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Abstract—A model is developed that predicts the steady state velocity of a planar interface and the

chemical composition of the growing phase in terms of the interface temperature and the composition

of the parent phase at the interface. The model is applied to solidification of a two-component melt. Solute

partitioning is treated by a previously developed continuous growth model for solute trapping. The

. interface velocity is found by generalizing the driving force in a velocity-vs-driving force function used

" for solidification of one-component melts. Two different ways of generalizing the driving force are used.
with and without the inclusion of a “solute drag” term. Predictions are made both with and without solute
drag for an ideal solution and for Ag-Cu, a simple eutectic system in which the terminal phases have the
same crystal structure. In both cases, a transition from diffusion-controlled to diffusionless solidification
and a falling interface temperature occur as the interface velocity increases. In the model without solute
drag, significantly less interfacial undercooling is predicted than in the model with solute drag. The
relationship to previous theoretical work, especially to the continuum treatments of Baker and Cahn, and
to pertinent experiments is discussed.

Résumé—Nous développons un modéle qui prédit la vitesse, a I'état stationnaire, d’une interface plane
et la composition chimique de la phase qui croit, en fonction de la température de I'interface et de la
composition de la phase mére a I'interface. Nous appliquons ce modéle a la solidification d’un bain a deux
constituants. Nous traitons le partage du soluté a I'aide d’'un modéle de croissance continue que nous
avions développé auparavant pour le piégeage des solutés. Nous trouvons la vitesse de I'interface en
généralisant la force motrice dans une fonction vitesse/force motrice que I'on utilise pour la solidification
des bains a un seul constituant. Nous généralisons la force motrice de deux fagons différentes, en incluant
ou non un terme de “trainage de soluté”. Nous établissons des prédictions, avec et sans trainage de soluté,
dans le cas d'une solution idéale et pour le systéme Ag-Cu qui est un eutectique simple ou les solutions
solides terminales ont la méme structure cristalline. Dans les deux cas, lorsque la vitesse de I'interface
augmente, il apparait une transition dans le mode de solidification (mode régi par la diffusion — mode
sans diffusion) et une chute de la température interfaciale. Nous prédisons dans le modé¢le sans trainage
de soluté une surfusion interfaciale nettement moins prononcée que dans le modéle avec trainage de soluté.
Nous discutons les relations qui existent entre cette étude et un travail théorique antérieur, en particulier
les traitements en milieu continu dis a Baker et & Cahn.

Zusammenfassung—Ein Modell wird entwickelt, welches die stationdre Geschwindigkeit einer ebenen
Grenzfliche und die chemische Zusammensetzung der wachsenden Phase anhand der Grenzflichen-
temperatur und der Zusammensetzung der Mutterphase an der Grenzfiiche voraussagt. Dieses Modell
wird auf die Erstarrung einer zweikomponentigen Schmelze angewendet. Die Aufteilung des geldsten
Stoffes wird mit einem frither behandelten kontinuierlichen Wachstumsmodell fiir das EinschlieBen des
gelosten Stoffes behandelt. Die Grenzflichengeschwindigkeit ergibt sich, indem die treibende Kraft in eine
Funktion Geschwindigkeit iiber treibender Kraft, die fiir die Erstarrung einer einkomponentigen Schmelze
benutzt worden ist, verallgemeinert wird. Zur Verallgemeinerung werden zwei verschiedene Wege benutzt,
mit und ohne Beriicksichtigung ecines Terms, der eine Reibungsspannung durch den gelosten Stoff
beschreibt. Fiir beide Fille werden Voraussagen abgeleitet fiir eine ideale Losung und fiir Au—Cu, einem
einfachen eutektischen System, bei dem die Endphasen dieselbe Kristallstruktur besitzen. In beiden Fillen
treten ein Ubergang von der diffusionsbestimmten zur diffusionslosen Erstarrung und ein Abfall der
Erstarrungstenperatur auf, wenn die Geschwindigkeit der Grenzfliche groBer wird. Im Modell ohne
Reibungsterm ergibt sich eine betrichtlich geringere Unterkithlung an der Grenzfliche als mit
Reibungsterm. Der Zusammenhang mit friiheren theoretischen Untersuchungen, insbesondere den
Kontinuumsbehandlungen von Baker und Cahn und mit den zugehérigen Experimenten wird diskutiert.

