smaller than their elastic mean free path, the size-quantization of the 
carrier motion perpendicular to the heterointerfaces becomes important. Hence, the spectrum 
of the carriers consists of discrete subbands. This is true because the subband spacing is 
much larger than the energy broadening induced by scattering processes. 

Besides of size-quantization there is still another property, typical for semiconductor 
microstructures. With the modulation-doping technique it is possible to separate the carriers 
spatially from the parent ionized impurities. This separation drastically reduces ionized 
impurity scattering and, consequently, gives rise to very high carrier mobilities at low 
temperatures. A new device concept called high electron mobility transistor (HEMT) [2] 
has been developed on the base of these structures. Because of their novel properties 
semiconductor microstructures represent a large potential for applications. Furthermore, 
semiconductor microstructures are related to new fundamental physical problems [3 to 51. 

Most of the work was done with the III-V compound semiconductors. Among all possible 
combinations of semiconductors, the lattice-matched (or at least closely matched) system 
GaAs-Gal -,Al,As has attracted most interest. 

With sufficiently fine confinement within the plane of a Q2DEG, the motion of the carriers 
will become quantized in the layer plane as well as perpendicular to the plane. Simultaneous 
confinement perpendicular and in one direction parallel to the layer will produce a so-called 
quantum-well wire (QWW). Confinement perpendicular to the plane and in both directions 
parallel to the plane results in a quantum dot (QD). These low-dimensional systems, called 
semiconductor nanostructures, are typified by novel physical properties including both, 
mesoscopic coherence phenomena, such as universal conductance fluctuations in the electron 
transport [6] as well as ballistic-transport phenomena, such as the quantization of the 
conductance [7, 81. The manufacturing of these structures is only possible because of the 
recent considerable efforts in high-resolution nanometer-scale lithography. 

Many aspects of the physics of low-dimensional electron systems have been studied. 
Much attention has been focused on the electronic collective excitations of the Q2DEG. 
Most of the work was done for the strictly two-dimensional model of the electron gas. The 
dispersion of two-dimensional plasmons of a very thin metallic layer has first been derived 
by Ritchie [9] and Ferrell [lo]. Stern [11] derived the polarization function and the 2D 
plasmon dispersion in the self-consistent field (SCF) approximation [12]. In these works it 
was found out that in the long-wavelength limit, neglecting retardation the frequency of the 
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2D plasmon is o - 1/411 ,where q I 1  = (qI11 is the absolute value of the wave vector in the 
plane parallel to the heterointerface. Chaplik [ 131 calculated the dispersion relation of 2D 
plasmons for Si-MOS systems including the perfectly screening property of the gate. 

Consideration of multiple-layer systems has also usually been restricted to one- 
dimensional arrays of strict 2DEGs. Visscher and Falicov [14] have discussed the static 
dielectric function of this so-called layered electron gas (LEG) model in the random-phase 
approximation (RPA). Fetter [15] has given a detailed discussion of the plasmons of the 
LEG in a hydrodynamic approximation. A similar calculation using the equation-of-motion 
method to obtain the RPA was done by Apostol [16]. The plasmons were also investigated 
for semi-infinite LEG systems by Giuliani and Quinn [17], Jain [IS], and for finite LEG 
systems by Grecu [19] and Jain and Allen [20]. 

The effects of a perpendicular quantizing magnetic field on the collective excitations of 
a strict 2DEG, the 2D magnetoplasmons, were first discussed by Chaplik [13] and Chiu and 
Quinn [21] followed by a lot of works [22 to 241. The magnetoplasmons of the LEG model 
are discussed by Kobayashi et al. [25], Das Sarma and Quinn [26], Bloss and Brody [27], 
Tselis and Quinn [28], and Gasser and Tluber [29]. Since semiconductor microstructures 
are mostly composed of the weakly polar compound semiconductor materials of the 111-V 
series, optical phonons occur, which interact with the plasmons. In most of all papers only 
the ordinary 3D bulk longitudinal optical (LO) phonon is considered to interact with the 
2D plasmons [27, 28, 30 to 321. 

For a range of phenomena the strict-2DEG model is a good approximation. However, 
there are phenomena for which the small but finite thickness of the electron system cannot 
be neglected. In this case the electronic subband structure becomes important. The effect 
of the finite layer thickness on the collective excitations was considered by Chen et al. [33], 
Dahl and Sham [34], Eguiluz and Maradudin [35], and others [36 to 411. Taking into account 
the finite thickness of the electron system, two types of plasmons, intra- and intersubband 
plasmons, occur. The intrasubband plasmon is the analog to the 2D plasmons. It is connected 
with electron motion within one subband. But the intersubband plasmon is connected with 
electron motion between two different subbands. Wendler and coworkers [42 to 491 
considered the plasmon-phonon and magnetoplasmon-phonon coupling including the 
confined LO phonons and the interface optical phonons [50 to 521 of the layered systems 
using the full RPA polarization function of the Q2DEG. 

In most of these works the coupling between the intra- and intersubband modes is 
neglected. Das Sarma [53], Jain and Das Sarma [54], and Wendler et al. [46] considered the 
intersubband mixing and obtained the result that the effect on the dispersion curves is small 
for the usual thickness of the quantum wells. Landau damping of the plasmons is considered 
by Xiaoguang et al. [31, 321 for a strict 2DEG interacting with ordinary 3D bulk LO 
phonons and by Wendler [45] for a Q2DEG interacting with the complete set of optical 
phonon modes of a double heterostructure (DHS). 

In going beyond the RPA, Jonson [55], Rajagopal [56], and Czachor et al. [57] considered 
the effects of exchange and correlation on the 2D plasmons and Wendler and Grigoryan 
[47] investigated these effects for a Q2DEG interacting with the optical phonons of a DHS. 
The collective expitations in a spin-polarized Q2DEG are considered by Ryan [58]. 

First results about plasmons in QWWs [59 to 631 and arrays of QD's [64,65] are published. 
2D plasmons have been observed first by Grimes and Adams [66] for electrons on 

the surface of liquid helium. For Si-MOS systems 2D plasmons have been firstly in- 
vestigated by Allen et al. [67] and by Theis et al. [68], using far-infrared (FIR) transmission 
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spectroscopy. FIR emission of 2D plasmons has been observed by Tsui et al. [69]. 
Experiments on 2D plasmons in the electron space-charge layers of GaAs-Gal -,Al,As 
HS’s have also been performed [70]. Further. Raman scattering is used to probe the intra- and 
intersubband plasmons of GaAs-Gal -,Al,As SL’s [71 to 741. Review articles on 2D plasmons 
are published, e.g., by Theis [75], Hopfel and Gornik [76], Chaplik [77], Heitmann [78], and 
Batke et al. [70, 791. 

The interest in the experimental study of the plasmons of the Q2DEG arises in particular 
from the possibility that the charge density can be varied over several orders of magnitude 
in these systems. With the charge density, many related physical properties, e.g. Fermi 
energy, Fermi wave vector, etc., can be varied. This and the possible variation of the 
thickness of the quantum well allows a detailed investigation of different mechanisms that 
determine the plasmon resonance itself and interactions of plasmons with different types 
of excitations such as the optical phonons [42 to 491, acoustic phonons [80], and piezoelectric 
waves [81]. With the remotely doped parabolic quantum wells it is possible to produce a 
new very interesting physical system containing a Q2DEG. In remotely doped parabolic 
quantum wells it is possible to synthesize a QZDEG which is almost three-dimensional but 
with much weaker electron-impurity interactions than in conventionally doped bulk 
semiconductors [83 to 841. Further, in these so-called wide parabolic quantum wells it might 
be- possible to observe broken-symmetry ground states [85 to 871. The plasmons in such 
systems are observed recently with FIR transmission spectroscopy using a grating coupler 
technique [88, 891. 

In the many-particle theory dynamical properties can be treated within the framework 
of linear response theory. In principle, there are two different response formalisms used to 
calculate the properties of the collective excitations. In the density-response treatment the 
response of the system to an external charge density is considered. In the current-response 
treatment, however, the response of the system to an external current density is considered. 
The plasmons resulting from the density-response treatment are unretarded, because the 
equations of electrostatics are used to relate the densities with the fields. In the case of the 
current-response, the modes are retarded, i.e. they are modes of the solid coupled to photons 
and hence they are plasmon-polaritons. However, in the case of a homogeneous three- 
dimensidnal electron gas (3DEG) of an isotropic solid the longitudinal part of the current- 
response is strictly the same as in the density-response. As shown by Wendler and Kandler 
[90] this is not validfor a QZDEG. In this case the collective excitations of the density 
response are only correct in the unretarded limit. 

The retardation effects on the collective excitations are considered by Chen et al. [33], 
Dahl and Sham [34], Eguiluz and Maradudin [35], Rajagopal [56], Tselis and Quinn [91], 
Toyoda et al. [92], King-Smith and Inkson [93] and by other workers. 

The aim of this paper is to review the density- and current-response of the QZDEG and 
to give a detailed investigation of the collective excitations for both density- and current- 
response within a full RPA treatment. In our calculations no simplifying approximations 
for the RPA response functions are made. This allows the comparison of the results for all 
wave vectors. Further, for the first time we have included in the calculations, represented 
in this review article, the image effects on the scalar and vector potential arising from the 
different polarizabilities of the different semiconductors forming the quantum well structure. 
Hence, this paper generalizes the earlier works of Dahl and Sham [34], Eguiluz and 
Maradudin [35], and King-Smith and Inkson [93] on both, electrodynamics as well as 
quantum mechanics. Our aim, first, is to give a rigorous comparison between the density- 
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and the current response and, second, to investigate the effects of the image terms on both 
density- as well as current-response for the configuration used in experiments. 

This review paper is organized as follows. At first we discuss the electrodynamics of the 
layered semiconductor system including the case of electrostatics in Section 3. After this we 
consider the ground state and the response properties of the Q2DEG confined within the 
quantum well using many-particle theory in Section 4. We then calculate the dispersion 
curves of intra- and intersubband plasmons and plasmon-polaritons in Sections 3 and 5. 
These collective excitations are discussed in detail in Section 5. 

2. General Consideration 

Many experiments in condensed matter physics measure the linear response to an external 
perturbation. In principle, there are two different response formalisms used to calculate the 
electromagnetic response properties of an electron gas. In the density-response formalism 
the response of the system to an  external charge density is calculated. The corresponding 
response function is the density-response or polarization function. The collective excitations 
connected with the density-response are the plasmons. Because the physical system is 
perturbed by an external charge density, usually the electrodynamics of the system is 
represented by Maxwell’s equations of electrostatics, i.e., Poisson’s equation is used to 
relate the charge density to the electric field. Following, the plasmons are unretarded 
collective excitations. 

On the other hand, in the current-response formalism the response of the system to an 
external current density is calculated. The corresponding response function is the current- 
response or polarization tensor. The collective excitations connected with the current- 
response are the plasmon-polaritons. The presence of an external current density indicates 
that the electrodynamics of the system is represented by the full set of Maxwell’s equations. 
Therefore, the plasmon-polaritons are coupled excitations of the electron gas and of photons. 

In the well-known case of a homogeneous 3DEG of an isotropic solid, the current-response 
tensor consists of two parts: the longitudinal and the transverse ones. The longitudinal part 
is essentially the same as the density-response function. But this is, in general, not true for 
a Q2DEG in a layered semiconductor quantum well structure [90]. The physical reason is 
that in layered structures of isotropic materials the electromagnetic fields are p- or s-polarized 
and hence, purely longitudinal fields cannot exist. 

For the calculation of the dispersion relation of the electronic collective excitations it is 
therefore necessary to consider both the electrostatics and the electrodynamics of the layered 
systems. The electromagnetic response theory consists of two parts. The first part is the 
electrodynamics (or electrostatics) which gives an answer to the question which fields are 
produced by the sources. The resonances in the resulting equations describe the dispersion 
relation of the collective excitations. But in these equations there are unknown functions, 
the response functions. These response functions must be calculated using quantum theory. 
Hence, the equations describing the response of the electron gas in a layered quantum well 
structure represent a combination of a Kubo formula with Maxwell’s equations [94]. 

