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Abstract--A model is developed that predicts the steady state velocity of a planar interface and the 
chemical composition of the growing phase in terms of the interface temperature and the composition 
of the parent phase at the interface. The model is applied to solidification of a two-component melt. Solute 
partitioning is treated by a previously developed continuous growth model for solute trapping. The 
interface velocity is found by generalizing the driving force in a velocity-vs-driving force function used 
for solidification of one-component melts. Two different ways of generalizing the driving force are used, 
with and without the inclusion of a "solute drag" term. Predictions are made both with and without solute 
drag for an ideal solution and for Ag-Cu, a simple eutectic system in which the terminal phases have the 
same crystal structure. In both cases, a transition from diffusion-controlled to diffusionless solidification 
and a falling interface temperature occur as the interface velocity increases. In the model without solute 
drag, significantly less interfacial undercooling is predicted than in the model with solute drag. The 
relationship to previous theoretical work, especially to the continuum treatments of Baker and Cahn, and 
to pertinent experiments is discussed. 

R6smn6---Nous d6veloppons un mod61e qui pr/:dit la vitesse, fi l'6tat stationnaire, d'une interface plane 
et la composition chimique de la phase qui croit, en fonction de la temperature de l'interface et de la 
composition de la phase m~re fi rinterface. Nous appliquons ce mod61e fi la solidification d'un bain fi deux 
constituants. Nous traitons le partage du solut6 fi I'aide d'un mod61e de croissance continue que nous 
avions d6velopp6 auparavant pour le pi~geage des solutes. Nous trouvons la vitesse de l'interface en 
g~n~ralisant la force motrice darts une fonction vitesse/force motrice que l'on utilise pour la solidification 
des bains fi un seul constituant. Nous #n6ralisons la force motrice de deux fa~:ons diff~rentes, en incluant 
ou non un terme de "trainage de solutC'. Nous ~tablissons des predictions, avec et sans trainage de solute, 
dans le cas d'une solution id~ale et pour le syst~me Ag--Cu qui est un eutectique simple off les solutions 
solides terminales ont la m~me structure cristalline. Dans les deux cas, lorsque la vitesse de l'interface 
augmente, il apparait une transition dans le mode de solidification (mode r/~gi par la diffusion--, mode 
sans diffusion) et une chute de la temperature interfaciale. Nous predisons dans le mod/~le sans trainage 
de solut~ une suffusion interfaciale nettement moins prononc6e que darts le module avec trainage de solute. 
Nous discutons les relations qui existent entre cette 6tude et un travail th~orique ant6rieur, en particulier 
les traitements en milieu continu dfis li Baker et ~i Cahn. 

Zusammenfassung--Ein Modell wird entwickelt, welches die stationfire Geschwindigkeit einer ebenen 
Grenzfliiche und die chemische Zusammensetzung der wachsenden Phase anhand der Grenzfl/ichen- 
temperatur und der Zusammensetzung der Mutterphase an der Grenzfl/iche voraussagt. Dieses Modell 
wird auf die Erstarrung einer zweikomponentigen Schmelze angewendet. Die Aufteilung des gel6sten 
Stoffes wird mit einem friiher behandelten kontinuierlichen Wachstumsmodell fiir das Einschliel3en des 
gel6sten Stories behandelt. Die Grenzfl/ichengeschwindigkeit ergibt sich, indem die treibende Kraft in eine 
Funktion Geschwindigkeit iiber treibender Kraft, die fiir die Erstarrung einer einkomponentigen Schmelze 
benutzt worden ist, verallgemeinert wird. Zur Verallgemeinerung werden zwei verschiedene Wege benutzt, 
mit und ohne Beriicksichtigung eines Terms, der eine Reibungsspannung durch den gel6sten Stoff 
beschreibt. Fiir beide F/ille werden Voraussagen abgeleitet fiir eine ideale L6sung und fiir Au--Cu, einem 
einfachen eutektischen System, bei dem die Endphasen dieselbe Kristallstruktur besitzen. In beiden F/illen 
treten ein Obergang yon der diffusionsbestimmten zur diffusionslosen Erstarrung und ein Abfall der 
Erstarrungstenperatur auf, wenn die Geschwindigkeit der Grenzfl/iche gr613er wird. Im Modell ohne 
Reibungsterm ergibt sich eine betr/ichtlich geringere Unterkiihlung an der Grenzfl/iche als mit 
Reibungsterm. Der Zusammenhang mit friiheren theoretischen Untersuchungen, insbesondere den 
Kontinuumsbehandlungen von Baker und Cahn und mit den zugeh6rigen Experimenten wird diskutiert. 

I .  INTRODUCTION 

Conven t iona l  kinetic descr ipt ions  of  solidification 
t reat  the near-equi l ibr ium limit. This  is the case in 
which t ranspor t  o f  heat  or  solute th rough  the bulk of  
one or bo th  of  the phases  separated by an  interface 
is the rate- l imit ing step in the process and  is subject  
to local equi l ibr ium bounda ry  condi t ions  at  the inter- 

face. In this limit, crystal growth occurs slowly 
enough that ,  a l though  long-range t ranspor t  may be 
too slow to ma in t a in  thermal  or composi t iona l  equi- 
l ibrium t h r o u g h o u t  the bulk of  ei ther  phase, short-  
range t ranspor t  across the interface may still be 
sufficiently rapid to effect in terequi l ibra t ion  a m o n g  
the a toms  compris ing the liquid monolayer  and  
the solid monolayer  adjacent  to the interface. This 
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assumption implies that, given a liquid composition 
at the interface, the solid grows at the equilibrium 
temperature with the equilibrium composition, given 
by the liquidus and solidus on the equilibrium phase 
diagram [I]. 

Rapid solidification experiments have now attained 
a regime of crystal growth speed where the deviations 
from local equilibrium are very important, in which 
interface motion cannot be thought of  as heat-flow or 
diffusion limited. These experiments provide an op- 
portunity to study the interface reaction kinetics in 
high-mobility systems. The formation of metallic 
glasses [2] and other metastable metallic and semi- 
conducting phases [3] in the presence of rapidly 
moving crystal-melt interfaces demonstrates signifi- 
cant undercooling of the crystal-melt interface during 
rapid crystal growth. Splat-quenching of molten 
metallic alloys [4] and rapid regrowth from pulsed- 
laser-induced melting of doped semiconductors [5, 6] 
have produced suppressed solute partitioning, where 
the partition coefficient k (the ratio of the solute 
concentration in the growing solid to that in the 
liquid at the interface) deviates from its equilibrium 
value ke (the ratio of the equilibrium solidus to 
liquidus compositions on the phase diagram) and 
approaches unity at high interface speeds. Indeed, it 
has been demonstrated that in alloys with retrograde 
solid solubility the chemical potential of the minor 
element increases during rapid solidification [4]. The 
discovery of this phenomenon, termed "solute trap- 
ping",'t ruled out both local equilibrium and the idea 
that the alloy components might act independently 
during rapid solidification [7]. A number of  kinetic 
models [8-17] have been proposed to account for 
solute trapping and related phenomena observed 
during rapid phase transformations. 