1. INTRODUCTION

Conventional kinetic descriptions of solidification
treat the near-equilibrium limit. This is the case in
which transport of heat or solute through the bulk of
one or both of the phases separated by an interface
is the rate-limiting step in the process and is subject
to local equilibrium boundary conditions at the inter-

face. In this limit, crystal growth occurs slowly
enough that, although long-range transport may be
too slow to maintain thermal or compositional equi-
librium throughout the bulk of either phase, short-
range transport across the interface may still be
sufficiently rapid to effect interequilibration among
the atoms comprising the liquid monolayer and
the solid monolayer adjacent to the interface. This
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assumption implies that, given a liquid composition
at the interface, the solid grows at the equilibrium
temperature with the equilibrium composition, given
by the liquidus and solidus on the equilibrium phase
diagram [1].

Rapid solidification experiments have now attained
a regime of crystal growth speed where the deviations
from local equilibrium are very important, in which
interface motion cannot be thought of as heat-flow or
diffusion limited. These experiments provide an op-
portunity to study the interface reaction kinetics in
high-mobility systems. The formation of metallic
glasses [2] and other metastable metallic and semi-
conducting phases [3] in the presence of rapidly
moving crystal-melt interfaces demonstrates signifi-
cant undercooling of the crystal-melt interface during
rapid crystal growth. Splat-quenching of molten
metallic alloys [4] and rapid regrowth from pulsed-
laser-induced melting of doped semiconductors [5, 6]
have produced suppressed solute partitioning, where
the partition coefficient k£ (the ratio of the solute
concentration in the growing solid to that in the
liquid at the interface) deviates from its equilibrium
value k, (the ratio of the equilibrium solidus to
liquidus compositions on the phase diagram) and
approaches unity at high interface speeds. Indeed, it
has been demonstrated that in alloys with retrograde
solid solubility the chemical potential of the minor
element increases during rapid solidification [4]. The
discovery of this phenomenon, termed “solute trap-
ping”,* ruled out both local equilibrium and the idea
that the alloy components might act independently
during rapid solidification [7]. A number of kinetic
models [8-17] have been proposed to account for
solute trapping and related phenomena observed
during rapid phase transformations.

Two questions must be addressed by models for
plane-front interface motion during a phase trans-
formation in a two-component system. Given local
conditions at the interface (e.g. temperature, com-
position, pressure). they should predict (1) the com-
position of the growing phase and (2) the interface
velocity. The boundary conditions discussed above
are provided by answers to these questions. Com-
bined with equations for long range transport that
connect the interface conditions to the ambient,
externally controllable conditions, they can yield
predictive capability for materials processing.

The measured velocity and orientation dependence
of k during solidification of Bi-doped Si is success-
fully accounted for by the dilute solution limit of the
continuous growth model (CGM) [18, 19]. Thus the
CGM seems to answer the former question. To

+The term “solute trapping™ was originally applied only to
situations where the chemical potential of the solute
increases during solidification. It is now commonly used
in any situation where the partition coefficient deviates
toward unity from its equilibrium value, independent of
the sign of the change in chemical potential (which often
is not determined experimentally).

AZIZ and KAPLAN: INTERFACE MOTION DURING ALLOY SOLIDIFICATION

propose an answer to the latter question, the dilute
solution CGM has been extended to concentrated
solutions and combined with a dissipation-theory
treatment of crystal growth [15], which is an out-
growth of the solute-drag theory of Hillert and
Sundman [12]. Only indirect comparison with experi-
ment has been possible in this case [20], but so far the
results are promising. The CGM is consistent with
the experimental observations of which we are aware.
It predicts solidification under local equilibrium con-
ditions at small interface velocities, and partition-
less solidification and large undercoolings at high
velocities. The model treats alloy solidification as
a superposition at the interface of two distinct
reactions: crystallization via the advance of the inter-
face across a monolayer of liquid alloy, and
solute-solvent redistribution via interdiffusion of the
two species across the interface. The rate of each
reaction is written in terms of its driving force and its
mobility using chemical rate theory [21].