In this paper we consider the linear response of the Q2DEG of a DHS. The DHS (Fig. 1) 
which is under consideration in this paper consists of a smaller gap semiconductor ( v  = 1) 
for a > z > 0 (for instance GaAs) which is embedded between a wider gap semiconductor 
(11 = 2) for u + b > z > u and 0 > z ( v  = 3) (for instance Ga,+xAlxAs). With respect to a 
real DHS and experiments the region z > a + b is filled by vacuum (v = 0). Due to the 
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vacuum 
z -  a +  b 

Fig. 1. Schematic arrangement of the ge- 
ometry of a double heterostructure 

i Go,-, Al As 

I I 

Gal-, A I , A s  I 
conduction band discontinuity at the two heterointerfaces at z = 0 and z = a a one- 
dimensional potential well arises to confine the electron motion to the smaller gap 
semiconductor layer. 

3. Electrodynamics of Layered Semiconductor Quantum Well Structures 

3.1 Electrostatics 

The Maxwell equations of electrostatics are 

V .  (.zOcb(z) E(x)) = eind(x) + ecxf(x), 

V X E ( X )  = 0 ,  

where E = Elota' is the total electric field that appears in the usual version of Maxwell's 
equations, cb(z) is the background dielectric function which is the constant ebv in each 
semiconductor of the layered system, and eind and e'"' are the induced and the ex- 
ternal macroscopic charge densities, respectively. Defining the total scalar potential @ as 
E = -V@, (1) and (2) produce the following Poisson equation: 

1 

E O  

V . (&b(Z) V @ ( x ) )  = - ~ (eind(x) + eex'(x)) . (3) 

For a layered system it is convenient to solve Poisson's equations with the help of the 
Green's function D(x,  x'). This Green's function describes the electrostatic problem for the 
non-magnetic background semiconductor characterized by the dielectric function cb(z), 
without the Q2DEG. It satisfies the boundary conditions at z = 0, a, a + b, and at  z = co 
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(see Fig. 1) and is calculated in Appendix A. For a layered system in which the materials 
have different polarizabilities the Green’s function of the Poisson equation contains two 
parts, the direct Coulomb and image parts. The formal solution for the scalar potential is 

d3x’ D ( x ,  x‘) (eind(x‘) + eeX‘(x‘)) (4) 

A time-dependent external charge density eext, or the corresponding external scalar 
potential Gext, induces a redistribution of the charge within the system, the induced charge 

(electron charge -e). If the perturbation is weak, the system will respond linearly. Linear 
response means that the signal is directly proportional to the intensity of the external 
perturbation. The response function describing the linear response of the system to the 
external scalar potential is the quasi-density response, or reducible polarization function 
H ( x ,  x’ I t, t’), defined by 

density Qind which is related to the induced electron number density nind by eind = - enind 

eind(x, t )  = J d3x‘ J dt‘ H(x,  X’ I t, t’) @‘“(x, t’) . (5) 

The induced charge density is a source of the induced scalar potential. The summation of 
all the scalar potentials is the total scalar potential entering Poisson’s equation. This potential 
is also called in response theory the self-consistent potential Vsc  = -e@. The response 
function describing the linear response of the system to the total scalar potential is the 
density-response, or irreducible (proper) polarization function, P ( x ,  x’ 1 t, t’) defined by 

Q ~ ~ ~ ( x ,  t )  = J d3x‘ J dt‘ P(x,  X‘ 1 t ,  t’) @(x’, t’) . (6) 

We note that often the density-response function is defined b y  nind = PV”” with the result 
that this function differs by a factor of e2 from that defined in (6). But if we want to consider 
both, the density- and current-response, it seems the definition (6) is the more convenient one. 

Using (6) in the formal solution (4) of Poisson’s equation we obtain 

@(x, t )  = Qcxt(x, t )  + ~ d3x’ d3x” dt“ D(x,  x’) P(x’,  X” I t ,  t”) @(XI’, t”) . (7) 
E O  ‘s s s 

Because we investigate stationary problems in systems which are spatially homogeneous 
in the x-y plane it is convenient to introduce two-dimensional Fourier series, 

r 

where xll  = (x, y ,  0) and qll  = (yx, y,, 0) are the two-dimensional position and wave vector 
in the x-y plane. We have applied Born-von Karma, periodic boundary conditions in 
this plane with the unit area A. Using (9) the scalar potential is given by 

@(411; Z I 0) = @cx‘(4\;;  z I W )  
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From (10) and the corresponding equation containing I I (q , , ;  z, z' 1 w )  it is possible to derive 
a relation between ll and P. It follows: 

ll(qll; Z, Z' I w )  = P(qil; z, Z' I W )  + J dz" J dz"' P(ql1; Z, Z" I W )  

x D(qll; z", z"') I I(ql1; z"', z' I w )  . (1 1) 

From the point of view of the density-response formalism it is usual to define the total 
longitudinal dielectric response function x,(x, x' I w )  and its inverse x, ' (x ,  x' I w )  which are 
defined in the sense of screening functions by 

P'(x, W )  = J d 3 i  x,(x, x' I w) @(d, W) , 
@(x, w )  = J d3x' XL (x, x' I w )  @'"(x', CU) . 

From the last two equations and (9) and (10) it follows: 

and 

(15) 
1:o 's x ,  '(411; Z, Z' I W )  = 6(z - z') + - dz" D(q11; Z, z") II(q11; z", Z' 1 W )  . 

We note that the meaning longitudinal arises from V x E = 0. For a 3D homogeneous and 
isotropic solid this implies that E 1 1  q, where q is the 3D wave vector. But for a layered 
system the word "longitudinal" does not necessarily mean parallel to qI1. From the point 
of view of the classical macroscopic electrodynamics it is usual to define the dielectric tensor 
E , ~ ( X ,  x' I (0) where a, j = x, y, z. This dielectric tensor relates the electric field E with the 
displacement field D according to 

D,(x, W) = EO C J d3x' E , ~ ( x ,  X' I W) Ep(x' ,  w )  = ~ ~ ~ ~ ( 1 7 )  E,(x ,  W )  + P,(x,  w), (16) 
P 

where the dielectric polarization field P i s  related to the induced charge density according to 

a 
, ax, 

eind(x, w) = - c - P,(x,  w) . 

Using these definitions and (6) it follows: 

a 2  
P ( x ,  x' I w) = Eo c -- ~ (E&) 6(x - x') 6,, - E,& x' I w ) )  . 

a . p  a.x, sxb 
It is important to note that for layered systems there is a basic difference between xL and 
E , ~ .  Whereas cmOp only incorporates the sources, xL in addition contains as a screening function 
all information about the geometry. Only for isotropic and homogeneous 3D systems (14) 
and (18) give the same result: xL(q ,  W )  = cJq ,  a), where EL(q, w) is the longitudinal part 

The dispersion relation for the plasmons of the quantum-well structure is obtained using 
(10) for a finite total scalar potential with no applied external potential. The condition for 
the existence of collective excitations reads 

of Em&, a). 
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3.2 Electrodynamics 

The full set of Maxwell's equations is 

V . ( E ~ E , , ( Z )  E(x,  t ) )  = eind(x, t )  + eext(x, t )  , 

17 

a 
at 

V x E(x,  t) = - - B(x, t )  , 

v ' B(x, t )  = 0 ,  

V x B(x,  t )  = p o ~ o ~ b ( z )  ~ E(x,  t )  + p0jind(x, r )  + p0 jex t (x ,  t) , 

(21) 

(22) 

(23) 

where j ind and j are the induced and external macroscopic current densities, respectively. 
We assume the media to be non-magnetic and notice that both types of current and charge 
densities must satisfy the equation of continuity, e.g. 

a 
at 

(24) 

The total vector potential A is defined by B = V x A and the total scalar potential @ by 

E = -V@ - - A .  Because of the gauge invariance of the potentials: A + A' = A + V A  

and @ + 0' = @ - - A ,  with A a scalar field, it is necessary to use a gauge fixing condition. 

In the following we use the gauge @ = 0. From Maxwell's equations and the definition of 
the vector potential the inhomogeneous wave equation follows: 

a ind v ' jind(x, t )  + - Q (x, t) = 0 .  
at 

a 
at  a 

at  

w2 

C2 
A A ( x ,  t )  - V ( V .  A ( x ,  t ) )  + cb(z) ~- A@,  t )  = -p0jind(x, t) - p o j c x t ( x ,  t) . (35)  

For a layered system it is useful to solve this equation with help of the Green's tensor 
DUB@,  x' 1 t ,  t ' ) .  This Green's tensor expresses the propagation of electromagnetic waves in 
the background semiconductors without the Q2DEG. I t  contains direct and image parts 
for layered systems, in which the materials have different polarizabilities, and satisfies the 
boundary conditions at  the heterointerfaces and at  infinity. The components of the Green's 
tensor are calculated in Appendix A. The formal solution for the vector potential is 

(26) 

The external current density j c x t ,  or correspondingly, the external vector potential A ext, 

induces a redistribution of the current density within the system, jind. The response function 
describing the linear response of the system to the external vector potential is the 
quasi-current response or reducible polarization tensor IImB(x, x' I t ,  t') defined by 

A,(x,  t )  = po 5 d3x' 5 dt' DaP(x,  x' I t ,  r') [$"(x', t') + jF * (x ' ,  t')] . 
B 

j F d ( x ,  t )  = 5 d3x' dt' Ump(x ,  x' I t ,  t') Art@',  t') . (27) 
B 

The response function describing the linear response of the system to the total vector 
potential A ,  which is the actual vector potential acting in the solid, is the current-response 
or irreducible (proper) polarization tensor PuB(x,  x' I t ,  t ' )  defined by 

j p d ( x ,  t )  = 1 5 d3x' J dt' PUB(x,  X' I t ,  t ' )  A+, t ' )  . (28) 
P 

2 physica Ib) 177:l 
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Using this equation in the formal solution (26) of the inhomogeneous wave equation it 
follows after Fourier transforming according to (9): 

A,(qli; z I w) = AP‘(qll; z I w )  + PO 1 J dz’ J dz“ D,,(qll; Z, Z’ I w )  

x ~ , , ( g ~ ~ ;  z‘, Z“ I wj  A y ( q l l ;  Z” I w ) .  