Two questions must be addressed by models for 
plane-front interface motion during a phase trans- 
formation in a two-component system. Given local 
conditions at the interface (e.g. temperature, com- 
position, pressure), they should predict (1) the com- 
position of the growing phase and (2) the interface 
velocity. The boundary conditions discussed above 
are provided by answers to these questions. Com- 
bined with equations for long range transport that 
connect the interface conditions to the ambient, 
externally controllable conditions, they can yield 
predictive capability for materials processing. 

The measured velocity and orientation dependence 
of k during solidification of Bi-doped Si is success- 
fully accounted for by the dilute solution limit of the 
continuous growth model (CGM) [18, 19]. Thus the 
CGM seems to answer the former question. To 

i'The term "solute trapping" was originally applied only to 
situations where the chemical potential of the solute 
increases during solidification. It is now commonly used 
in any situation where the partition coefficient deviates 
toward unity from its equilibrium value, independent of 
the sign of the change in chemical potential (which often 
is not determined experimentally). 

propose an answer to the latter question, the dilute 
solution CGM has been extended to concentrated 
solutions and combined with a dissipation-theory 
treatment of crystal growth [15], which is an out- 
growth of the solute-drag theory of HiUert and 
Sundman [12]. Only indirect comparison with experi- 
ment has been possible in this case [20], but so far the 
results are promising. The CGM is consistent with 
the experimental observations of which we are aware. 
It predicts solidification under local equilibrium con- 
ditions at small interface velocities, and partition- 
less solidification and large undercoolings at high 
velocities. The model treats alloy solidification as 
a superposition at the interface of two distinct 
reactions: crystallization via the advance of the inter- 
face across a monolayer of liquid alloy, and 
solute-solvent redistribution via interdiffusion of the 
two species across the interface. The rate of each 
reaction is written in terms of its driving force and its 
mobility using chemical rate theory [21]. 

In the next section this model is developed more 
fully. The differences are demonstrated between ver- 
sions of  the model that neglect and allow for an effect 
on the interface velocity due to free energy dissipation 
from solute drag. There is nothing specific to solidifi- 
cation in the model; it may equally well be applied to 
appropriate solid-state transformations, with proper 
choices for the values of the kinetic parameters. In the 
third section, a comparison is made with the con- 
tinuum models of Baker and Cahn. The versions of 
our model with and without solute drag are shown to 
be limiting cases of the continuum model. In the final 
section, solutions are presented for binary alloy 
solidification, for both versions of the model, for an 
ideal solution and for a simple eutectic system in 
which the terminal phases have the same crystal 
structure. 

The symbols used in the paper are defined where 
they first appear; for convenience they are also 
assembled with their definitions in Table I. 

2. THE MODEL 

Consider a two-phase system composed of A (sol- 
vent) and B (solute) atoms. A liquid and a crystal arc 
separated by a planar interface moving into the liquid 
at a steady-state velocity v (r >t 0) with respect to the 
crystal lattice. Assume for the sake of simplicity that 
A and B in the solid and in the liquid have the same 
atomic volume ~. The temperature of the interface is 
T; the mole fraction of B in the solid is Xs and that 
in the liquid adjacent to the interface is X L. The 
numbers of A and B atoms per unit area per unit time 
that are incorporated into the crystal, JA and Ja 
respectively, are given by 

JA = (i -- Xs)v/fL (la) 

Ja = Xst'/~. (lb) 

JA and JB are physical fluxes of atoms across any 
plane parallel to the interface in a coordinate system 
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Table 1. Symbols and definitions 
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A 
B 
Di 
E 
r~ 
r~ 
r~ 
FD 
f 

AG c 
AGD 
AGDF 
JA 
J~ 
J~ 
J~ 
J~ 
J. 
Jd 
k 
kA 
k¢ 
k~ 
ko 
L,j 
M 
P 

solvent species 
solute species 
interdiffusion coefficient across interface 
standard chemical potential 
conjugate driving force for JA 
conjugate driving force for JB 
conjugate driving force for Jc 
conjugate driving force for JD 
geometric factor for interdiffusion 
free energy dissipation per unit area of interface 
per unit time 
crystallization free energy, equation (20) 
solute drag free energy, equation (21) 
driving free energy, equation (19) 
flux of A across interface, equation (la) 
diffusive flux of A, equation (2a) 
flux of B across interface, equation (lb) 
diffusive flux of B, equation (2b) 
crystallization flux, equation (4) 
diffusive flux, equation (3) 
generalized diffusive flux in continuum model 
partition coefficient of B, equation (l l) 
partition coefficient of A, (1 - Xs)/(1 - X L) 
equilibrium partition coefficient of B 
equilibrium partition coefficient of A 
dilute solution limit of k, 
phenomenological mobility matrix 
interface mobility 
force on interface per unit area 

QD activation energy for redistribution 
R gas constant 

irreversible entropy production per unit area of 
interface per unit time 

T interface temperature 
T 0 temperature at which phases of equal composition 

have equal free energy 
v interface speed 
r o speed of solute-solvent redistribution at infinite 

driving force 
v 0 speed of crystallization at infinite driving lbrce 
X mole fraction of solute 
X L mole fraction of solute in liquid at interface 
X s mole fraction of solute in solid at interface 
y position in direction normal to interface 
6 width of interface 
K~ partitioning parameter, exp[(A/a~ - A~B);'RT] 
2 interatomic distance 
/~ chemical potential 
ApA /JA in solid minus /JA in liquid at interface 
A#a /JB in solid minus #B in liquid at interface 
/1~ standard chemical potential 
/1' chemical potential minus contribution from ideal 

mixing entropy, equation (8) 
A/~ /a~ in solid minus ,u~ in liquid at interface 
A/j~ /J{~ in solid minus ~u~ in liquid at interface 
v attempt frequency for surmounting barrier 

atomic volume 

fixed on the interface, but not in a coordinate system 
fixed on the lattice. The "'diffusive" fluxes JA ° and jD 
are the differences between the actual fluxes and what 
the fluxes would be if the solid grew with the com- 
position of  the 
defined by 

liquid at the interface. They are 

J~  = ( 1 - X L )v ;'~ - JA, (2a) 

jD = XLr ;,f~ _ JB. (2b) 

Combining (1) and (2). we find 

- J ~  = (XL -- Xs)t'/f2 = J~ -- JD.  (3) 

We call JD the diffusive flux. It is this quanti ty that 
represents a physical flux of  atoms in a coordinate 
system fixed on the lattice across a particular plane 
(the plane immediately adjacent to the interface in the 
liquid). 