In the next section this model is developed more
fully. The differences are demonstrated between ver-
sions of the model that neglect and allow for an effect
on the interface velocity due to free encrgy dissipation
from solute drag. There is nothing specific to solidifi-
cation in the model; it may equally well be applied to
appropriate solid-state transformations, with proper
choices for the values of the kinetic parameters. In the
third section, a comparison is made with the con-
tinuum models of Baker and Cahn. The versions of
our model with and without solute drag are shown to
be limiting cases of the continuum model. In the final
section, solutions are presented for binary alloy
solidification, for both versions of the model, for an
ideal solution and for a simple eutectic system in
which the terminal phases have the same crystal
structure.

The symbols used in the paper are defined where
they first appear; for convenience they are aiso
assembled with their definitions in Table 1.

2. THE MODEL

Consider a two-phase system composed of A (sol-
vent) and B (solute) atoms. A liquid and a crystal are
separated by a planar interface moving into the liquid
at a steady-state velocity » (v > 0) with respect to the
crystal lattice. Assume for the sake of simplicity that
A and B in the solid and in the liquid have the same
atomic volume Q. The temperature of the interface is
T; the mole fraction of B in the solid is X5 and that
in the liquid adjacent to the interface is X,. The
numbers of A and B atoms per unit area per unit time
that are incorporated into the crystal, J, and Jg
respectively, are given by

Ja= (01— X5/,
Jg = Xsv/Q.

(1a)
(1b)

J, and Jy are physical fluxes of atoms across any
plane parallel to the interface in a coordinate system
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Table 1. Symbols and definitions

A solvent species

B solute species

D, interdiffusion coefficient across interface

E standard chemical potential

F, conjugate driving force for J,

Fy conjugate driving force for Jg

Fc conjugate driving force for Jc

Fy conjugate driving force for Jy

! geometric factor for interdiffusion

G free energy dissipation per unit area of interface
per unit time

AG. crystallization free energy. equation (20)

AG, solute drag free energy. equation (21)

AGp; driving free energy. equation (19)

Ja flux of A across interface, equation (la)

JL diffusive flux of A, equation (2a)

Jg flux of B across interface, equation (1b)

Jy diffusive flux of B, equation (2b)

Je crystallization flux, equation (4)

Jb diffusive flux, equation (3)

Ja generalized diffusive flux in continuum model

k partition coefficient of B, equation (I1)

k partition coefficient of A, (1 — Xg)/(1 — X})
k, equilibrium partition coefficient of B
k
k

A equilibrium partition coefficient of A
0 dilute solution limit of &,
L phenomenological mobility matrix
M interface mobility
P force on interface per unit area

Op activation energy for redistribution
R gas constant

S irreversible entropy production per unit area of
interface per unit time

T interface temperature

T, temperature at which phases of equal composition
have equal free energy

v interface speed

Uy speed of solute-solvent redistribution at infinite
driving force

to speed of crystallization at infinite driving force

X mole fraction of solute

X mole fraction of solute in liquid at interface

X mole fraction of solute in solid at interface

¥ position in direction normal to interface

] width of interface

K, partitioning parameter, exp[(Aus —Aug)/RT]

/ interatomic distance

u chemical potential

Au,  pa in solid minus p, in liquid at interface

Apy  ug in solid minus g in liquid at interface

ut standard chemical potential

u chemical potential minus contribution from ideal
mixing entropy, equation (8)

Auj,  uj in solid minus uj, in liquid at interface

Apg  ug in solid minus pg in liquid at interface

v attempt frequency for surmounting barrier

Q atomic volume

fixed on the interface, but not in a coordinate system
fixed on the lattice. The “diffusive” fluxes JL and JY
are the differences between the actual fluxes and what
the fluxes would be if the solid grew with the com-
position of the liquid at the interface. They are
defined by

JR=(1 =X )iQ—J,.

IO =X 0/Q—J.
Combining (1) and (2). we find

—JR=(X, = X Q=J0=Jp,. 3)

(2a)
(2b)

We call J;, the diffusive flux. It is this quantity that
represents a physical flux of atoms in a coordinate
system fixed on the lattice across a particular plane
(the plane immediately adjacent to the interface in the
liquid).