8 . Y  

(29) 

The relation between fZup and P,, is found to be 

fZU8(q,,; Z, z’ I w)  = Pu8(qll; Z, Z‘ 1 w )  + C J dz” J dz‘” 
Y . d  

x P,,(qIl; Z, Z” 1 w) D,a(qll; z”, z”’ I W )  nas(q11; z”’, Z’ 1 W) . (30) 

In the current-response theory it is convenient to define the total dielectric response tensor 
xu8(x, x’ I w )  which relates the total vector potential in the system to the applied external 
vector potential through the relationship 

AZXf(x, W) = 1 J d3x‘ x , ~ ( x ,  X‘ 1 W) Ap(x’, 0). (31) 
P 

From (29) and (31) it follows that 

x&, x’ I w )  = 6(x - x’) 6,, - Po 1 
Y 

In the classical macroscopic electrodynamics 

1 d3r”  Day(x,  X” I w )  Py8(x”,  x’ I a). (32) 

it is more familar to use the conductivity 
tensor cZ8(x ,  x‘ 1 w) or  the dielectric tensor E , ~ ( X ,  x’ 1 w). The conductivity tensor is defined 
by the equation 

j”‘(~,  0) = 1 J d3x’ oUP(x,  x’ I a,) Ep(x’ ,  0)) 
8 

and hence 

(33) 

is valid. The dielectric tensor relates the electric field E with the displacement field D 
according to (16), where now the polarization field of the nonmagnetic solid is given by 
P = (i /w) jind. Combining (16) with (34) the dielectric tensor is obtained as 

We note that, as in the case of electrostatics there is the same basic difference between xU8 
and cap. The dispersion relation of the coupled plasmon-photons, the plasmon-polaritons 
of the quantum well structure, will be obtained using (29) for A + U with no applied external 
potential: A‘”’ = 0. Under this condition we obtain 

The dispersion relation follows as the condition for non-trivial solutions of A,.  
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4. Linear Response of the Quasi-Two-Dimensional Electron Gas 

4.1 Ground state: electronic suhhands 

According to the quantum well structure of the DHS (Fig. 1) the electrons of the conduction 
band can move quasi-free in the x-y plane with the wave vector component k,, but their 
motion is quantum-confined in z-direction. In the effective-mass approximation the 
one-electron motion is given by the effective Schrodinger equation 

where V,,,(x) is the effective confining potential. According to the symmetry of the DHS 
the single-particle electronic wave function vK,, , ( x )  can be written in the form 

(38) 

The quantum confinement of the electron motion in z-direction leads to the occurrence of 
the electronic subbands characterized as 

(39) 

The envelope wave function yK(z) for an electron in the K-th subband is given by the 
one-dimensional effective Schrodinger equation 

The simplest model potential for the DHS is given by infinite barriers, neglecting any 
band-bending and exchange-correlation effects. In  this case we obtain 

and 

We use these simple results in the numerical calculations discussed in the following sections. 
The width of the narrow channel to which the electrons are confined is usually of the 

order of their de Broglie wavelength i, = 27c/kF, with k ,  = (27~n , , ,~ )~ '~  the 2D Fermi wave 
number and n2DEG is the sheet carrier concentration. Because the sheet carrier concentration 
of a Q2D electronic system at T = 0 K 

with E ,  being the Fermi energy and O(x) being the unit step function (e(x) = + 1 for x > 0 
and 0(x) = 0 for x < O),  varies for usual quantum wells in the region 1 x 10" cm-' 
< nZDEG < 5 x 10" cm-2 corresponding to 0.24 < rs < 5.5 for the dimensionless 
Wigner-Seitz parameter yS = r,/a,* ( ro  = (7cn2DEG)-1i2 is the mean radius between the 
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electrons, at = 47tc,c,,h2/(rne2) is the effective Bohr radius; for GaAs at = 10.29 nm with 
the effective electron mass rn = 0.06624m0 and the static dielectric constant E , ~  = 12.87), 
the de Broglie wavelength varies between 10 nm < I., < 250 nm. The usual thickness of 
the quantum wells is below 100 nm. Further. at low temperatures for which the electron 
mobility p can reach values up to 2 x lo7 cm2/Vs, this width is much smaller than the elastic 
mean free path of the electrons ( I  = uF7 z lOOOnm, T = rnp/e), i.e. the motion of the 
electrons between the boundaries of the channel is ballistic. Following, the subband spacing, 
typical in the range A 8  = 20 to 100meV, is much larger than the energy broadening 
r = h/7 induced by scattering processes. According to (39) and (40), the size-quantization 
becomes experimentally observable and, hence, becomes important for describing the 
physical properties of semiconductor microstructures. For typical IIILV semiconductor 
quantum wells only few subbands gK are occupied. 

4.2 Density-response of a QZDEG 

Now we consider the interacting many-particle system of the Q2DEG in the presence of 
a perturbation. The many-particle Hamiltonian of this system in second quantized form reads 

A = ri, + A&). (44) 

where A ,  is the unperturbed part, 

Herein e,kll ( f i k  ) is the destruction (creation) operator of an  electron with the quantum 
number ( K k l l ) .  h e  interacting part A, ( [ )  has for the density-response the form 

is the charge density operator, @ is the total scalar potential and the electron field operators 
are given by 

Note that the system is perturbed at t = - 30 by turning on the time-dependent Hamiltonian 
A ,  ( t ) .  It is assumed that this perturbation is switched on adiabatically. The first-order change 
in the ensemble average of an operator 0 is given by [94] 

dt' T r  (Pc[d(t), A,(t ' ) ] )  , (50) 

where the operators are in the Heisenberg picture. The trace (Tr) is evaluated in the 
equilibrium grand canonical ensemble with Gc the grand canonical statistical operator. 
From (50) we find the first-order change in the ensemble average of the charge density 
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operator 6(4) = eind, the induced charge density, according to 

(51) 
- X I  

Comparing this Kubo formula [95] with (6) we found for the density-response function 

1 
P ( x ,  x' 1 t, t ') = - - Tr (&[d(x, t ) ,  d(x', t ')]} 0 ( t  - t ' ) ,  (52) 

which is a retarded density-density correlation function. Since such a function cannot easily 
be calculated directly with the Feynman-Dyson perturbation series because Wick's theorem 
applies only to a time-ordered product of operators, an associated time-ordered correlation 
function is introduced. The time-ordered correlation function in the Matsubara formalism 
can be calculated according to [96,97] 

h 

P ( x ,  x' 1 iru,) = - ~ d.t e'"-'Tr {&T,@(x, z) @(x', 0))  , (53)  h or 
where (on = 2nn/ph (n is an integer) is the Matsubara frequency. After the evaluation of 
P ( x ,  x' I iw,) using the diagrammatic techniques we obtain the retarded correlation function 
P ( x ,  x' I w )  by the analytic continuation iw, -+ w + i 6 ;  6 + 0' in the usual way. 

Here we are concerned with the random-phase approximation (RPA) for the irreducible 
polarization function (52). Using this single-loop approximation in the Matsubara expression, 
(53) ,  with the wave function IKkll)  and subband energies GK(k)  of non-interacting electrons 
we found after analytic continuation and Fourier transformation in the x-y plane [42] 

Herein nF(gK(kI,)) denotes the Fermi occupancy factor of electrons. Using (54) for the RPA 
polarization function in (19) we can derive the dispersion relation. To  do  this we make two 
assumptions. For simplicity, we want to discuss the dispersion relation for T = 0 K and 
in the electric quantum limit (EQL). It means that in equilibrium the electrons only occupy 
the lowest ( K  = 0) subband. This is valid within the usual concentrations of carrier densities 
and at low temperatures in the most common 111 -V semiconductor microstructures. The 
matrix polarization function P K K , ( q , , ,  w )  has at  zero temperature only the non-vanishing 
elements Po,, Po,, and PKo.  Hence, (54) can be written in the form 



L. WENDLER and E. KANDLER 22 

where we have now assumed that the qK(z) are real functions. The RPA polarization 
function Xs(qll, w )  in der EQL is defined by 

The polarization function XK(qI1, w )  contains two physically different contributions: 

the Fermi surface within the lowest subband and 

subbands. 

(i) the intrasubband contribution for K = 0 arising from the electron excitation above 

(ii) the intersubband contribution for K > 0 arising from the electron excitation to higher 

With the approximations described above the dispersion relation reads 

where DKK.(qI,) is given by 

The matrix elements of the Green's function (61) are calculated in Appendix B. The dispersion 
relation (60) describes intra- and intersubband plasmons. Because only the lowest subband 
is assumed to be occupied, the once intrasubband plasmon is the (0-0) intrasubband 
plasmon, which is in general coupled to all (K-0)  intersubband plasmons. For a spatially 
symmetric quantum well, such as the rectangular quantum well in the case of a DHS, the 
modes are split into two independent sets, the symmetric modes: (0-0), (2-0), (4-0), . . . and 
the antisymmetric modes: (1-O), (3-0), (5-O) ,  . . . Symmetric and antisymmetric modes are 
not couplcd. We note that the usual Coulomb matrix element V k K ,  is related to (61) by 
V k K .  = eZ/coDKK..  In (61) fgL,(qll) is the form factor of the direct Coulomb interaction 
potential and yZ,(ql1) that of the image part. 

For the numerical calculation of the dispersion relation (60), it is necessary to make one 
further approximation. One possibility is to neglect the off-diagonal elements of (60). 
Hence, the dispersion relation is given in the diagonal approximation by 

under the condition that the imaginary part of the polarization function vanishes. This 
dispersion relation describes 

(i) intrasubband plasmons if K = 0 and 
(ii) intersubband plasmons if K > 0. 

The neglect of the off-diagonal elements is equivalent to neglecting the mixing between the 
intra- and intersubband plasmons. 

The second possibility for the further approximation is if we retain the off-diagonal 
elements but use a two- or three-subband model [46, 481. 
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The RPA polarization function of a Q2DEG in the electric quantum limit is calculated 
in [42] to be 

X K ( 4 1 1 ,  O) = - ~ (63) 

with 

2m 

and ~ + a,, > w ;  
2m 

Herein a,,, = ( c F ~  - gKK')/h denotes the subband separation frequency and vF = hk,/m is 
the Fermi velocity. For explicit analytic calculation we use long-wavelength approximations 
(LWA) of the polarization function. If we expand all quantities in the RPA polarization 
function in a power series of q l l  = lyl l l  we obtain 

for K = 0, and for K > 0 it follows: 
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Fig. 2. Regions of the single-particle intra- and intersubband excitations in the w-qIl plane. 
These regions are characterized by Im xK(q lk  w )  + 0 and Im x!&, w )  + 0, Im xFy(qlI, w )  + 0, 
Im xFz( ql1,o) + 0, Re xfz(qll, w)  + 0, and Re xzx(qlI, o) + 0, and shown by the shaded areas. The 
boundaries of the regions are given by wyo = u F q l l ( l  + q11/(2k,)), w ; O  = uFql l ( - l  + qIl/(2k,)), 

The lines h / E F  = 0.5, 1.5, 4.5 and w/Qlo = - 0.95, 1.05, and 1.20 correspond to the frequencies at 
which the real and imaginary parts of xo(qIl, w), xl(qll ,  w), xf&ll, w), and &(qlI, w )  are calculated; 
nZDEG = 10" ern-', a = 20 nm 

fi);' = bqll(1 - 4 1 1 / ( 2 k ~ ) ) ,  0:' = U,Yl,(l f 4 1 1 / ( 2 k ~ ) )  + Qio, and do = W l 1 ( - 1  f Q / ( 2 k ~ ) )  + Qio .  

In Fig. 2 we have plotted the regions in the o-q l l  plane in which Im xK(qll, w) + 0. 
Outside these regions Im xK(qii ,  w)  = 0 is valid. Im xK(qI1, w) =l 0 means that the single- 
particle excitations of the Q2DEG occur. These are transitions of single electrons from 
states below the Fermi surface to an  empty state above it. 

Fig. 3 and 4 demonstrate the calculated RPA results for xo(qlI, o) and x1(qI1, 0). 
The polarization functions are calculated at  three fixed frequencies which are also plotted 
in Fig. 2. 

From Fig. 3 is to be seen that the real part of xO(ql1,w) has a sharp peak for 
this wave vector for which the boundary of the single-particle intrasubband continuum 
(curve oyo in Fig. 2) is crossed. For lower frequencies the sharpness of the peak increases. 
If the boundaries 0;' and w i o  are crossed, an  edge occurs in the curve of Re xO(ql1, w). The 
imaginary part of xO(ql1, w )  shows sharp minima if crossing the boundaries myo and 003' and 
is only different from zero between the boundaries oyo and o:'. For x1(qI1, w) the analogous 
characteristics are depicted in Fig. 4. 
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Fig. 3. Plot of the intrasubband contributions Re xO(ql1, o) and Im xO(ql1, o) of the RPA polarization 
function for three different frequencies 

4.3 Current-response of a Q2DEG 

The interacting part fi,(t) of the Hamiltonian fi of the Q2DEG in presence of an external 
current is 

fii(t) = - C J d3x YaW Aa(x, t ) ,  (68) 

where A,  is the a-th component of the total vector potential and the cc-th component of 
the current density operator is given by 

a 

) a a 
YJx) = - @'(x)-l$(x) - -l$+(x)l$(x) . 