The total number of  atoms per unit area per unit 
time that are incorporated into the crystal, called the 
crystallization flux J~. is given by 

Jc = r/f2: (4) 

it is the sum of  JA and JB. We refer the reader to the 
review by Baker and Cahn [1] for more on the choices 
of  fluxes and driving forces in the alloy solidification 
problem. 

Z 1. Solute partitioning 

The diffusive flux is expressed phenomenologicaily 
in terms of  the driving force for solute-solvent redis- 
tribution and the kinetic rate constant, or  mobility, 

for the process. This can be done very simply for a 
dilute solution of  B in A: 

JD = (t:D/~) (XS -- keXL )" (5) 

where X s - keXl_ is a measure of  the deviation from 
equilibrium and t'D/f2 is a kinetic constant relating the 
rate of  return to equilibrium to the deviation from 
equilibrium. The characteristic velocity for the redis- 
tribution reaction t'D can be identified within the 
framework of  chemical rate theory as the maximum 
speed of  interdiffusion at infinite driving three (i.e. 
when k¢- .  0). This diffusive speed is the ratio of  D,, 
the coefficient for interdiffusion across the interlace, 
to the interatomic spacing 2. For  concentrated solu- 
tions, one assumes a reaction from an initial state (of 
a B in the solid adjacent to an A in the liquid) over 
a barrier to a final state (where the two atoms have 
exchanged positions), as depicted in Fig. I. In this 
case the forward reaction is written 

J/~ = ( fv) , ) (Xsl f~)( l  - XL)exp[ - QD/ RT~. (6) 

where f is a geometric factor, v is an attempt fre- 
quency (which is on the order of  an atomic vi- 
brational frequency [22]), QD is the activation barrier 
for interdiffusion across the interface, and R is the gas 
constant. The second and third factors in (6) reflect 
the fact that the forward rate of  A B exchange is 
proport ional  to the concentration of  B in the solid 
and the concentrat ion of  A in the liquid at the 
interface. The final factor is the fraction of  attempted 
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reaction coordinate 

Fig. 1. Reaction coordinate diagram for solute-solvent 
redistribution reaction. Initial state: B in solid, A in liquid. 

Final State: B in liquid, A in solid. 

interchanges that are successful. The rate of the 
reverse reaction is 

J~  = ( /~ ; . ) (x j f~ ) (~  - Xs) 

x exp{ - [Qo + (A/z~ - A#'A)I/RT}, (7) 

where the final factor, the fraction of successful 
attempts, is again a Boltzmann factor in the barrier 
height. We use the convention that differences in 
quantities across the interface, expressed by the sym- 
bol A, are the values of these quantities in the solid 
at the interface minus those in the liquid at the 
interface. The redistribution potential, /z', is the 
actual chemical potential minus the contribution 
from the ideal mixing entropy: 

p'(X, T) - p(X,  T) - R T  In X. (8) 

The redistribution potential can be thought of as very 
similar to the standard chemical potential # ,  except 
that it includes any composition dependence of the 
activity coefficient. The reason for the use of the 
redistribution potential rather than the internal en- 
ergy or the actual chemical potential is that we 
include any local entropy effects in weighting the 
rates of individual atomic jumps, whereas the ideal 
mixing entropy is already accounted for by the 
XL(I --Xs) and Xs(I - X L )  factors in equations (6) 
and (7). If these effects are included, the net flux 
vanishes in equilibrium (when Apk = 0 = A/ZB). 

The net diffusive flu~ is then the difference between 
the forward and reverse reactions:t 

Jo = J~ - JD 

= [CD/f~][XS(I -- XL) -- KeXL(I -- X's) ], (9) 

where the diffusive speed is VD --= (fvA)exp[ -- QD/RT] 
and the partitioning parameter K,(Xr, Xs, T)  = -- 

"l'This equation and several others appear in Re['. [15] with 
minus sign errors due to inconsistent sign conventions 
in the definitions of some quantities. 

exp[ - (Ap~ - Ap'A)IRT] is a measure of the driving 
force for redistribution. 

The departure of Xs and X L from their equilibrium 
values during rapid interface motion in concentrated 
solutions necessitates the generalization of k~ to x~. If 
Ke<< l the B atoms in the solid can lower their energies. 
(actually, their p ' )  significantly by exchanging places 
with A atoms in the liquid; if x,>> l the A atoms in 
the solid can lower their energies significantly by 
exchanging places with B atoms in the liquid, and if 
re ~ l the energy change upon atomic redistribution 
is small. Note that if individual solute and solvent 
atoms in the liquid both want equally badly to 
transfer to the solid we still have r~ ~ l; very little 
redistribution across the interface results (rather we 
will tend to have rapid partitionless crystal growth, as 
will be reflected in the rate equation governing the 
crystal growth reaction). Typically Ke < l  and the 
solute prefers the liquid phase. Note that ~¢ is defined 
at all temperatures and solid and liquid compositions, 
but when X s is on the equilibrium solidus and X L is 
on the equilibrium liquidus r e reduces to ke/k A, the 
ratio of the equilibrium partition coefficients of B and 
A (the partition coefficient of A is defined by 
k A - ( l  - X s ) / ( l  --XL)). In addition, as long as 
Henry's law holds, then even far from equilibrium 
x,(XL, Xs, T) = ke(T) /k~(T) .  For dilute solutions of 
B in A, k A ~ l and ~c¢ further reduces to ke(T ). 

Combining (3) and (9), we have 

( X L  - -  X s ) ( V / V D )  = X S ( I  - -  X L )  - -  ' ~ o X L ( I  - -  XS), (!0) 

which can be solved for the partition coefficient: 
l' 

- - -k  ~.c 

k ( v ) = - -  VD ( l l )  
X L t' 

- - +  I - ( I  - ~c,)XL 
VD 

In the dilute solution l imit, this result reduces to 

k (v )  = [(v/vD) + kel/[(V/VD) + 1], (12) 

which was derived by Brice [10] by combining equa- 
tions similar to (3) and (5). We find a transition from 
equilibrium partitioning (k---,k¢) to complete solute 
trapping (k --* l) as the interface speed surpasses the 
maximum speed of redistribution. 