The total number of atoms per unit area per unit
time that are incorporated into the crystal, called the
crystallization flux J.. is given by

Jo=1v/Q: 4)

it is the sum of J, and J,. We refer the reader to the
review by Baker and Cahn [1] for more on the choices
of fluxes and driving forces in the alloy solidification
problem.

2.1. Solute partitioning

The diffusive flux is expressed phenomenologically
in terms of the driving force for solute-solvent redis-
tribution and the kinetic rate constant, or mobility,

AM. 368—DD

for the process. This can be done verv simply for a
dilute solution of B in A:

Jp = (@p /(X — k. X0). (3)

where X — k. X is a measure of the deviation from
equilibrium and v /Q 1s a kinetic constant relating the
rate of return to equilibrium to the deviation from
equilibrium. The characteristic velocity for the redis-
tribution reaction r, can be identified within the
framework of chemical rate theory as the maximum
speed of interdiffusion at infinite driving force (i.e.
when k,— 0). This diffusive speed is the ratio of D,,
the coefficient for interdiffusion across the interface,
to the interatomic spacing 4. For concentrated solu-
tions, one assumes a reaction from an initial state (of
a B in the solid adjacent to an A in the liquid) over
a barrier to a final state (where the two atoms have
exchanged positions), as depicted in Fig. |. In this
case the forward reaction is written

Jp = (AKX QO = X ) expl — 0n/RT . (6)

where fis a geometric factor, v is an attempt fre-
quency (which is on the order of an atomic wi-
brational frequency {22]), Qp is the activation barrier
for interdiffusion across the interface. and R is the gas
constant. The second and third factors in (6) reflect
the fact that the forward rate of A-B exchange is
proportional to the concentration of B in the solid
and the concentration of A in the liquid at the
interface. The final factor is the fraction of attempted



2338 AZIZ and KAPLAN:
HB~Ha
[
reaction coordinate
Fig. 1. Reaction coordinate diagram for solute-solvent

redistribution reaction. Initial state: B in solid, A in liquid.
Final State: B in liquid, A in solid.

interchanges that are successful. The rate of the
reverse reaction is

Jp = (A)X /D — Xs)
x exp{ ~ [Qp + (Aup — Au)/RT}, (7)

where the final factor, the fraction of successful
attempts, is again a Boltzmann factor in the barrier
height. We use the convention that differences in
quantities across the interface, expressed by the sym-
bol A, are the values of these quantities in the solid
at the interface minus those in the liquid at the
interface. The redistribution potential, u’, is the
actual chemical potential minus the contribution
from the ideal mixing entropy:

WX, N=w(X. T)—RTInX. (8)
The redistribution potential can be thought of as very
similar to the standard chemical potential u°, except
that it includes any composition dependence of the
activity coefficient. The reason for the use of the
redistribution potential rather than the internal en-
ergy or the actual chemical potential is that we
include any local entropy effects in weighting the
rates of individual atomic jumps, whereas the ideal
mixing entropy is already accounted for by the
X, (1 — Xs) and Xg(1 — X)) factors in equations (6)
and (7). If these effects are included, the net flux
vanishes in equilibrium (when Ay, =0 = Aug).

The net diffusive flux is then the difference between
the forward and reverse reactions:t

Jo=JF=Jp
= [rp/Q[Xs(1 — X)) — X (1 = X)), (9)

where the diffusive speed is v, = (fvi)exp[ — Qp/RT)
and the partitioning parameter k.(X;, X5, T)=

+This equation and several others appear in Ref. {15} with
minus sign errors due to inconsistent sign conventions
in the definitions of some quantities.

INTERFACE MOTION DURING ALLOY SOLIDIFICATION

exp[ — (Aug — Apy)/RT] is a measure of the driving
force for redistribution.