2m ihe ( ax, ax, 
We note that the expection value of this current operator, the paramagnetic current, used 
in the Hamiltonian differs from the real current density by a term proportional to A,  the 
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diamagnetic current given by 

e2 

m y:(x) = - - Ij+ (x) Ij(x) A&, t )  . (70) 

Hence, the paramagnetic current must be used in the Hamiltonian of the linear response 
alone and the contribution from the diamagnetic current must be added at the end of the 
calculation. Only the paramagnetic current can be derived directly by the Kubo formula 
[96]. Using this circumstance in (50) we have for the induced current density 

dt' Tr {&[j^.(x, t ) ,  ĵ B(x', t ')]}  

- m  
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where we have used the gauge fixing condition 0 = 0. The gauge invariance of the theory 
is discussed in detail in Appendix C. Comparing the Kubo formula (71) with (28) we found 
for the current-response function 

1 
P&, x' I t ,  t') = ~ Tr {BG[Jz(x, t ) ,  ;,(XI, t')]} O(t - t') 

h 

e2 

m 
- - Tr { ~ G @ ' ( x )  @(x)} 6( t  - t ' )  6(x - x') h,, . 

The first term is the retarded current-current correlation function which is a two-particle 
function and is calculated using the Matsubara formalism. The second term is transformed 
in a single-particle Green's function according to 

Tr {B,@'(x) @(x)} = - lim Tr {BGT,@(x, T) $'(XI, 0)} . 
s'+s 
7-0  ~ 

(73) 

Here we are again concerned with the RPA for the irreducible polarization tensor (72). 
Using this single-loop approximation in the Matsubara expression with the state vector 
JKk 11) and subband energies &,(k 11) of non-interacting electrons we found, after analytic 
continuation and Fourier transformation in the x-y  plane, by similar calculations as in 
the case of the density-response for the polarization tensor, 

with 

and 

Using the RPA polarization tensor in (36) we can derive the dispersion relation. We make 
here the same two assumptions: T = 0 K and the EQL, as in the case of the density-response. 
For convenience, we choose a Cartesian coordinate system for which qll = (q,, 0, 0), without 
loss of generality, because the medium is isotropic in the x-y  plane. In such a coordinate 
system the only non-vanishing components of the Green's tensor are D,, D,,, D,,, D,,, 
and Dz, (see Appendix A). Hence, (36) separates into two disconnected sets: one for the 
p-polarization (TM-modes) for A = (A,, 0, A,) and one for the s-polarization (TE-modes) 
for A = (0, A,,, 0). For convenience, we write the polarization tensor (74) in the form 
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with 

Herein (P is the angle between kl l  and qI1 and k l l  = Iklll, q I 1  = 1qI11. In the calculation of 
(77) we have used the following relations: 

and 

Assuming that the q K ( z )  are real functions and taking into account that the matrix 
polarization function P K K ,  has under the assumption of the EQL and at zero temperature 
only the non-vanishing elements Po,, Po,, and P,,, (77) can be written in the form 

(86) P&; 2, z' I 4 = c 11$(411> 4 5:"4 <fO(z')  . 

The RPA polarization tensor x$(qI1, co) in the EQL is defined by 

P:;(% 0) if K = 0 and a = j = x , y ,  
P,"BO(ql1, w )  + P:,f(qI1, w )  if K > 0 and CI = j = x , y , z ,  
P$'(qll, w )  - P:f(ql1,  w )  if K > 0 and CI = x, j = z 1 or a = z , p = x .  

(87) XaKp(411, w )  = 

The polarization tensor xfp(q 11 ,  o) contains two physically different contributions, (i) the 
intrasubband contribution for K = 0 which is only present for x,", and x:,, and (ii) the 
intersubband contribution for K > 0 which is present for all components of x$. 

Using these relations above the dispersion relation for the s-polarization reads 

det {'KL - pODf:(qII' o, x f L y ( q 1 I 9  a)> = 0 > (88) 
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and for the p-polarization 

(89) 
with a, = (q;1 - E , , o ~ / c ~ ) ' ~ ~ .  The intra- and intersubband modes, described by (88) and 
(89) are coupled in general. For the DHS under consideration we have symmetric and 
antisymmetric modes. The matrix elements DfF'(qll, w )  are given by 

(92) 

(93) 

(94) 

2mSZK0 
6 K K '  + ~ O c K K ' x ~ ~ ( q / / ~  w, 2 

BKK'  = ' 
2 1411 7 

and 
c K K r  = 1 dz gKO( ' )  gKrO(z) . 

1 - PODF(4,1> w)  xYKy(411,4 = 0 

The dispersion relation of the s-polarization in the diagonal approximation is given by 

under the condition that the imaginary part of the yy component of the polarization tensor 
Im xtY(qli, w )  = 0. This dispersion relation describes (i) s-polarized intrasubband plasmon- 
polaritons if K = 0 and (ii) s-polarized intersubband plasmon-polaritons if K > 0. 

The dispersion relation of the p-polarization in the diagonal approximation is given by 

1 - POD,o,0(411> w )  X,oX(4Il? 0) = 0 (95) 
for K = 0 describing the p-polarized intrasubband plasmon-polaritons and by 

for K > 0 describing the p-polarized intersubband plasmon-polaritons. The dispersion 
relations (95) and (96) describe the modes under the condition that the imaginary parts of 
xx and zz and the real part of zx components of the polarization tensor vanish. 

The components of the RPA polarization tensor of the Q2DEG in the EQL are calculated 
using the integrals derived in [59]. We have found for x&(qll, w)  the full RPA result to be 
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The 

The 

corresponding LWA expression is given by 

component x:y(qll, o) of the RPA polarization tensor is calculated to be 

and the corresponding LWA result is given by 

h2qi  kg co2 + Qi, k:hoK, 3w2 + Qio 
2m 2m (a2 - 6m2 (w2 - Q&J3 

+ ~- [- - + -  
For the component xfz(ql1, o) of the full RPA polarization tensor we have found 

and for the corresponding LWA expression 
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0 1 2 J 

q i ~ / ~ F  

Fig. 5. Plot of the intrasubband contributions Re x2JqIl, o) and Im &(qI1, o) of the xx component of 
the RPA polarization tensor for three different frequencies 

All the other components are zero, 

XxKy(4Il> 0) = x&(411,m) = X,K,(4ll> 0) = x:y(4119 0) = 0 ' 

In Fig. 5 to 10 are shown the calculated nonzero components of the RPA polarization 
tensor xt,(qlI, o) for K = 0 and K = 1. 

The components of the polarization tensor show a similar peak structure as the 
polarization function if the boundaries a:", m i o ,  o:", mio,  and w i n  of the single-particle 
continua are crossed. 

Note that x,",(qi1, o), x:JqIl, w), and x:z(ql,, a) are zero. Because of the definition of 
x$(q,, ,  o) in (87) the xz component has a real and an imaginary part which are opposite in 
character in comparison to the other components. We note that xK(qii, w )  and x:,(ql1, m) 
have no singularities. 
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Fig. 6.  Plot of the (1-0) intersubband contributions Re x:x(qll, w )  and Im x,&(qI1, o) ofthe x x  component 
of the RPA polarization tensor for three different frequencies 

4.4 Relation between the polarization function and the components of the polarization 
tensor 

To compare the results of the density-response with that of the current-response it is 
necessary to have a unique relation between the density-response function and the 
components of the current-response tensor. 

From the point of view of the macroscopic electrodynamics it is necessary to have the same 
dielectric tensor in electrostatics as well as in electrodynamics. Using (18) and (35) we obtain 

On the other hand, from the point of view of quantum mechanics it is possible to show 
(see Appendix C) that the following equation of continuity for the operators of the charge 
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Fig. 7. Plot of the (1-0) intersubband contributions Re x&, w )  and Im xiz (q , l ,  w )  of the xz component 
of the RPA polarization tensor for three different frequencies 

and current density is valid: 

a a 
- i(x, t) + C -J,(x, t )  = 0 .  
at , ax, 

Starting with this equation we can derive the relation 

From this equation the relation between the polarization function and the components of 
the polarization tensor follows after multiplication of (107) by -i/h&€I(t - t') and taking 

3 physica (b) 177/1 
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Fig. 8. Plot of the intrasubband contributions Re x;Jq,,, w) and Im x;,,(q,,, w)  of the yy component of 
the RPA polarization tensor for three different frequencies 

into account the trace 

P&, x’ I t - t’) . ~ P ( x ,  x’ 1 t - t’) = - 1 ~ 

a2 a 2  

at at! n,P ax, ax;, 

It is important to note that this general relation is not restricted to the RPA and, hence, 
it is also valid for real interacting electronic systems. 

For the p-polarized modes [90] of an arbitrary SQW we have with q I1  = (qx, 0,O) 
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I 

Fig. 9. Plot of the (1-0) intersubband contributions Re x;,,(q!,, a) and Im x:y(qll, o) of the yy component 
of the RPA polarization tensor for three different frequencies 

Under the assumption of the EQL, (109) can be written in the form 

Using this relation it can be seen that the dispersion relation of the collective excitations 
of the Q2DEG of the density-response (60) and the dispersion relation for the p-polarization 
of the current-response (89) differ from each other. This result is different from the 
well-known case of a homogeneous 3DEG of an isotropic solid for which the density 
response gives a correct description of the longitudinal modes, the plasmons. But for a 
Q2DEG, the longitudinal and the transverse field components are coupled and, hence, all 

3* 



36 L. WENDLER and E. KANDLER 

1 

Fig. 10. Plot ofthe (1 -0) intersubband contributions Re x;=(q,,,  w )  and Im xiz(qll, w )  of the zz component 
of the RPA polarization tensor for three different frequencies 

modes are influenced by retardation. Taking the unretarded limit, i.e. c + co of (89), 
we have 

Herein 0":: is 0:: for c + co. Using (110) it follows that the dispersion relation of the 
plasmon-polaritons in the unretarded limit (1 11) is the same as (60) for the plasmons of the 
density-response. Hence, for the p-polarization the density- and the current-response give 
the same collective excitations. But in the case of the density-response all modes are 
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unretarded. That means, in contrast to a 3DEG, the results of the density-response are 
only correct if the condition q i  9 &blw2/C2 is valid. This can be seen explicitly from (116) 
and (122) for 2D plasmons and 2D plasmon-polaritons which we derive later. 

5. Collective Excitations: Intra- and Intersubband Plasmons 
and Plasmon-Polaritons 

5.1 Geneva1 considevation 

The excitations of a Q2DEG can be separated in collective and single-particle excitations. 
The collective excitations are plasma oscillations which are coupled to photons in the case 
of the current-response and hence, plasmon-polaritons, or are not in the case of the density- 
response. The single-particle excitations are transitions of single electrons from states below 
the Fermi surface to an empty state above it. Because of the size-quantization on the electron 
states in the quantum well, collective as well as single-particle excitations can be separated 
into intra- and intersubband excitations. The intrasubband excitations are transitions of 
electrons from the states below the Fermi surfaces into the empty states above it within 
one subband. The intersubband excitations, however, are transitions of electrons from the 
states in a subband K below the Fermi surface into the empty states above it in a different 
subband K‘.  Within the EQL the single-particle excitations exist in the regions of the w-qll 

Re X$z(qll, w) * 0, and Re xtx(qll, w)  * 0. In Fig. 2 we have plotted these regions which are 
given by 

plane for which Im X K ( 4 ( ( , 0 )  * 0, Im x:xx(B((, 4 * 0, Im X&(411> 0) * 0, Im X % l l ,  0) * 0, 

uFqll (-l  + q11/(2kF)) f 52K0 < < uFqll (l + q11/(2kF)) + s z K O .  