Imagine keeping the driving force for redistri- 
bution at a large but constant level while increasing 
the driving force for solidification. According to (9), 
JD will remain essentially constant. Simultaneously, 
JA and JB increase and approach values much greater 
in magnitude than JD- Then according to (2), the 
ratio of JA or Ja to the value it would have if 
solidification were partitionless approaches unity as 
the interface velocity increases. Although the instan- 
taneous diffusive flux does not decrease, the amount 
of time that such a flux has in order to effect 
redistribution of a volume element of material at the 
interface diminishes with increasing interface speed. 
This is the basis for suppressed partitioning in this 
model. That JA and Ja can very much exceed JD when 
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all pertinent driving forces increase without limit is a 
consequence of the Turnbull collision-limited growth 
model for solidification of simple molecular systems 
[23, 24]. However, even in systems where the mobi- 
lities for the crystallization and redistribution reac- 
tions are equal and hence v <~ v D, partially suppressed 
partitioning will still follow from (11). 

2.2. In toface  velocity 

We assume a local law in which all of the driving 
free energy, evaluated across the interface, is dissi- 
pated at the interface, the site of the reaction, with no 
coupling to driving forces and dissipation in the bulk. 
It is a simple matter then to calculate the decrease in 
free energy of the system, or equivalently, the increase 
in entropy of the universe, over the course of the 
reaction. This is done simply by examining the com- 
positions and the chemical potentials adjacent to the 
reaction zone (i.e. the interface itself) in the final and 
initial phases. We will postulate a relationship be- 
tween the interface velocity and the free energy 
dissipation. 

We model the overall reaction as a superposition of 
two distinct irreversible processes. The fluxes associ- 
ated with the pair of individual reactions can be either 
those of the individual species JA and JB, or the 
crystallization and diffusive fluxes Jc and JD. The 
latter pair can be related to the former by a change 
of basis, as discussed by Baker and Cahn [I]. In both 
cases the formalism of irreversible thermodynamics 
[25] has been used, in which coupled generalized 
fluxes J, and their conjugate driving forces Fi are 
related by a mobility matrix of phenomenological 
coefficients: J, = E L ,  F,. The sum is over whichever 
pair of independent fluxes we choose to describe the 
problem. Linear force-flux laws of this form are 
usually assumed in irreversible thermodynamics; they 
are not necessary for the results that we obtain in this 
work. 

The rate S of irreversible entropy production per 
unit area of interface is. under conditions of constant 
temperature and pressure, simply equal to the de- 
crease in the free energy of the system and is then 
given by 

YJ, F,= T.~ = - G .  (13) 

where G is the Gibbs free energy dissipated by 
irreversible processes per unit area of interface. If we 
choose to describe the transformation in terms of JA 
and JB, we evaluate the dissipation of free energy by 
examining the chemical potentials and compositions 
in the final and initial phases: 

= .]A A,UA + JBAItB . (14) 

For (13) and (14) to hold for all independent vari- 
ations of JA and JB we must have FA = --ApA and 
F B = -Al~ B [26, 27]. We are also assuming that we 
can neglect the free energy dissipated by other irre- 
versible processes, such as heat flow, at the interface. 

We now make a linear transformation to a more 
convenient reference frame. In the new basis, the 
fluxes are given by 

J c = J A + J a ,  (15a) 

JD = XLJA -- (1 -- XL)JB; (15b) 

and the conjugate driving forces by 

F c = (1 - XL)FA + XLF, .  (16a) 

FD = FA -- FB. (16b) 

It seems that phase transformations at an atomically 
sharp interface can be better understood in simple 
terms in this reference frame. It has already been 
demonstrated experimentally [28] that the results of 
dilute solute partitioning experiments are quite well 
described by a simple relationship between JD and 
Fo, equation (9). Note that (15b) is equivalent to (3). 
For the purposes of the linear transformation (equa- 
tions 15 and 16) we have expressed the entire trans- 
formation using Xt as the only parameter. The above 
transformation was chosen to leave the entropy pro- 
duction invariant, i.e. (13) remains valid in the new 
reference frame: 

TS = JcFc + JDFD, (17) 

as can be seen by inserting (15) and (16) into (17). To 
express (17) in terms of free energy per mole of 
material solidified we multiply each term in (17) by 
- ~ / v ,  yielding 

AGnv(V) = AGe(v) + AGD(V). (18) 

We learn from this equation that in the steady state 
the phase transformation is doing no work on the 
surroundings and therefore the free energy difference 
between the starting phase and the final phase must 
be entirely dissipated by irreversible processes during 
the reaction. As suggested by Hiltert and Sundman 
[29] and as demonstrated in the next section of this 
paper, we can rephase this statement by dividing each 
free energy term by the molar volume. We then say 
that the sum of the forces per unit area on an 
interface moving at constant velocity is zero. The 
left-hand side of (18) is evaluated using (1) and (14): 

AGDF=XsAlaB+(I  -- Xs)A~t A . (19) 

AGDF is commonly called the "driving free energy" 
for the transformation; it must be negative for the 
transformation to occur. We call the first term on 
the right-hand side of (18) the "crystallization free 
energy", evaluated using (4) and (16a): 

AGe= - F c  = XLA~ + (1 -- XL)A#A: (20) 

the relationship of v to AGc is the subject of assump- 
tions discussed later. The "solute drag free energy" 
AGo is evaluated in a sharp interface model by taking 
the product of the diffusive flux and its conjugate 
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driving force using (3) and (16b): 

AGD = JD (A~A -- A//B)f~/v 

= (XL-- Xs)(A#A-A/~B). (21) 

Evaluation of (21) in terms of measurable quantities 
is straightforward for the dilute solution limit when 
A,U A ---¢ 0 and A/t a ~ RT In k/k,: 

AGo = - Xs[(l - k)/k]RT ln[k/ke(T)]. (22) 

As we increase the concentration of  B, the dilute 
solution approximation becomes invalid when XL is 
no longer negligible in (l l) or when activity 
coefficients are no longer constants, in this more 
general case, (22) must be replaced by 

AGD = - Xs[(1 - k)k]RT ln(k/kAX,). (23) 

Up to this point, we have made several assump- 
tions. We have assumed that the dissipation of free 
energy at the interface is independent of that in the 
bulk. We have assumed that the former can be 
written in terms of products of  fluxes across the 
interface and driving forces evaluated across the 
interface. We have assumed in equation (9) that the 
diffusive flux is related to its driving force by a 
particular form of simple chemical rate theory. Addi- 
tional dissipation at the interface, such as that due to 
heat flow, has been ignored [15]. Finally, we have 
assumed steady-state fluxes on a microscopic scale 
which, strictly speaking, yields only an estimate to 
AGD. (In order for this term to be evaluated correctly, 
e.g. in the stepwise growth model [14], the complete 
time-dependence of Jo and F D would have to be 
known and their product would have to be integrated 
over time.) 