The departure of X and X, from their equilibrium
values during rapid interface motion in concentrated
solutions necessitates the generalization of &, to k.. If
K.« | the B atoms in the solid can lower their energies.
(actually, their u”) significantly by exchanging places
with A atoms in the liquid; if x> 1 the A atoms in
the solid can lower their energies significantly by
exchanging places with B atoms in the liquid, and if
K. ~ | the energy change upon atomic redistribution
is small. Note that if individual solute and solvent
atoms in the liquid both want equally badly to
transfer to the solid we still have k. x 1; very little
redistribution across the interface results (rather we
will tend to have rapid partitionless crystal growth, as
will be reflected in the rate equation governing the
crystal growth reaction). Typically k. <1 and the
solute prefers the liquid phase. Note that «, is defined
at all temperatures and solid and liquid compositions.
but when X; is on the equilibrium solidus and X is
on the equilibrium liquidus x, reduces to k. /k2, the
ratio of the equilibrium partition coefficients of B and
A (the partition coefficient of A is defined by
kA =(1-X5)/(1 —X)). In addition, as long as
Henry’s law holds, then even far from equilibrium
K. (X1, Xs, T) = k (T)/k2(T). For dilute solutions of
Bin A, k* =1 and «, further reduces to k(7).

Combining (3) and (9), we have

(XL — X5)(w/vp) = Xs(1 — X)) — kX (1 — X5), (10)

which can be solved for the partition coefficient:

)

k(e) =5 "

U)=—=
X,

an
r

—+ 1= -r)X

Up

In the dilute solution limit, this result reduces to
k(@)=[(w/vp) + kJlvfvp) + 1}, (12)

which was derived by Brice [10] by combining equa-
tions similar to (3) and (5). We find a transition from
equilibrium partitioning (k —k,) to complete solute
trapping (k — 1) as the interface speed surpasses the
maximum speed of redistribution.

Imagine keeping the driving force for redistri-
bution at a large but constant level while increasing
the driving force for solidification. According to (9),
Jp will remain essentially constant. Simultaneously,
J, and J; increase and approach values much greater
in magnitude than J;. Then according to (2), the
ratio of J, or Jy to the value it would have if
solidification were partitionless approaches unity as
the interface velocity increases. Although the instan-
taneous diffusive flux does not decrease, the amount
of time that such a flux has in order to effect
redistribution of a volume element of material at the
interface diminishes with increasing interface speed.
This is the basis for suppressed partitioning in this
model. That J, and J can very much exceed J,, when
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all pertinent driving forces increase without limit is a
consequence of the Turnbull collision-limited growth
model for solidification of simple molecular systems
[23.24). However, even in systems where the mobi-
lities for the crystallization and redistribution reac-
tions are equal and hence v < v, partially suppressed
partitioning will still follow from (11).

2.2, Interface velocity

We assume a local law in which all of the driving
free energy. evaluated across the interface, is dissi-
pated at the interface, the site of the reaction, with no
coupling to driving forces and dissipation in the bulk.
It is a simple matter then to calculate the decrease in
free energy of the system, or equivalently, the increase
in entropy of the universe, over the course of the
reaction. This is done simply by examining the com-
positions and the chemical potentials adjacent to the
reaction zone (i.e. the interface itself) in the final and
initial phases. We will postulate a relationship be-
tween the interface velocity and the free energy
dissipation.

We model the overall reaction as a superposition of
two distinct irreversible processes. The fluxes associ-
ated with the pair of individual reactions can be either
those of the individual species J, and Jg, or the
crystallization and diffusive fluxes J- and J,. The
latter pair can be related to the former by a change
of basis, as discussed by Baker and Cahn {1]. In both
cases the formalism of irreversible thermodynamics
[25] has been used. in which coupled generalized
fluxes J; and their conjugate driving forces F; are
related by a mobility matrix of phenomenological
coefficients: J, = XL, F,. The sum is over whichever
pair of independent fluxes we choose to describe the
problem. Linear force-flux laws of this form are
usually assumed in irreversible thermodynamics; they
are not necessary for the results that we obtain in this
work.

The rate S of irreversible entropy production per
unit area of interface is, under conditions of constant
temperature and pressure. simply equal to the de-
crease in the free energy of the system and is then
given by

TJLF =TS = —G. (13)
where G is the Gibbs free energy dissipated by
irreversible processes per unit area of interface. If we
choose to describe the transformation in terms of J,
and Jy. we evaluate the dissipation of free energy by
examining the chemical potentials and compositions
in the final and initial phases:

G =J App + JsApy. (14)

For (13) and (14) to hold for all independent vari-
ations of J, and Jy we must have F, = —Ap, and
Fy = —Apg [26.27]. We are also assuming that we
can neglect the free energy dissipated by other irre-
versible processes. such as heat flow, at the interface.
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We now make a linear transformation to a more
convenient reference frame. In the new basis. the
fluxes are given by