The condition for the existence of self-sustaining collective excitations is given by the 
dispersion relation. This means that the dispersion relation represents a resonance condition 
which defines the eigenfrequencies w = oj(qII) of the collective excitations having an infinite 
lifetime. Therefore, the dispersion relations of Sections 4.2 and 4.3 are valid under the 
conditions ImxK = 0 and ImXtx = 0, Im xfY = 0, ImXfz = 0, Rex$= = 0, Re& = 0, 
respectively. Within the single-particle intra- and intersubband continua the dispersion 
relations (60), (88) , and (89) lose their meaning strictly speaking. The collective excitations 
are not well defined because they are no longer true normal modes of the system. This is 
related to the fact that regarding damping processes the solutions o and qI1 of the dispersion 
relation in general will be complex quantities because Xx(qll, w)  and xfp(qllr o) become 
complex. The solutions look quite different for the different possibilities occurring when we 
choose the additional conditions on w and qI1. Which condition is appropriate is determined 
by the experiment. In an earlier paper we have discussed some consequences in detail [98]. 
Collective excitations inside the single-particle continua are highly damped by the 
collisionless and resonant mechanism of the Landau damping [45]. That means the Q2D 
plasmons are able to decay into single electron-hole pairs. 

In Fig. 11 we have plotted the w-qII plane in the region of small wave vectors in which 
the retardation effects become important (qfi z E ~ ~ W ’ / C ’ ) .  The regions in the o-ql l  plane 
where the different types of plasmon-polaritons of the current-response exist are limited by 
zeros a0 = 0 (that is the dispersion relation of light in vacuum qt  = w2/c2), al,’ = 0 (that 
is the dispersion relation of light in a medium with E ~ ~ , ~ :  q i  = &b1,z02/c2) .  A source point 
in layer v = 1 can produce the following four types of fields (see Appendix A): 
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Fig. 11. Regions in the o-q, ,  plane where the different types of plasmon-polaritons exist 

(i) the field decays from each heterointerface into the media (region I); 
(ii) the field has the character of a standing wave inside layer v = 1 but decays 

exponentially from the interfaces outside of the layer (region 11); 
(iii) the field has the character of a standing wave in the layers v = 1 and v = 2, decays 

exponentially into the vacuum, and is an outgoing radiative wave inside the substrate (v = 3) 
(region 111); and 

(iv) the field is in contrast to (iii) also an outgoing radiative wave in the vacuum (region IV). 
Hence, inside regions I and I1 we have normal modes and inside the regions I11 and IV 

we have so-called leaky waves caused by radiative loss. Because we investigate normal 
modes of the Q2DEG these must be non-radiative. That means the plasmon-polaritons 
are characterized by the fields decaying exponentially when moving into the vacuum for 
z > a + b or below the Q2DEG for 0 > z .  Therefore, cco and cc2 are positive and real or 
q i  > w2/c2 and qt > &b2W2/C2, respectively. The dispersion curves of the plasmon-polaritons 
lie to the right of the dispersion curve of light in medium v = 2. The character of the fields 
of the plasmon-polaritons (see Appendix A) in the regions of the w-qll plane is distinguished 
by the value of a ,  if & b l  > cb2: 

(i) If ccl is real or qt  > E ~ ~ w ~ / c ~  the plasmon-polaritons have fields decaying exponentially 
from each heterointerface into the media. Thus is true in region I. 

(ii) If a1 is purely imaginary or q; < E ~ ~ w ~ / c ~ ,  i.e. cb2w2/c2 < q,l  < E ~ ~ W ’ / C ~ ,  the 
plasmon-polaritons are characterized by fields having the character of a standing wave 
inside the layer v = 1. This is true in region 11. 

From the dispersion relation (89), we can see that the p-polarized plasmon-polaritons can 
exists in regions I and 11. The s-polarized plasmon-polaritons are described by (88). For 
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TE-modes the electric field is parallel to the interface and it is directed along the y-direction. 
In the Q2DEG of the DHS a charge density is only induced for electron motion in x- and 
z-direction. Hence, s-polarized fields do not induce a time-dependent charge density. This 
can be easily seen from the equation of continuity, because of the vanishing y-dependence 
of the current density for our geometry. Therefore, the formation of an s-polarized excitation 
is only possible by means of a magnetic force (Lorentz force) acting on the induced current 
density. But this force is very weak, of the order of v,/c < 1, in comparison to the electrical 
force acting on the charge density. If one solves (88) in the long-wavelength approximation 
there is a weak resonance slightly below Q,,. This weak resonance was also found by other 
authors [34, 351. The frequency of the excitation lies inside the single-particle continuum. 
Therefore, a strong Landau damping arises and it is not possible to call this resonance a 
normal mode. In the numerical investigations with the full RPA polarization tensor the 
resonances do not occur outside the single-particle continuum in the case of s-polarized 
waves. 

For numerical work we have chosen a GaAs-Gal _,Al,As DHS. The material constants 
are taken to be [99] for GaAs: = 12.87, rn = 0.06624rnO and for Gal -,Al,As: &h2 = 10.99. 
That means we use the static dielectric constants E,, for the background dielectric constants 
E ~ , .  In the numerical work we concentrate our attention on plasmons and p-polarized 
plasmon-polaritons occurring in regions I and 11. 

5.2 lntrasubband plasmons and p-polarized intrasubband plasmon-polaritons 

The dispersion relations of the different intrasubband modes will be discussed in the diagonal 
approximation. For this case the dispersion relation of the (0-0) intrasubband plasmon 
is given by (62) for K = 0 and that of the p-polarized (0-0) intrasubband plasmon-polariton 
is given by (95). We are concerned with the full RPA spectrum. In our calculations no 
additional simplifying approximations for the RPA polarization function and polarization 
tensor are made. Hence, the results are valid for all wave vectors. Fig. 12 to 14 show the 
dispersion curves of the (0-0) intrasubband plasmons calculated with inclusion of the image 
effects and without the image effects. The image effects arise from the different polarizabilities 
of the materials forming the DHS (see Appendix A). 

The dispersion curves of the intrasubband plasmons start at q = 0 and o = 0 and enter 
at q I 1  = qTl and w = wl, the single-particle intrasubband continuum. Inside this region the 
intrasubband plasmons will be Landau damped which we have investigated in detail [45]. 
It can be seen that the image contribution influences the dispersion curves only in a finite 
range of the wave vectors. For large wave vectors the image effects vanish (see Fig. 12a). 
The image contribution to the Coulomb interaction results in an enhancement of the 
frequency of the mode, especially for low frequencies. From Fig. 13 one can see that with 
decreasing thickness of the Gal -,Al,As top layer (v = 2) the image effects on the dispersion 
curve of the intrasubband plasmon increase. The physical reason for this behaviour is the 
following. Due to the large difference of the dielectric constants between the Gal -,Al,As 
top layer and vacuum the most image charges are concentrated at the interface at z = a + b. 
Hence, decreasing b the distance between the Q2DEG and these image charges decreases. 
An oscillating charge distribution, the plasmon, produces an oscillating image charge in a 
layered system with materials having different polarizabilities. The image field, which is the 
homogeneous part of (A12), acts to screen the oscillating charge and, hence, there is an 
additional force to enhance the frequency of the oscillation. In the case of large wave vectors 



40 

, I  

L. WENDLER and E. KANDLER 

4 

3 

A 

0.3 0.6 0.9 1.2 
qii/"F ------ 

0 4 8 12 16 
10 41, l k  F 

Fig. 12. Dispersion relation of the intrasubband plasmon of the GaAs-Gal -,Al,As DHS with (solid 
line) and without (dashed line) image effects in a) the whole and b) in the small wave vector region; 
nZDEG = 10'' cm-', a = 20 nm, b = 60 nm 
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%'kF - 
Fig. 13. Dispersion relation of the intrasubband plasmon of the GaAs-Ga,_,AI,As DHS with image 
effects for b = 20 nm (solid line) and b = 60 nm (dashed-dotted line) and without image effects (dashed 
h e ) ;  nZDEG = 10" cm-', a = 20 nm 

the image fields are mainly concentrated at the interfaces. Therefore, there is nearly no 
interaction between the image field and the charge density, induced by the plasmon which 
is zero at the interfaces of the quantum well. This is the physical reason for the vanishing 
influence of the image contribution on the dispersion curves of the (0-0) intrasubband 
plasmon for large wave vectors. as illustrated in Fig. 13 and 14. Further, this result 
can be seen explicitly if one derives an analytic expression for the dispersion relation of the 
(0-0) intrasubband plasmon in the long-wavelength limit. With the results of Appendix B 
the matrix element D : ! ( q , , ,  w), which is necessary in the calculations, reads 
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Fig. 14. Dispersion relation of the intrasubband plasmon of the GaAs-Gal -,Al,As DHS with (solid 
line) and without (dashed line) image effects; n2DEG = 10" ern-', a = 20 nm, b = 60 nm 

We notice that for p ;  = p z  = p 3  = 1 and a, = a, (112) gives the result without image 
contribution. To compare the result of the current-response with that of the density- 
response, we calculate both expressions, Dtf(qll, o) and DKK(qll). DKK(qll) is given by (112) 
if one replaces R,  = - ~ ' a ~ / ( 2 ~ ~ ~ 0 ~ )  by R ,  = 1 / ( 2 ~ ~ ~ q ~ , )  and a, by q I 1 .  To obtain explicit 
dispersion relations it is necessary to expand 0:: in a power series of a, and D,, in a power 
series of q l l .  In the case without image contributions we expand D,, to q i  and 0;: to a:. 

In the lowest order of q l l  the matrix element of the Green's function Doo(qII) including 
image effects is 

and without image effects it reads 

1 
Doo(q11) = ~ 

2EblqIl 

Using the LWA expression of the polarization function (66), and the above calculated 
matrix elements of the Green's function (113) or (114), in the dispersion relation (62) we 
derive the explicit dispersion relation for the (0-0) intrasubband plasmon. Hence, in the 
long-wavelength limit including image effects, the dispersion relation is given by 



Intra- and Intersubband Plasmon-Polaritons in Semiconductor Quantum Wells 

If one neglects image effects, then the dispersion reads 

43 

If one compares both results, it can be seen directly that in this limit the Coulomb interaction 
is screened by the background dielectric constant eb2 of the barrier material and by the 
"vacuum". Neglecting image effects one obtains in the long-wavelength limit the uncorrect 
result that the Coulomb interaction is screened by the dielectric constant ebl of the host 
material. Further, one can see that in the long-wavelength limit there is no difference between 
the (0-0) intrasubband plasmon of a DHS with finite width and a 2D plasmon. Hence, the 
case of small wave vectors corresponds to the case of small thickness a of the quantum 
well. For small wave vectors the image field is well extended in z-direction. This implies 
that the Coulomb interaction is mainly screened by the surrounding media. For small 
thicknesses of the quantum well nearly all field lines of the Coulomb interaction are within 
the surrounding media. The induced charge density is given by 

where GKO(q, , ,  w)  is the matrix element of the total scalar potential. For small wave vectors 
the image potential becomes independent of z and we obtain for the interaction of the 
plasmon with the image field 

Hence, at small wave vectors only the (0-0) intrasubband plasmon is influenced by the 
image contributions (see Fig. 12 to 14). In Fig. 14 we have depicted the (0-0) intrasubband 
plasmons with and without image effects for nZDEG = 10l2 cm-2. It is to be seen that with 
increasing electron density the dispersion curves are shifted to higher frequencies. 

In Fig. 15 and 16 the dispersion curves of the p-polarized (0-0) intrasubband plasmon- 
polaritons are plotted, which occur in regions I and I1 of Fig. 11. From these figures it can 
be seen that the modes, calculated with or neglecting the image contribution, starts for q = 0 
at w = 0. If one neglects the image contribution, the dispersion curve for very small wave 
vector approaches a1 = 0 and is always located to the right of the light line a1 = 0 for all 
wave vectors (see Fig. 15 and 16b). On the other hand, the dispersion curves calculated 
including the image contributions start for small wave vectors at a2 = 0. That means, for 
small wave vectors the intrasubband plasmon-polariton is influenced only by the surround- 
ing media. 