We now require a model for how the growth 
velocity is related to the free energy terms before 
equation (18) can be solved for v. Here we can insert 
any model appropriate to the particular trans- 
formation and to the particular material under con- 
sideration. The result will be a self-consistent set of 
predictions for the interface response functions. For 
thc purposc of making specific calculations for alloy 
solidification, we use a common model relating the 
velocity in a single-component system to the driving 
force at an atomically "rough" interface growing by 
a "'continuous growth" mechanism [30, 31]. Chemical 
rate theory is used to treat the growth velocity in a 
similar manner to the treatment of the solute-solvent 
redistribution problem above. Individual atoms are 
assumed to hop back and forth from the liquid to the 
crystal by thermal activation across a barrier. The 
model yields 

r = v0 (T) [I - exp(A/~/R T)], (24) 

where r0 is the maximum speed of crystal growth at 
infinite driving force (i.e. when the back reaction 
vanishes), and A/~ (defined to be negative during 
solidification) is the free energy difference responsible 

for interface motion. A noteworthy feature of this 
particular model is that the velocity is proportional to 
the driving force for small driving forces. Even in 
models for first order phase transitions that are 
fundamentally very different [32], v is proportional to 
the driving force for small driving forces. For 
solidification of metallic alloys and other processes in 
which interface mobilities are very large, the driving 
forces are usually small compared to RT. When 
appropriate, a parabolic relation, such as is expected 
for a screw dislocation mechanism of solidification 
[33], might be used instead. For our purposes, the 
exact form of the velocity-driving force relation is not 
important, provided that it is not too pathological. 

To apply this model to alloys, some averaging must 
be done. We assume that we can describe the alloy 
kinetics in terms of hopping across a similar barrier, 
but of course when there are two species the driving 
forces in the two cases are different, and the barriers 
can in principle also be different. Treating them in- 
dependently and summing their fluxes to find the net 
crystal growth rate [7] does not yield solute trapping. 
Even if some coupling is built into the rate equations 
[13], solute trapping does not result on both sides of 
a phase diagram [34]. We have therefore gone to the 
other extreme and expressed the solidification reac- 
tion as one of complete dependence, where we imag- 
ine the solute and solvent atoms crystallizing as a 
molecule. With this point of view, v0 in (24) is an 
average characteristic velocity for the growth reac- 
tion. 

There are many ways to extend this model to alloys 
and obtain qualitatively reasonable results. We in- 
vestigate two of them below. We assume that a 
modified free energy difference responsible for inter- 
face motion enters into equation (24) in the same way 
that Ap does in pure materials. This modified free 
energy difference can be AGDF [14, 35], which repre- 
sents the entire free energy dissipated at the interface. 
This assumption yields 

v = v0[l - exp(AGr,,=/RT) ]. (25) 

(Recall that the free energy differences here are 
negative quantities during solidification.) This equa- 
tion is reasonable. An argument in support of (25) is 
that the crystallization rate should be determined by 
the driving force for crystallization averaged over all 
of the atoms that actually crystallize. Another possi- 
bility for replacing At~ in (24) is that some of the 
overall driving free energy is consumed in driving the 
solute-solvent redistribution reaction and is therefore 
unavailable to drive interface motion. That amount 
is assumed to be exactly AGo. This assumption yields 

v = v0[I -- exp((AGDv - AGD)/RT)], (26) 

or, combined with (18), 

v = v0 [l - exp(AGc/RT)]. (27) 

This equation is also reasonable. An argument in 
support of (27) is that the liquid atoms should 
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Fig. 2. Construction for obtaining composition of growing 
solid given temperature and composition of liquid at inter- 
face. (a) Model without solute drag, AGDF --* 0 as v 0 --* o~. (b) 

Model with solute drag, AGc--*O as v0--. oo. 

crystallize at a rate determined by the driving force 
for crystallization averaged over all of the atoms in 
the liquid at the interface. The model corresponding 
to equation (25) is denoted "no solute drag" because 
it does not allow the solute-solvent redistribution 
reaction to slow down the interface. The model 
corresponding to equation (27) is denoted "with 
solute drag". In the linear regime, where the driving 
forces are small compared to RT, (25) becomes 
v = -- MAGDF, where M = vo/RT is conventionally 
called the mobility of the interface: (27) becomes 
c =-M(AGDF--AGD).  The alternative to making 
assumptions about how AGDF is dissipated in driving 
interface motion seems to require detailed informa- 
tion about the structure, energetics, and atomic mo- 
bility throughout the interface. This approach is 
discussed in the following section. 

There is a useful construction involving AGDF, 
AGe, and the free energy curves for the solid and 
liquid phases, shown in Fig. 2. AGDv is the vertical 
distance, at composition Xs, to the solid curve from 
the tangent to the liquid curve at X L, as shown in Fig. 
2(a). Given a temperature and a liquid composition, 
one can use these curves to determine the solid 
composition when v and v o are small compared to v0. 
For if v/vo is very small then in the model without 
solute drag AGDv is very small in (25). Thus the 
vertical arrow in Fig. 2(a) is very small. Very little 
error is involved then in locating the solution to 
equation (25) by approximating X s in Fig. 2(a) by the 
intersection of the solid curve with the tangent from 
the liquid curve at XL. Likewise, AGe is the vertical 
distance, at composition X L, from the liquid curve to 

the tangent to the solid curve at Xs, as shown in 
Fig. 2(b). In the model With solute drag AGe is very 
small in (27); we locate the solution to (27) by 
approximating X s in Fig. 2(b) by the point on the 
solid curve whose tangent intersects the liquid curve 
at X k. The actual solutions to (25) and (27) lie to the 
left of the intersections in Figs 2(a) and 2(b), re- 
spectively, by amounts that scale with r v 0. Note that 
these constructions are independent of the particular 
form of the k(v) equation used. Within the context of 
this model, we expect the constructions to be quite 
accurate for materials exhibiting collision-limited 
growth solidification kinetics, for which v 0 should be 
of the order of the speed of sound. The velocity can 
then be found by inverting a k(z') equation, such as 
(11) or (12). The constructions break down by the 
time XL crosses the To line, the intersection of the two 
free energy curves. By this point, the arrows in Figs 
2(a) and 2(b) must be large enough to be drawn to 
scale on the diagrams. If VD is similar in magnitude 
to v0, then the liquid and solid compositions do not 
deviate significantly from the local equilibrium com- 
positions until v approaches vo, and the range of 
validity of the construction is quite limited. Finally, 
note from the constructions that in the model with 
solute drag the liquid composition drops with in- 
creasing v much faster than the solid composition 
rises, whereas the reverse is true in the model without 
solute drag. 