Jo=Js+ Jg. (15a)

Jp= X J\— (1 — X )Jg: (15b)
and the conjugate driving forces by

Fe=(1— X, )Fa+ X_Fq. (16a)

Fo=Fy,—Fy. (16b)

It seems that phase transformations at an atomically
sharp interface can be better understood in simple
terms in this reference frame. It has already been
demonstrated experimentally [28] that the results of
dilute solute partitioning experiments are quite well
described by a simple relationship between J;, and
Fp, equation (9). Note that (15b) is equivalent to (3).
For the purposes of the linear transformation (equa-
tions 15 and 16) we have expressed the entire trans-
formation using X, as the only parameter. The above
transformation was chosen to leave the entropy pro-
duction invariant, i.e. (13) remains valid in the new
reference frame:

TS =JcFe + Jp Fp. (17)

as can be seen by inserting (15) and (16) into (17). To
express (17) in terms of free energy per mole of
material solidified we multiply each term in (17) by
—Q/v, yielding

AGpp () = AGe(v) + AGp (). (18)
We learn from this equation that in the steady state
the phase transformation is doing no work on the
surroundings and therefore the free energy difference
between the starting phase and the final phase must
be entirely dissipated by irreversible processes during
the reaction. As suggested by Hillert and Sundman
[29] and as demonstrated in the next section of this
paper, we can rephase this statement by dividing each
free energy term by the molar volume. We then say
that the sum of the forces per unit area on an
interface moving at constant velocity is zero. The
left-hand side of (18) is evaluated using (1) and (14):

AGpy = XsApy + (1 — X5)Au, . (19)
AGpe is commonly called the “driving free energy”
for the transformation; it must be negative for the
transformation to occur. We call the first term on
the right-hand side of (18) the “‘crystallization free
energy”, evaluated using (4) and (16a):

AGe= —Fe=X Aug+ (1 — X )Aus:  (20)
the relationship of v to AG. is the subject of assump-
tions discussed later. The “solute drag free energy”
AGy is evaluated in a sharp interface model by taking
the product of the diffusive flux and its conjugate
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driving force using (3) and (16b):
AGp = Jp(Aps — Aug)Qjr

= (XL — X5)(Aua — Apg).  (21)
Evaluation of (21) in terms of measurable quantities
is straightforward for the dilute solution limit when
Ap,—0 and Apug— RT Ink /k,:

AGp = = Xs[(1 = k)/KIRT In[k/k (T)). (22)
As we increase the concentration of B, the dilute
solution approximation becomes invalid when X, is
no longer negligible in (I1) or when activity
coefficients are no longer constants. in this more
general case, (22) must be replaced by

AGp = — Xs[(1 — k)kIRT In(k fkax.).  (23)

Up to this point, we have made several assump-
tions. We have assumed that the dissipation of free
energy at the interface is independent of that in the
bulk. We have assumed that the former can be
written in terms of products of fluxes across the
interface and driving forces evaluated across the
interface. We have assumed in equation (9) that the
diffusive flux is related to its driving force by a
particular form of simple chemical rate theory. Addi-
tional dissipation at the interface, such as that due to
heat flow, has been ignored [15). Finally, we have
assumed steady-state fluxes on a microscopic scale
which, strictly speaking, yields only an estimate to
AGy,. (In order for this term to be evaluated correctly,
e.g. in the stepwise growth model [14], the complete
time-dependence of Jp and F, would have to be
known and their product would have to be integrated
over time.)

We now require a model for how the growth
velocity is related to the free energy terms before
equation (18) can be solved for ¢. Here we can insert
any model appropriate to the particular trans-
formation and to the particular material under con-
sideration. The result will be a self-consistent set of
predictions for the interface response functions. For
the purpose of making specific calculations for alloy
solidification, we use a common model relating the
velocity in a single-component system to the driving
force at an atomically “rough” interface growing by
a “continuous growth™ mechanism [30, 31}. Chemical
rate theory is used to treat the growth velocity in a
similar manner to the treatment of the solute-solvent
redistribution problem above. Individual atoms are
assumed to hop back and forth from the liquid to the
crystal by thermal activation across a barrier. The
model yields