This can be seen explicitly if one derives an analytic expression for the dispersion relation 
of the (0-0) intrasubband plasmon-polariton in the long-wavelength limit. In the lowest 
order of a1 the matrix element of the xx component of the Green's tensor D::(qlI,w) 
including images effects is 
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and without image effects it reads 

Using the LWA expression of the xx component of the polarization tensor (98), and the 
above calculated matrix elements of the xx component of the Green’s tensor, (119) or (120), 
in the dispersion relation (95), we derive the explicit dispersion relation for the (0-0) 
intrasubband plasmon-polariton. In the small wave vector region a2 < cb2ao is valid and 
hence, (119) reads D,”,”(qI1, 0) = - c ~ c x ~ / ( o ~ E ~ ~ ) .  Consequently one obtains the dispersion 
relation including image effects in the form 

We note that in the vicinity of the light line a1 = 0 there is no difference between the (0-0) 
intrasubband plasmon-polariton existing in a DHS with finite width and a 2D plasmon- 
polariton. The dispersion relation depends neither on a nor on b. But it depends on the 
background dielectric constant of the surrounding media. If we neglect the image effects, 
the corresponding dispersion relation reads 

It can be seen that now the dispersion relation only depends on the background dielectric 
constant cbl of the host material. Taking the unretarded limit, i.e., c + m in (122), we 
obtain the corresponding dispersion relation (1 16) of the density-response. If we take this 
limit for the dispersio’n relation with image effects (121), we also obtain the corresponding 
dispersion relation of the density-response (1 15), with one difference: the form factor 
(1 + ~ ~ ~ ) / 2  is replaced by cb2/2 as a result of the approximation used in deriving (121). 
Inside region I1 of the o-qll plane of Fig. 11 the (0-0) inrasubband plasmon-polaritons 
have fields with standing wave character inside the quantum well region (layer v = 1). For 
a certain value of frequency and wave vector the dispersion curve crosses the light line 
C X ~  = 0. We notice that for very small wave vectors the dispersion relations (115), (116) and 
(121), (122) arq the same as for macroscopic surface plasmons and plasmon-polaritons of 
a very small layer with the background dielectric constant & b l  surrounded by a medium 
with &b2 if we include image effects or with & b l  if we omit image effects [loo]. The image 
contribution further results, as in the case of the density response, in the increase of the 
frequency of the plasmon-polariton. The frequency increases with decreasing thickness b 
of the Ga,-.Al,As layer (not drawn in Fig. 15 because of the plotted small wave vector 
region). For larger values of the wave vector the dispersion curves of the p-polarized 
intrasubband plasmon-polaritons reach those of the intrasubband plasmons. The retardation 
only influences the small wave vector region. This is plotted in Fig. 16. 

5.3 Intersubband plasmons and p-polarized intersubband plasmon-polaritons 

As in the case of intrasubband modes the dispersion relation of the different (1-0) 
intersubband modes will be discussed in the diagonal approximation. Then the dispersion 
relation of the (1-0) intersubband plasmon is given by (62) for K = 1 and that of the 
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Fig. 15. Dispersion relation of the p-polarized intrasubband plasmon-polariton of the GaAsGa, -,Al,As 
DHS with (solid line) and without (dashed line) image effects; nZDEG = 10” ern-', a = 20 nm 

p-polarized (1-0) intersubband plasmon-polariton is given by (96). Note that for the 
investigated intersubband processes x:z and xf, are different from zero in difference to the 
intrasubband case where both x:! and x:z are equal to zero in the whole o - q l l  plane. As 
in the case of the intrasubband modes no simplifying approximations for the RPA 
polarization function and polarization tensor are made. We note that the here considered 
diagonal approximation is an exact solution for a two-subband model ( K  = 0, 1) where 
according symmetry of the DHS the (0-0) intrasubband plasmon (symmetric mode) is not 
coupled with the (1-0) intersubband plasmon (antisymmetric mode). In Fig. 17a the 
dispersion curves of the (1-0) intersubband plasmons are plotted. They are calculated 
including image effects and neglecting the image effects. 

The (1-0) intersubband plasmon starts for q l ,  = 0 at o = ( Q f o  + 2 o;)’” (cf. (143) and 
(144)). This is true in both cases: with and without image contribution. The image 
contribution to the Coulomb interaction results in an enhancement of the frequency of the 
mode only for q I 1  > 0. This enhancement increases with decreasing thickness b of the 
Gal-,Al,As top layer. Hence, the image effects alter only the terms proportional q I 1  and 
q i  of (62). This agrees well with (118) for the interaction of the (1-0) intersubband plasmon 
with the image field. Hence, the depolarization shift [101, 1021, which is the energy difference 
between the single-particle excitation hO,, and the collective excitation in RPA at q l l  = 0, 
is not altered by the image contributions. The depolarization shift arises because each 
electron feels a field which is different from an external field by the field of the other electrons 
polarized by the external field (resonance screening) and hence, the electrons have an energy 
different from the single-particle transition energy due to the collective motion. Therefore, 
the collective (1-0) intersubband excitation has a frequency higher than Ole. There is still 
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Fig. 16. Dispersion relation of the intrasubband plasmon (dashed line) and p-polarized intrasubband 
plasmon-polariton (solid line) of the GaAs-Gal -,AI,As DHS a) with and b) without image effects; 
nZDEG = 10" m-', a = 20 nm, b = 60 nm 
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Fig. 17. Dispersion relation of a) the (1-0) intersubband plasmon and b) the p-polarized (1-0) 
intersubband plasmon-polariton of the GaAs-Ga, -,AI,As DHS with image effects for b = 20 nm 
(solid line) and b = 60nm (dashed-dotted line) and without image effects (dashed line); n2DEG 
= 10" ern-', a = 20nm 
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a further frequency shift, caused by exchange and correlation effects [ 1031 (final-state 
interaction, excitonic shift) and hence it is beyond the RPA. For usual carrier densities this 
shift is negligibly small, but can cause the dispersion curves to be below SZ,, for very low 
carrier densities [47]. 

In Fig. 17b the dispersion curves for the p-polarized (1-0) intersubband plasmon- 
polariton are depicted. It can be seen that the dispersion curve calculated without image 
contributions starts at the light line a1 = 0 of medium v = 1. In the near vicinity of this 
line the dispersion curve shows strong dispersion. In contrast to this behaviour, the dispersion 
curve calculated with image contributions starts at the light line a2 = 0 of medium v = 2. 
In this case the dispersion curve is quite dispersionless. To understand the physics of this 
behaviour it is necessary to investigate in more detail the long-wavelength approximation 
of the dispersion relation of the intersubband plasmon-polariton in the diagonal approxima- 
tion. To obtain explicit dispersion relations it is necessary to expand D:: in a power series 
of a, and D,, in a power series of ql l .  In the case without image contributions we expand 
D,, to qfi and 0:: to a:. Further, we expand the polarization function X ,  to 4;. According to 
(1 10) we have to include only the component xr‘, to q\ in the case of the current-response. 
If one includes the image contribution, the problem is more complex. This is because the pi 
also contain a l .  Therefore, in this case we expand 0:: in such a manner that the resulting 
dispersion relation reduces for c + 00 to that of the intersubband plasmon and for cbv --t cbl, 
a, + a1 to that of the intersubband plasmon-polariton without image contributions. Under 
these conditions we obtain for DKK(qI1) the following results: 

which gives, including image effects, 

- a K 2  + ( K  + 2)2 
UK, = ~ 

2cbl x 2 K 2 ( K  + 2)2 ’ 

a3 K4 + ( K  + 2)4 + 32(K + 1)2 32(K + 1)2 + ((6 11, 
n 4 ~ 4 ( ~  + 214 X 4 ~ 4 ( ~  + 214 

~ K K  = __ 
2Eb 1 

If one neglects image effects it follows: 
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with the results 

- a K 2  + ( K  + 2)2 
MKK = ~ 

2Ebl 7?K2(K f 2)2 ’ 

&b 1 n 4 ~ 4 ( ~  + 214 

a3 ~4 + (K  + 2)4 + 3 2 ( ~  + 112 ( - 1 ) ~  
2Eh 1 n 4 ~ 4 ( ~  + 214 

u2 16(K + 1)2 (1 - (-l)K) fi,, = - - 

and 

TKK = ~ - 

The corresponding result for D;:(q,,, o) reads 

where including image contributions the coefficients of the above written expansion are 
given by 

- c2a K 2  + ( K  + 2)’ 
I,,, = - ~ 

2Eb10 n2K2(K + 2)2 ’ (134) 

and 

- 32a2gb2 (1 - ( - I ) ~ )  ( K  + 1)’ 

Ebl(MOEb2 f a2) n4K4(K f 2)4 

K4 + ( K  + 1)4 + 32(K + 1)’ 64((-1)K - 1) ( K  + 1)’ + 

X K K  = - -~ 

+ a3 
n4K4(K + 2)4 n 4 ~ 4 ( ~  + 2)4 

(136) 
a3Eb2(EhaOM2 f &b2@f)  - a2bEb2(Ebla0 - a2) ( Eb21(Eb2a0 f a2)2 Ehl(Eb2M0 + .2) 

These coefficients are given for the case neglecting image effects by the following expressions: 

(137) 

- 
lCKK = - ~ ” J dz J dz‘ qK0(z)  ) z  - z’I3 qKO(z’) 

12EblW2 

with the results 

- ac2 K 2  f ( K  + 2)2 I,, = - ~ 

2Eh1W2 n2K2(K + 2)2 ’ 

E h l d  n4K4(K + 
a2c2 16(K + 1)’ (1 - (- l)K) 

VKK = - ~ , 

(139) 

4 physica (h) 177/1 
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- 
( 142) 

u3c2 ~4 + ( K  + 2)4 + 3 2 ( ~  + i ) z ( - i y  
XKK = - ~ 

2EblW2 7c4K4(K + 2)4 

Using the above given expansions for DKK(qII) and the LWA result for XK(qII,co), the 
long-wavelength approximation of the (K-0) intersubband plasmon without image contribu- 
tion is derived from (62) in the form 

K 2  + ( K  + 2)’ + 16(K + 1)’ ((- l)K - 1) 
(4  I1 4 2K(K +2) z 2 ~ 3 ( ~  + 2)3 

where W ;  = it2DEGe2/(EOEblmu) is the plasma frequency. With image contribution the result is 

K 2  + ( K  + 2)’ 32(K + 1)’ ((- l)K - 1) 
WfO = i“:“ + w; ( - +  

2K(K + 2) n 2 ~ 3 ( ~  + 213 
K4 + ( K  + 2)4 + 32(K + 1)’ 

(4 1 1  4’ &bZ 

& b l ( l  + &b2) 

32(K + 1)’ ((- - 1) Eb2(&:1 + Eb2) 

2 2 ~ 3 ( ~  + 213 X (411”) - 

- (4Il4’ - 
&bZ(&b2 - l) (q;ub)))}l” 

7 1 2 ~ 3 ( ~  + 213 ( Z ( l  + &b2)’ & b l ( l  f &b2) 

(144) 

In the terms cc 4;; the deviation from Qg0 represents the depolarization shift. If one compares 
(143) with (144) one can see that the image forces vanish for q l l  = 0 in the case of intersubband 
plasmons. This is valid for all K .  In the case of the current-response we obtain from (96) 
for the (K-0) intersubband plasmon-polariton without image contribution the following 
long-wavelength approximation to the dispersion relation: 

K’ + ( K  + 2)’ 16(K + 1)’ (( - l)K - 1) 411 
0 = {Go + w; ( + - (4  1 1  4 

2K(K + 2) n 2 ~ 2 ( ~  + 2)3 a1 
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We notice that the terms K q\ are neither influenced by the image forces nor by 
the retardation. But (145) and (146) are valid only in the regions qfi > E ~ ~ ~ ~ / c ~  and 
q$ > E ~ ,  02/c2, respectively, and are implicit equations of the frequency. Now it is possible to 
understand the behaviour of the dispersion curves near a, = 0 and a2 = 0. Let us start to ex- 
plain the strong dispersion of the intersubband plasmon-polaritons in the vicinity of a1 = 0 if 
we neglect the image contributions. Equation (145) for K = 1 reads in the vicinity of a, = 0 

From this equation one can see that the term proportional to ql la  causes a strong 
dispersion of the dispersion curve near tll = 0. Note that (147) is implicit because it 
contains a, on the right-hand side. In the expansion of 05: in a power series of a,, 
(133), the term proportional to a: depends on zKo (128). The quantity enters the term 
proportional to q I 1 u  of (127). Hence, only if zKo is different from zero, the dispersion 
curve of the (K-0) intersubband plasmon-polariton calculated without image contri- 
butions shows a strong dispersion in the vicinity of a1 = 0. In the case of our model 
of the Q2DEG zKo =+ 0 for odd K and zKo = 0 for even K is valid. Dahl and Sham [34] 
took into account only the first term of the expansion of 0::. In this order no differences 
between the intersubband plasmons and the intersubband plasmon-polaritons occur. 
Eguiluz and Maradudin [35] investigated the (1 -0) intersubband plasmon-polariton 
numerically in the long-wavelength approximation. For their wave functions zl0 = 0 
is valid. Therefore, they found quite dispersionless dispersion curves of the (1 -0) intersubband 
plasmon-polariton. 