3. RELATION TO CONTINUUM MODEL 

In his original analysis of the solute drag effect, 
Cahn [36] modelled a grain boundary as two uniform, 
bulk grains separated by a region of finite width 
across which the energy of the solute atom varies 
continuously. He then assumed that the transport of 
solute across this region is governed by a continuum 
diffusion equation and solved for the stcady-state 
concentration profile in a moving reference frame. If 
the energy of the solute is E(y), where v is thc 
distance from the center of the boundary, the bound- 
ary exerts a force - d E / d y  on the solute atom and the 
solute atom must therefore exert a force dE~dr on the 
boundary. The force, P, due to the solute atoms only, 
per unit area of boundary is therefore the integral of 
the product of dE/dy and the solute concentration. 
X(y)/f l ,  across the boundary. Cahn's analysis was 
for a dilute solution and he was concerned only with 
the force due to one species. 

Baker and Cahn [1 I] applied this treatment to 
motion of interphase boundaries, solving thc steady- 
state diffusion equation across the interfacc to obtain 
the velocity dependence of the partition coefficient. 
They did not evaluate the solute drag in this model. 
We do this below. The force on the interface duc to 
both species in given by 

? P = - ( I / n )  [X(y)(d~'B/dv) 

+ (1 - X(y))(dl~'A/d)')] d.v. (28) 
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Fig. 3. Potentials, compositions, and fluxes in a continuum 
model. Variation of solute potential (top) and composition 
(middle) across the interface. Variation of diffusive flux 
(bottom) across the interface. Dashed line: diffusive flux 
corresponding to model "with solute drag"; dotted line: 
diffusive flux corresponding to model "without solute drag". 

where for the general case of a concentrated, non- 
ideal solution E is replaced by/~'. At this point we 
will assume no particular functional forms f o r / ~ ( y )  
and #~,(y), but they are assumed to be continuous 
across the interface, as shown in Fig. 3 (top). With 
the definition of # '  as / a - R T I n X ,  the above 
expression can be rewritten in terms of the chemical 
potentials: 

P n  = - [X (y ) (d l~B /dy )  

+ (1 - X ( y ) ) ( d ~ A / d y ) ] d y .  (29) 

The integral in (29) can be broken up into con- 
tributions from the two bulk phases plus a con- 
tribution from the interface. When gradient energy 
terms can be neglected, the integrand in each bulk 
phase vanishes due to the Gibbs-Duhem relation. 
Integrating across the interface only, we have 

Pf2 = -{(1 - Xs)A/~ A + XsAUB } 

;0 + { [ x o , ) - X s l [ d ( # B - l a ^ ) / d y l } d y .  (30) 

The first term, in curly brackets, is the familiar 
driving free energy (see equation 19). The remaining 
integral is the generalized solute drag free energy 
in the continuum model. Now in the sharp inter- 
face model we defined a diffusive flux as JO = 
(v/~'I)[X L -- Xs]. In the continuum model, we wish to 

*The above expressions can be converted to the more 
familiar expressions for dilute solutions by replacing #' 
with the standard chemical potential, typically denoted 
by /~ but denoted by E by Baker and Cahn. 

generalize this concept so that it is defined at all v. 
The flux of B in a coordinate system fixed on the 
lattice across a plane at arbitrary y is . j j (v )=  
( v / t ~ ) [ X ( y ) - X s ] .  If the concentration profile is as 
displayed schematically in Fig. 3 (middle), then .Jd (.V) 
is as displayed in Fig. 3 (bottom). Note that 
JD =jd(3). Substituting the expression for/~(y) into 
(30), we obtain 

Pf~ = -- AGDF + (f~tv) 

x jaO')[d( l~B-l~A)/d) ']d .r .  (31) 
0 

By comparison of the above integral with equation 
(21) we see that the dissipation due to solute-solvent 
redistribution per unit area of interface per unit time 
is now given by the product of a varying diffusive flux 
and its conjugate driving force, integrated across the 
interface. 

This integral cannot be evaluated without specific 
knowledge of /~O') , /a~ 0 ') ,  and an equation relating 
the rate of redistribution to the driving force, such as 
(5).t Baker and Cahn assumed a continuum diffusion 
equation instead of (5), and chose a family of linear 
forms for EO') that facilitated the solution of the 
diffusion equation. They were able to obtain solu- 
tions for an arbitrary degree of impurity adsorption 
or desorption at the interace. The Baker-Cahn model 
gives a useful qualitative picture of the transition 
from equilibrium partitioning to a partitionless trans- 
formation. However, the assumed form for E()') and 
the use of the continuum diffusion equation produces 
results for k(v) that are not in quantitative accord 
with solidification experiments [28]. Without further 
speculation about the correct rate equation, we can 
examine two limiting cases forjd(y) when there is no 
preferential solute adsorption or desorption at the 
interface (i.e. the composition lies between XL and Xs 
throughout the interface). Suppose that, due to a 
particular form of/~( .v)  and l,~(y) and a particular 
redistribution rate equation, ./d were constant across 
the interface and equal to its value at y = 6, as shown 
by the dashed curve in Fig. 3 (bottom). In this case 
the integral in (31) can be evaluated readily, yielding 

P n  = - {(I  - X s ) A F , A  + X s A u ~ }  

- -  (XL --  X s ) ( A I I  B - A l i A ) .  ( 3 2 )  

o r  

P ~  = - AGe ,  (33) 

as can be seen by comparison with (20). If. on the 
other hand, jo were constant and equal to its value at 
y =0 ,  as shown by the dotted curve in Fig. 3 
(bottom), we would have 

Pf~ = -- (! -- Xs)AFA - X s A l q  ~ = - AGDv. (34) 

With the further assumption that for small forces on 
the interface the velocity is proportional to the force, 
(33) corresponds to (27), the model "'with solute 
drag", and (34) corresponds to (25), the model "'with- 
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out solute drag".  Thus either result appears to be a 
physically plausible description of  a t ransformation 
and experiments may be necessary in order to ulti- 
mately determine which, if either, model is more 
appropr ia te . t  Certainly for phase transformations 
occurring at an atomically sharp interface, we can 
only define the forces and fluxes in terms of  the 
concentrations on either side of  the interface. In this 
case (33) or (34) may have more validity than (31) in 
properly describing the interface kinetics. 