v =1o(TY[1 — exp(Au/RT)], (24)

where 1, is the maximum speed of crystal growth at
infinite driving force (i.e. when the back reaction
vanishes). and Ap (defined to be negative during
solidification) is the free energy difference responsible
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for interface motion. A noteworthy feature of this
particular model is that the velocity is proportional to
the driving force for small driving forces. Even in
models for first order phase transitions that are
fundamentally very different [32], ¢ is proportional to
the driving force for small driving forces. For
solidification of metallic alloys and other processes in
which interface mobilities are very large, the driving
forces are usually small compared to RT. When
appropriate, a parabolic relation, such as is expected
for a screw dislocation mechanism of solidification
[33], might be used instead. For our purposes, the
exact form of the velocity-driving force relation is not
important, provided that it is not too pathological.

To apply this model to alloys. some averaging must
be done. We assume that we can describe the alloy
kinetics in terms of hopping across a similar barrier,
but of course when there are two species the driving
forces in the two cases are different, and the barriers
can in principle also be different. Treating them in-
dependently and summing their fluxes to find the net
crystal growth rate [7] does not yield solute trapping.
Even if some coupling is built into the rate equations
[13], solute trapping does not result on both sides of
a phase diagram [34]. We have therefore gone to the
other extreme and expressed the solidification reac-
tion as one of complete dependence, where we imag-
ine the solute and solvent atoms crystallizing as a
molecule. With this point of view, v, in (24) is an
average characteristic velocity for the growth reac-
tion.

There are many ways to extend this model to alloys
and obtain qualitatively reasonable results. We in-
vestigate two of them below. We assume that a
modified free energy difference responsible for inter-
face motion enters into equation (24) in the same way
that Ay does in pure materials. This modified free
energy difference can be AGp; [14. 35], which repre-
sents the entire free energy dissipated at the interface.
This assumption yields

v =vy[l —exp(AG ./RT)).

(Recall that the free energy differences here are
negative quantities during solidification.) This equa-
tion is reasonable. An argument in support of (25) is
that the crystallization rate should be determined by
the driving force for crystallization averaged over all
of the atoms that actually crystallize. Another possi-
bility for replacing Au in (24) is that some of the
overall driving free energy is consumed in driving the
solute—solvent redistribution reaction and is therefore
unavailable to drive interface motion. That amount
is assumed to be exactly AG,. This assumption yields

(25)

v = o[l — exp((AGpy — AGp)/RT)].  (26)
or, combined with (18),
v =1t,[l — exp(AG-/RT)}. 27)

This equation is also reasonable. An argument in
support of (27) is that the liquid atoms should
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(a)

()

X

Fig. 2. Construction for obtaining composition of growing

solid given temperature and composition of liquid at inter-

face. (a) Model without solute drag, AGpr — 0 as vy — . (b)
Model with solute drag, AG-—0 as vy— oo.

crystallize at a rate determined by the driving force
for crystallization averaged over all of the atoms in
the liquid at the interface. The model corresponding
to equation (25) is denoted “no solute drag” because
it does not allow the solute-solvent redistribution
reaction to slow down the interface. The model
corresponding to equation (27) is denoted “with
solute drag™. In the linear regime, where the driving
forces are small compared to R7, (25) becomes
vt = — MAGpp, where M =1t,/RT is conventionally
called the mobility of the interface; (27) becomes
v = — M(AGpy — AGp). The alternative to making
assumptions about how AGp, is dissipated in driving
interface motion seems to require detailed informa-
tion about the structure. energetics. and atomic mo-
bility throughout the interface. This approach is
discussed in the following section.