In Fig. 18 the (1--0) intersubband modes of density- and current-response are compared for 
two different sheet carrier concentrations neglecting image contributions. It can also be seen 
that for large values of the wave vector the dispersion curve of the intersubband plasmon- 
polariton approaches that of the intersubband plasmon. In the vicinity of a1 = 0 the retarda- 
tion significantly influences the depolarization shift of the (1 -0) intersubband plasmon. 

Now we look at the case of the (1-0) intersubband plasmon-polariton in the vicinity of 
a2 = 0 including the image contributions. In this region for K = 1 (146) reads 

In (148) there is no term proportional to qI1/a1. Such a term would arise in (148) if one 
neglects the different dielectric properties of the media. Image contributions make the 
resonance in (147) vanishing for all subbands. Considerations of the exact matrix ele- 
ment Df:(qll, o) (see (112)) show its real character in region I1 of Fig. 11 in contrast 
to the case of neglecting image polarizations, when 05: becomes complex if a: < 0 
is valid. Hence, the dispersion curve reaches the light line a, = 0 nearly dispersion- 
less. In comparison with the dispersion relation of the (1 -0) intersubband plasmon 
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Fig. 18. Dispersion relation of 
the (1-0) intersubband plasmon 
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image effects; a = 20 nm 



Intra- and Intersubband Plasmon-Polaritons in Semiconductor Quantum Wells 53 

(from (144)), 

there are also differences between plasmons and plasmon-polaritons if the image contribution 
is taken into account. But these differences are much smaller than in the case without image 
influence. 

Another interesting result holds if not only xFz but also x:, is used in the dispersion 
relation. Both components are non-zero in the long-wavelength limit. But we note that the 
inclusion of x,, and x,, in the lowest order of q I 1  in the dispersion relation does not mean 
that the polarization tensor is included in the lowest order of q I l .  This is true because of 
the relation (110) between the polarization function xK and the components of the 
polarization tensor &. From this relation it follows that an expansion of x,, to q i  
corresponds to an expansion of x,, to q!. Consequently, the inclusion of both xf, and 
in the lowest order of q I 1  as done in [35] has no physical sense in the small wave vector 
region. But to compare the results obtained here with those of [33] we give the analytical 
result for this case. Instead of (147) in the same order of al, in the case of neglecting image 
contributions we obtain 

for the (1 -0) intersubband plasmon-polariton. In this approximation two branches of the 
polariton occur. In the shorter-wavelength case, if both branches are well separated, the 
upper solution, o + is approximately given by (147). The lower one, o-lies slightly below Q,,, 

The term on the right-hand side of (150) is proportional to (uF/c)’ and, therefore, it is very 
small. In regions where o+ and o- are well separated from each other this term only leads 
to small deviations of the dispersion curves given by (151) to higher (a+) o r  lower ( w - )  
frequencies. In the case of vanishing zKo, or if the image contributions are taken into account, 
the two branches are separated everywhere. This results in two quite dispersionless dispersion 
curves near the intersubband frequency and near the frequency of the intersubband plasmon. 
Eguiluz and Maradudin [35] found such a behaviour in their numerical investigations of 
the (1-0) plasmon-polariton by using both xfX and In the case of neglecting the image 
contribution for zKo + 0 there is a region where w +  and w -  would cross over. Then, the 
small term proportional to (uF/c)’ in (150) leads to the resonance splitting between the two 
crossing branches. Unfortunately, the long-wavelength expression of the response function 
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loses its meaning in the vicinity of Q K o .  Without this approximation the response functions 
x:x and x:z become complex in the single-particle continuum of the K-th subband and the 
modes become strongly damped by Landau damping. In our opinion, the lower branch of 
the p-polarized intersubband plasmon-polariton has no physical sense, because of the . 
invalidation of the approximation used to find it inside the single-particle continuum. 

We remark that if we would use for the background dielectric constants the dipole-active 
lattice dielectric functions, e,,(w), (144) and (146) will have further resonances at gbl = 0, 
1 + gb2 = 0, and at a, + cb2a0 = 0 which describe bulk phonons, surface phonons, and 
surface phonon-polaritons or guided wave phonon-polaritons 104. This is the simplest way 
to incorporate the coupling of the plasmons and plasmon-polaritons to the optical phonons 
of the system. If we neglect the image effects we only obtain the coupling to 3D bulk 
phonons = 0) and to phonon-polaritons (a1 = 0) which are the corresponding 
resonances of (143) and (145). We notice that the well-known confinement effects of the 
longitudinal-optical phonons [44, 501 are not described in such a simplified calculation. 

The different behaviour of intrasubband and intersubband plasmon-polaritons with and 
without image contributions in the long-wavelength limit may be explained in the following 
way. For small wave vectors the intrasubband modes exhibit only a current flowing in 
the direction of the wave propagation. This current may be interpreted as an oscillating 
dipole momentum. As is well-known, such oscillating dipoles may emit and absorb 
electromagnetic waves. Therefore, the intrasubband modes are strongly influenced by 
retardation. The dipole momentum of the image polarization is directed perpendicular to 
the dipole momentum of the current. Compensation of the two kinds of dipoles cannot 
occur and, consequently, intrasubband plasmon-polaritons are strongly retarded with or 
without image contributions. Intersubband modes in the long-wavelength limit only form 
a current in z-direction perpendicular to the plane of Q2DEG. Only subbands with odd 
parity form a dipole momentum interacting with optical waves (see Appendix D). Such 
modes with odd subband index are influenced by retardation in the case without image 
contributions. For intersubband modes the dipole momentum formed by the image charges is 
directed antiparallel to the dipole momentum of the current. Therefore, in this case the 
image dipoles compensate the dipoles produced by the current density. All intersubband 
modes are only very weakly influenced by retardation if image polarizations are considered. 
The difference between the intersubband plasmons and the plasmon-polaritons in higher 
orders of (q  Ila) is produced by higher-order multipoles of the combination of current density 
and image polarization. Such a behaviour agrees with the results obtained by King-Smith 
and Inkson [93]. The authors investigated the plasmon-polaritons of a superlattice neglecting 
image effects. In such a configuration Q2DEGs in different slabs may screen each other. 
In a superlattice the current densities of the other slabs play the role of compensating 
image charges. This process strongly depends on the phase shift between different 
Q2DEG’s. Consequently, in [92] p-polarized intersubband plasmon-polaritons are de- 
scribed with some influence of retardation, depending on the wave vector component in 
the direction of the superlattice axis which determines the phase shift between different 
Q2DEG’s. 

6. Conclusions 

In this paper we have presented a detailed survey of the effects of retardation and image 
forces on the intra- and intersubband plasmons in semiconductor quantum wells. The 
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modes are calculated using the full RPA response functions of the density- and current- 
reponse. It is shown analytically that the dispersion curves of all collective excitations of 
the density-response are only correct for large wave vectors, i.e. in the unretarded limit. 
The dispersion curves are calculated under the assumption of the electric quantum limit 
and in the diagonal approximation. Whereas the EQL is fulfilled for most quantum wells 
containing a Q2DEG, the use of the diagonal approximation needs a comment. In the 
diagonal approximation the intra- and intersubband excitations are uncoupled. This is only 
a good approximation if the quantum well is symmetric and thin enough and the response- 
functions of all the other excitations have no resonances in the near vicinity of the frequency 
of the considered mode [46,48]. This is well fulfilled for the chosen thickness of the quantum 
well and the sheet carrier concentrations. But the intersubband mixing of the modes strongly 
influences their Landau damping. This is true because the (0-0) intrasubband modes become 
also damped in the single-particle intersubband continua. For a spatially symmetric quantum 
well, however, the symmetric modes are not coupled with the antisymmetric modes. 

It is shown that the retardation and the image contributions influence the intra- and 
intersubband modes in a different manner. The intrasubband modes with retardation start 
always at the corresponding light line with a dispersive dispersion curve. On the other 
hand, the dispersion curves of the intersubband modes can start at the corresponding light 
line with or without dispersion. It is shown that if one includes the image contribution, the 
(1 -0) intersubband plasmon-polaritons have a dispersion curve which is nearly dispersionless 
in the near vicinity of the light line. But, if one neglects the image contributions, the behaviour 
of the dispersion curves depends on the quantity zKo defined in (148). If this quantity is 
zero, then the dispersion curve is nearly dispersionless, while for non-zero zKo it shows 
dispersion. Hence, image and retardation effects influence each other with the result that 
within the region where retardation effects are important, image effects must be included 
in the calculation. It makes no sense to consider retardation effects neglecting the image 
forces. 

This circumstance very well agrees with the optical properties of the Q2DEG. In Appendix 
D we calculated a macroscopic dielectric tensor in the long-wavelength limit. Parallel to 
the layers the response is that of a doped semiconductor and perpendicular we have the 
well-known intersubband resonances [34]. From (D9) it can be seen that in the case 
considered here only transitions 0 + 2,4,6, . . . are possible. This corresponds to zK0 =l= 0. 
If one uses the macroscopic dielectric function of the Q2DEG for the calculation of the 
dispersion curves by standard electrodynamics, the results obtained for the interface modes 
correspond approximately with the results obtained here. But, we notice that in order to 
obtain the dispersion behaviour quantitatively correct in the long-wavelength limit, it is 
necessary to use a microscopic formulation of the type developed in this paper. 

The RPA used here should be good enough to describe correctly the effects of retardation 
and the image forces. But it is necessary to remark that for low densities of the Q2DEG 
exchange and correlation effects become important. As shown in [47], especially the 
intersubband mode is influenced appreciably by exchange and correlation effects even in 
the small wave vector region. For the densities of the Q2DEG used in this paper these 
effects should not be important. 

Finally, we remark that the used configuration and the type of formulation presented in 
this paper provide the possibility of directly comparing the theoretical results to experiments. 
The excitation of (0-0) intrasubband plasmons in a GaAs-Gal -,Al,As single heterostructure 
has been investigated with FIR spectroscopy [70]. In these experiments the sample consists 
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of a GaAs buffer layer at the bottom, which contains the electron space-charge layer, 
followed by an undoped Gao,72A10,,8As spacer layer, by a doped Gao,72A10,28As layer, and 
by a cap layer of GaAs. Grating couplers of highly conducting Ag on the top of the samples 
couple the normally transmitted FIR radiation with the (0-0) intrasubband plasmons of 
the electron space-charge layer. A grating of periodicity d 6 AFIR spatially modulates the 
incident radiation and couples to the collective excitations with wave vectors q I 1  = 2nm/d 
(rn = 1,2, 3, ...). But, unfortunately the wave vectors in these experiments ranging from 
qI1  = (0.72 to 2.16) x 10’ cm-I are too large for the investigation of the retardation and 
image effects on the intrasubband plasmons considered in this paper. In the authors’ opinion 
it would be necessary to perform more detailed experiments on the intersubband plasmons 
of quantum wells, because these modes are influenced by many physical effects (retardation, 
image forces, plasmon-phonon coupling, exchange-correlation) in a complicated manner. 
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Appendix A 

Electromagnetic Green’s functions 

In this appendix we evaluate the electrostatic Green’s function of (3) and the electromagnetic 
Green’s tensor of (25). We consider first the Green’s function D(x,  x’) of the Poisson equation 
(3). This function is defined by 

V(E~(Z) . VD(X, x’)) = -&(x - x‘) , (Al) 

where according to symmetry 

is valid. 