4. RESULTS 

In this section we present and compare results of  
the model  "wi thout  drag"  (equations 11 and 25) and 
"with drag"  (11 and 27). These kinetic models require 
as input the chemical potential of  each species in each 
phase at all temperatures and composit ions of  inter- 
est. An accurate thermodynamic model  is essential if 
we hope to compare the predictions of  any kinetic 
model with experimental results, for if the predictions 
do not agree with experiment we must know whether 
the fault lies in the thermodynamics or  in the kinetics. 
We first present the results of  calculations for solidifi- 
cation of  a two-component  system in which the liquid 
and the solid are both ideal solutions. Next we 
present the results of  calculations for solidification of  
a popular  thermodynamic model of  Ag-Cu ,  a simple 
eutectic system in which the terminal phases have the 
same crystal structure. Ag~2u  has been modeled 
thermodynamically throughout  the undercooled liq- 
uid regime [38, 39]. The only free parameters are the 
two kinetic parameters: the speed of  redistribution at 
infinite driving force rD, and the speed of  crystal 
growth at infinite driving force t'o. We assume that 
the collision-limited growth model describes 
solidification in these systems, and therefore use an 
estimate of  Vo/V D = 100, independent of  composit ion 

eThis result is to be contrasted with the unproven claim of 
Caroli et  al. [37] that (27) is the only reasonable way 
the free energy can enter into the expression for the 
growth velocity. In addition, note that these authors are 
describing a different physical process than we are by 
the term "'solute drag". 

{.For the purpose of these calculations, QD is defined to be 
/1" of the transition state minus the greater value of/~' 
of the states on either side of the transition state. With 
this definition, the assumption that QD is a constant 
across the entire phase diagram results in realistic 
diffusive fluxes across a nonvanishing barrier, indepen- 
dent of the magnitude or sign of (Ap~ -- A/~ ). Because 
of this definition, however, (6) and (7) must be replaced, 
respectively, by 

J~ = (,/b2)(Xs,,D)(l - XL )  

x exp[ - [QD -(Ap;~ - - A I ~ ' A ) I / R T '  , (6') 

and 

JD = ( F I ' 2 ) ( X L / ~ ) ( I  -- Xs) exp{ -- Q D / R T } ,  (7') 

when A#&- A#k is negative, which occurs on the Cu-rich 
side of the kinetic interface condition diagrams in Figs 
5 and 6. 

and temperature (in practice, t' D may depend more 
strongly on temperature and composit ion than does 

Vo)..t 
The four variables X s, "~L" T and t" are related by 

the pair of  equations (11) and (25) in the model 
"wi thout  solute drag",  or (11) and (27) in the model 
"'with solute drag".  We can thus express any pair of  
variables in terms of  the other pair. We display our 
results in the kinetic interface condition diagrams of 
Figs 4--6. They show, for example, the interface 
temperature and solid composit ion that result if one 
imposes a certain velocity and liquid composit ion at 
the interface. Alternatively, they show the interface 
temperature and the liquid composit ion at the inter- 
face that result if one imposes a certain velocity and 
solid composit ion on the system, as in steady-state 
welding [40]. 

The system in Fig. 4 is an ideal solution in both the 
liquid and the solid. The melting points are 1700 and 
100 K; the molar  entropy of  fusion is taken to be 
constant at 2.3 R. The dilute solution limit k(, of  the 
equilibrium partit ion coefficient of  B in A is 0.34. The 
solution of  equations (11) and (25) for c = 0 .  dis- 
played as dashed lines in Fig. 4(a), are the solidus and 
liquidus of  the equilibrium phase diagram. The dot- 
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Fig. 4. Kinetic interface condition diagram for ideal solution 
liquid and solid with melting points as shown, entropy of 
fusion = 2.3 R, and v0/v D = 100. (a) Solutions of equations 
(1 I) and (25) "without solute drag": (b) equations (11 ) and 
(27) "with solute drag"; for values of v/v D shown. Dashed 
lines: solutions for v = 0 corresponding to equilibrium phase 
diagram. Dotted line: T O curve. Solid line: kinetic liquidus. 

Dot~lashed line: kinetic solidus. 
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ted line is the To curve, which is the locus of the 
intersections of the solid and liquid free energy curves 
in Fig. 2; it represents the maximum temperature at 
which a solid of a given composition can be formed 
from a liquid of any composition. The solid and 
dot~zlashed curves labelled ".1" in Fig. 4(a) are the 
"kinetic" liquidus and solidus (solutions to the equa- 
tions) for an imposed interface speed of 0.1 YD. The 
liquidus and solidus begin to approach each other, 
reflecting the increasing partition coefficient (which is 
the ratio of the kinetic solidus and liquidus com- 
positions). The curves labelled ".3" and "1" are the 
solutions for v = 0.3 VD and v = VD respectively. As v 
increases, the kinetic solidus initially rises toward the 
To line more rapidly than the kinetic liquidus drops, 
as predicted by the construction in Fig. 2(a). As the 
velocity increases beyond VD (not shown), the under- 
cooling increases further while the kinetic liquidus 
and solidus merge (k ~ 1). 

In Fig. 4(b) are plotted the solutions to equations 
(11) and (27) for the same conditions as in Fig. 4(a). 
We see that in the formulation "with solute drag", 
the kinetic liquidus approaches the To line more 
rapidly than does the kinetic solidus [compare Figs 
4(b) and 2(b)]. Eventually, of course, the kinetic 
solidus and liquidus merge and the interface tem- 
perature drops as v exceeds yD. 

If several solid phases with different crystal struc- 
tures can grow from the melt then separate solutions 
must be obtained for each structure. In such a case, 
the resulting kinetic interface condition diagram is 
obtained by superposition of one simple diagram 
[such as Fig. 4(a)] for each structure. For example, 
solidification in a simple eutectic system in which the 
terminal phases have different crystal structures 
might be described by a superposition of Fig. 4(a) on 
its mirror image. The model presented in this paper 
does not predict which phase will actually be ob- 
served. 

In Figs 5 and 6 we show the solutions to equations 
(11) and (25), and (11) and (27), respectively, for 
Murray's thermodynamic model of the Ag--Cu sys- 
tem [38]. Again we assume Vo/VD = 100. The equi- 
librium solidi and liquidi are again denoted by dashed 
curves and the To curve is dotted. Solid-solid equi- 
librium below the eutectic has been omitted; meta- 
stable solid-liquid equilibria are depicted instead. 
The solid and dot-dashed curves in Fig. 5(a) are the 
kinetic liquidus and solidus solutions to equations 
(11) and (25) "'without solute drag" for an imposed 
interface speed of 0.01 v D. At this speed, the kinetic 
liquidus has not yet moved noticeably but the kinetic 
solidus has already moved in somewhat. Multiple 
solutions are found in the middle of the diagram. This 
region of the phase diagram lies under the chemical 
spinodal for the solid and may therefore be un- 
observable experimentally. Since our treatment 
neglects effects such as coherency strain that tend to 
stabilize the solid against spinodal decomposition, we 
have included these solutions in the event that some 

of them might be realized experimentally. Note that 
Duwez and coworkers apparently produced Ag-Cu 
solid solutions across the entire phase disgram by 
splat quenching [41]. Note also that strictly speaking 
the solutions are for a planar interface only, whereas 
experimental conditions may often result in cellular 
or dendritic breakdown of the interface in this region 
of the phase diagram. However, for first-order phase 
transitions such relations yield reasonable results for 
a curved interface if the driving free energy is 
modified by a capillarity term [12]. In Fig. 5(b).we 
plot the solutions for an imposed interface speed of 
0.1 VD- AS the interface speed is increased further to 
0.7 vD [Fig. 5(c)], the kinetic solidus approaches the 
To curve and k approaches unity. The kinetic liquidus 
and solidus merge and the transformation becomes 
virtually partitionless at v = 30 VD [Fig. 5(d)]. 

The interface condition diagrams are quite 
different if we use (27), in which we subtract off the 
solute drag, rather than (25). In Fig. 6(a) we show the 
numerical solutions of equations (11) and (27) for an 
imposed interface speed of  0.1 YD. The already sub- 
stantial undercooling of the kinetic liquidus below the 
equilibrium liquidus is due almost entirely to the 
solute drag term. In Fig. 6(b) we plot the solutions for 
an interface speed of 0.3 i, D. Representative tie-lines 
are shown to aid the reading of the diagrams. At this 
speed, the kinetic liquidus is approaching the To curve 
as the degree of solute trapping and of interfacial 
undercooling increase. At v =  3 vo [Fig. 6(c)], the 
solute drag term is rapidly disappearing. This conclu- 
sion can be drawn by comparing the undercooling in 
the middle of the diagram to that of pure Ag and pure 
Cu at the two ends of the diagram, where the solute 
drag term is identically zero. Note that at this speed 
a partitionless transformation is thermodynamically 
possible but, however, does not occur until still 
greater speeds, where the kinetic solidus and liquidus 
merge and become completely indistinguishable [Fig. 
5(d)]. 

In the model "with solute drag", significantly more 
undercooling is predicted than without solute drag. 
The difference between the predicted undercoolings 
in the two models is evident at V/eo = 0.1 [Figs 6(a) 
and 5(b)]. This behavior can be understood in the 
context of Fig. 2. Note how close the kinetic solidus 
lies to To at v/v  D = 0.7 [Fig. 5(c)] in the model without 
solute drag, compared to the proximity of  the kinetic 
liquidus and To at V/Vo = 0.3 [Fig. 6(b)] when solute 
drag is included. 

An instability in the steady-state solution occurs 
where a tie line connects a kinetic solidus and a 
kinetic liquidus having opposite slopes, such as in the 
central regions of Figs 5(a) and (b) and 6(a) and (b). 
A fluctuation whereby a small amount of crystal 
grows with more solute than the steady-state amount 
will make the liquid at the interface leaner in solute, 
thus shifting the steady-state kinetic solidus solution 
to yet greater solute concentrations. The unstable 
branches of the kinetic solidi and liquidi are denoted 
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by thin lines in Figs 5 and 6. This effect could give 
rise to oscillatory behavior when a constant solidifi- 
cation velocity is imposed on material with a bulk 
liquid composition in this region [42]. Strictly speak- 
ing, the models presented in this paper yield steady- 
state response functions only, and any oscillatory 
behavior cannot be described in terms of such roots. 
However, we expect the time it takes for the interface 
to reach a "steady-state" configuration to be rather 
short, on the order of 62/D~, where 6 is the width of 
the interface. Thus a steady state model may ade- 
quately describe unsteady behavior also. 

During rapid solidification following pulsed laser 
melting of semiconductors, the interface has been 
observed to slow down upon encountering a heavily 
doped region [43,44]. The interface velocity was 
measured in these experiments by observing rapid 
changes in the transverse electrical conductance of a 
thin film specimen as the phase transformation pro- 
ceeds [3, 45]. Whether the observed interface slow- 
down is mainly due to solute drag, a reduced driving 
force for solidification, or a reduced interface mobil- 
ity remains to be seen. This transient conductance 
technique has recently been successfully applied to 
metallic thin films [46] as well. In the near future, 
experiments of this type may enable us to make 
quantitative tests of models for the interface velocity 
vs undercooling and composition response functon. 

5. SUMMARY 

A model has been developed for the two response 
functions of a planar interface in a two-component 
system and applied to alloy solidification. 

The CGM solute trapping model, which has re- 
ceived some experimental support, has been em- 
ployed for the solute partitioning response function. 

The velocity-driving force response function is 
developed by generalizing the chemical potential 
difference in a velocity-vs-driving free energy function 
that is commonly used for solidification of one- 
component melts. Two different ways of generalizing 
the chemical potential difference are used. In the first, 
denoted "without solute drag", the chemical poten- 
tial difference is replaced by the free energy change 
upon solidification of one mole of alloy, resulting in: 

t' = Co[1 -- exp(AGD~/RT)]. 

In the second, denoted "with solute drag", some of 
this driving free energy is assigned to drive solute- 
solvent redistribution across the interface and is 
considered to be unavailable for driving interface 
motion. The result is 

v = vo[i -- exp((AGDF -- AGD)/RT)]. 

These two versions of the model are shown to be 
limiting cases of the continuum model of Baker and 
Cahn. 

The results have been presented in kinetic interface 
condition diagrams, which reproduce the equilibrium 
phase diagram at zero velocity and depict interfacial 
undercooling and suppressed solute partitioning as 
the interface speed increases. Predictions have been 
made for an ideal solution and for a simple eutectic 
system in which the terminal phases have the same 
crystal structure. 

Results have been presented both with and without 
solute drag. If free energy dissipation due to solute 
drag is not explicitly subtracted from the driving free 
energy before the latter is employed to drive interface 
motion, substantially less interfacial undercooling is 
predicted than otherwise. 
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