To solve (A3) we need a special solution of the inhomogeneous, Ddir, and a general solution 
of the homogeneous equation, D’”. The sum of both must fulfil the boundary conditions. 
We require continuity of D(qll; z, z’) and ~ ~ , , a D ( q ~ ~ ;  z, z’)/az at the heterointerfaces and 
vanishing D(qI1; z, z’) at z = f co. The special solution of (A3) is 

The Green’s tensor DOrp(x, X’ I 0) of the inhomogeneous wave equation (25) is defined by 
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where we have used Fourier transformation according to time. Using the Fourier trans- 
formation according to space with qll = (qx, 0,O) without loss of generality, we can write 
(A5) in the form 

We solve this equation by the same method as (A3). The special solutions of (A6) under 
the condition a > z, z‘ > 0 are 

C2 
D:F(qll; Z, Z‘ I W )  = - ~ 6(z - z’) + - 

& b l w 2  2EblW2 
9 

( A l l )  Ddir = Ddir = = Ddir = 0 .  
XY YX Yl -Y 

Hence, we make the following generalized ansatz for the general solution of (A3) and (A5) 
under the condition a > z’ > 0: 

0 > 2 ,  

where K(qll; z, z’ I o) = D(ql l ;  z, z‘ I w)  in the case of electrostatics and K(qll; z ,  z’ I W )  

= D x x ( q , , ;  z, z’ I w )  or Dyy(qll; z, z’ 1 w )  in the case of electrodynamics. The matrix ele- 
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ments D,,, D,,, and D,, are related to DXx.  The corresponding relations follow from (A6) 
to be 

and 

Further, in (A12) we have y y  = q l l  in the case of electrostatics and y y  = a, in the case of 
electrodynamics with 

With the ansatz (A12) we must fulfil the boundary conditions. In the case of the full 
electrodynamics, we require the continuity of the tangential component of E, of the normal 
component of D and of the tangential component of B. 

At first we consider the p-polarization. From the continuity of the tangential component 
of E follows the continuity of A,  and from this the continuity of D,,. From both, the 
continuity of the normal component of D and the tangential component of B follows the 
continuity of the quantity 

Because j z (q l l ,  z I w)  vanishes at the heterointerfaces for quantum wells with barriers being 
infinitely high, (A15) which must be continuous across the heterointerfaces can written in 
the form 

For the s-polarization the continuity of both the tangential component of E and the normal 
component of B result in the continuity of A,. From the continuity of A,  follows that of 
D,, across the heterointerfaces. Further, the continuity of the tangential component of B 
results in the continuity of dA,/dz and from this follows the continuity of aD,,/az. We require 
that DaP(ql1; z, z' I w)  vanishes at z = & 00. The unknown quantities Fj(z') ( j  = 1 to 6) in 
(A12) are calculated using the appropriate boundary conditions described above. This leads 
to an algebraic system of six inhomogeneous linear equations, 

6 1 ZijFj(z') = Ri(z') 
j =  1 
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with 

4= 

and 

F(z') = 

This system of equations is solved by standard techniques, e.g. by the Kramers rule. The 
coefficient F,(z') is given by 

de t [I  $)] 
det [Zij] 

Fi(z') = ~ 
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det [I!;)] = Ro{(l + pl) (1 - p 2 )  eYlz' eylb ey2b + ( 1  - pl)  ( 1  + p z )  eY1=' eylb e - y 2 b  
+ (1 + pl) (1 + p z )  e-yl'' e-ylb eY2b 
+ (I - p l )  ( 1  - p 2 )  e-yl" e-ylb e-yZb}. (A27) 

The coefficients in (A18) and (A21) to (A27) are given in Table 1 for D(ql l ;  z, z'), 
Dxx(q ; z, Z' I 4, and D,,(q1, ; z, z' I 4. 

Table 1 

Eb2 

Ebl  
P 2  - 

In the case considered here of a GaAs-Ga,-,AI,As DHS we have 
E~~ = 1, cbZ = E~~ and hence u2 = u3. 

Appendix B 
Matrix elements of the electrodynamic Green's functions 

In this appendix we represent the results for the matrix elements 

and 
a n  

D.K8"'(q11, w )  = s dz J dz' t fO(z)  D,,(q, , ;  292' I 4 t$'"(z') . (B2) 
0 0  

As mentioned in Appendix A the Green's functions consist of a special solution Ddir and 
D$ of the inhomogeneous equation and of a general solution of the homogeneous equation 
D'" and D$, respectively. Because all steps of the calculation for (Bl)  and (B2) are quite 
similar, it is convenient to consider the generalized quantity 

K(q11; Z, Z' I W )  = Kdir(qll; z - Z' I W )  + Ki"(qll; Z, Z' I W )  

with 
(B3) z - Z' I W )  = Ro e-Yl I = - - Z ' l  

Kim(qll;  z, z' I w )  = F4(z') eylz + F,(z') e-71' 

= Ro{N,(qll, w )  eY"'+'') + N2(qll,  w) eyl(z-z') 

034) + N , ( q l , ,  w )  e-yl(r-z') + N ( w) 4 4119 
- Y 1 (2 + =')} 
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with 

N,(qll, o) = {(I + pl) (1 - p 2 )  (1 + p3)e-(Yo+~1)ae-(yo-y2)b 

+ (1 - pl) (1 + p 2 )  (1 + p 3 )  e-(Yotyl)a e-(yo+Y2)b)/det [ I . . ]  C J  3 (B5) 

N2(q11, 0) = {(I + pl) (1 - p 2 )  (1 - p 3 )  e-(yo+Yl)ae(y2-yo)b 

+ (1 - pl) (1 + p 2 )  (1 - p 3 )  e-(Yo+Y1)a e-(YofY2)b)/det [Iij], (B6) 

N3(q11,~o) = {(I + p,)(I  - pJ(1 - p3)e-(Yo+y1)ae(Y2-yo)b 

+ (1 - pl) (1 + p 2 )  (1 - p 3 )  e-O‘o+yl)a e-(yo+Y2)b}/det [I..] I J  2 (B7) 

N4(qli, 0)  = {(I - pl) (1 - p 2 )  (1 - p 3 )  e(yl-yo)a e-(*o+y2)b 

+ (1 + pl) (1 + p 2 )  (1 - p 3 )  e(Y1-yo)a e(Y2-Yo)b}/det [I,]. (B8) 

Using (B3) to (B8) in (Bl) or (B2), respectively, the matrix elements read 

K K K ’ ( q l l >  0) = Kgk’(ql!> a) + Kk%r(qll> a) 

with 

and 

We note that the form factors fg&(q , , )  and fkmK,(qll) defined in (61) are given by 
fg&(qli) = 2&b1~ll@&(qll) and j”&(qll) = 2 ~ ~ , q ~ ~ D ~ ~ , ~ ( q ! ~ ) .  For the calculation of the 
dispersion relation of the intra- and intersubband plasmon-polariton the quantity C,,. 
defined by (98) is needed. It is easily calculated to be 
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Appendix C 

Gauge invariance of the theory for layered systems 

The general expression for the interacting part A,@) of the Hamiltonian for electrons of 
the Q2DEG in the presence of an electromagnetic field is 

B(x) @(x, t )  - 1 ; u ( ~ )  A,(x,  t )  . (C1) 
U 1 

From this perturbation follows the induced current density 

jrd(x, t )  = - d3x’ dt’ (Tr {&Gu(x’, t’), ;,(x, r ) ] }  A&’, t ’ )  
h a  i s  s 

- m  

and the induced charge density 

dt’ (Tr {dG[Q(x, t), ;u(x’, t ‘ ) ]}  A&‘, t‘) 

- m  

- Tr {8C[8(x> t). 8(x’, f‘)l} t ’ ) )  

Because of the possible gauge transformations 

A ( x ,  t )  + A’(& t )  = A ( x ,  t )  + V A ( x ,  t )  

and 

a 
at 

@(x, t )  --t @’(x, t )  = @(x, t )  - - A ( &  t )  

the induced current as well as charge density is transformed according to 

jind(x, t )  --t jind’(x, t )  = jind(x, t )  + Gjind(x, t )  
and 

eind(x, t )  + eind‘(x, t )  = eind(x, t )  + 8eind(x, t )  . 
Herein G j i n d  and tieind are given by 

a 
ax, 

Tr {&Gu(x, t),  ;,(XI, t’)]} - A(x‘ ,  t‘) 

- m  
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and 

We note that only the electromagnetic potentials A and @ will be affected by the gauge 
transformation. The operators :and 4 do not contain these potentials and hence, they will 
not be affected by the gauge transformation. The theory developed in Section 4 for layered 
quantum well structures is gauge invariant, if both 6jind(x, t )  and 6eind(x, t )  vanish. To show 
this we start with (C6). If the first summand of this equation is integrated by parts under 
the condition that A - 0 for t = - 00 and considering Born-von Karman periodic boundary 
conditions in the x-y plane and vanishing electron field operators at z = f co, it follows 

- w  

a 
at! 

- - &(x’, f ) ] ]  A(x’ ,  t’)) 

d3x’ Tr {&cu(x, t), @(x’, t )]}  A(x‘ ,  t )  

With the equation of motion 

where H ,  is given by (45) one can derive 

a a 
- i (x ,  t )  + c t )  = 0 .  
at a ax, 

With (C10) the first term of (C8) vanishes. For the second term of (C8) it follows 

4 Sd’d Tr (QCgu(x, t ) ,  d ( ~ ’ ,  t ) ]}  A(x‘,  t )  
h 

e a 
m ax‘% 

= - - Tr {i,d(x, t ) }  - A(x ,  t )  

Hence, 6jind vanishes identically. It is possible to show by the same steps that 6eind also 
vanishes identically. Consequently, the theory is gauge invariant for any layered structure. 

We note that jind(x, t )  and eind(x, t )  given in (C2) and (C3) satisfy the equation of continuity 
which is easily shown. 
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Appendix D 

The optical limit of the macroscopic dielectric tensor 

In this appendix we derive from the R P A  polarization tensor a macroscopic expression of 
the dielectric tensor in the optical limit, i.e. for q + 0. The R P A  polarization tensor in the 
EQL is given by 

P& + 0 ;  z, z' I w) = 1 x.Ks(q11 + 0 I w )  r:"(4 i;,""(Z') . (D1) 
K 

Using (98), (lOO), (1021, and (104) it follows 

'IKO(z) ?KO(z') 
'FkF ' K O  PJO; z, z' I w) = - ~ 

m K = o . ~ . z .  ... 

P y y ( 0 ;  z, z' I 4 = 

Px,(0; z, z' 1 w )  = PJO; z, z' I w )  = 0 ,  

z, z' I w) 1 

and 

Because the wavelength of the light in the relevant region (infrared) is large in comparison 
to the thickness of the quantum well, it is possible to average the physical quantities over 
the layer thickness. Then we have for the optically induced current density 

with 

and 
w 2 f K 0  c PiZ'(w) = - ~ 

n2DEGe2 

ma'  K C O  w2 - Q:, 

Herein f K o  denotes the oscillator strength given by 

64(K + 1)2 
f K 0  = (1 - ( -  1 ) y  

X 2 ~ 3 ( ~  + 2)3 

Because of the symmetry the selection rule fiO = f40 = fso = ... = 0 is valid. In the 
calculation of (D7) and (D8) we have used 
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and 

With the standard relation between the polarization tensor and the dielectric tensor (35), 
the local macroscopic dielectric tensor in the optical limit is given by 
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