There is a useful construction involving AGyp;.
AGc, and the free energy curves for the sohd and
liquid phases, shown in Fig. 2. AGp; is the vertical
distance, at composition Xj. to the solid curve from
the tangent to the liquid curve at X, as shown in Fig.
2(a). Given a temperature and a liquid composition,
one can use these curves to determine the solid
composition when ¢ and ¢p are small compared to .
For if ¢/v, is very small then in the model without
solute drag AGp is very small in (25). Thus the
vertical arrow in Fig. 2(a) is very small. Very little
error is involved then in locating the solution to
equation (25) by approximating Xy in Fig. 2(a) by the
intersection of the solid curve with the tangent from
the liquid curve at X . Likewise, AG. is the vertical
distance, at composition X, from the liquid curve to
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the tangent to the solid curve at X, as shown in
Fig. 2(b). In the model with solute drag AG is very
small in (27); we locate the solution to (27) by
approximating Xs in Fig. 2(b) by the point on the
solid curve whose tangent intersects the liquid curve
at X, . The actual solutions to (25) and (27) lie to the
left of the intersections in Figs 2(a) and 2(b). re-
spectively, by amounts that scale with r;1,. Note that
these constructions are independent of the particular
form of the k() equation used. Within the context of
this model, we expect the constructions to be quite
accurate for materials exhibiting collision-limited
growth solidification kinetics, for which r, should be
of the order of the speed of sound. The velocity can
then be found by inverting a k() equation. such as
(11) or (12). The constructions break down by the
time X, crosses the 7, line, the intersection of the two
free energy curves. By this point, the arrows in Figs
2(a) and 2(b) must be large enough to be drawn to
scale on the diagrams. If ¢y, is similar in magnitude
to vy, then the liquid and solid compositions do not
deviate significantly from the local equilibrium com-
positions until v approaches r,. and the range of
validity of the construction is quite limited. Finally,
note from the constructions that in the model with
solute drag the liquid composition drops with in-
creasing v much faster than the solid composition
rises, whereas the reverse is true in the model without
solute drag.

3. RELATION TO CONTINUUM MODEL

In his original analysis of the solute drag effect,
Cahn [36] modelled a grain boundary as two uniform.
bulk grains separated by a region of finite width
across which the energy of the solute atom varies
continuously. He then assumed that the transport of
solute across this region is governed by a continuum
diffusion equation and solved for the stcady-state
concentration profile in a moving reference frame. If
the energy of the solute is E(1). where 1 is the
distance from the center of the boundary, the bound-
ary exerts a force —dE/dy on the solute atom and the
solute atom must therefore exert a force dE/dy on the
boundary. The force, P, due to the solute atoms only,
per unit area of boundary is therefore the integral of
the product of dE/dy and the solute concentration.
X(»)/Q, across the boundary. Cahn’s analysis was
for a dilute solution and he was concerned only with
the force due to one species.

Baker and Cahn [11] applied this treatment to
motion of interphase boundaries, solving the stcady-
state diffusion equation across the interface to obtain
the velocity dependence of the partition coefhicient.
They did not evaluate the solute drag in this model.
We do this below. The force on the interface due to
both species in given by

P= —(l/Q)J [(X(y)(dup/dy)

-

+ (1 = X () (dpy/dfdr. (28)
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SOLID INTERFACE LIQUID
Fa~Ha

Fig. 3. Potentials, compositions, and fluxes in a continuum
model. Variation of solute potential (top) and composition
(middle) across the interface. Variation of diffusive flux
(bottom) across the interface. Dashed line: diffusive flux
corresponding to model “with solute drag”; dotted line:
diffusive flux corresponding to model “without solute drag”.

where for the general case of a concentrated, non-
ideal solution E is replaced by u’. At this point we
will assume no particular functional forms for ug(y)
and u,(»). but they are assumed to be continuous
across the interface, as shown in Fig. 3 (top). With
the definition of u” as u— RT In X, the above
expression can be rewritten in terms of the chemical
potentials:

PO = —f X)) dpp/dy)

+ (1 ~ X () (du,/dy)ldy. (29)

The integral in (29) can be broken up into con-
tributions from the two bulk phases plus a con-
tribution from the interface. When gradient energy
terms can be neglected. the integrand in each bulk
phase vanishes due to the Gibbs-Duhem relation.
Integrating across the interface only, we have

PQ= —{(1 = Xs)Apn + XsApp}

+j {IX(3) — Xs][d(us — na)/dyl} dy.  (30)

The first term, in curly brackets, is the familiar
driving free energy (see equation 19). The remaining
integral is the generalized solute drag free energy
in the continuum model. Now in the sharp inter-
face model we defined a diffusive flux as Jp=
(r/Q)[X. — X;5]. In the continuum model, we wish to

tThe above expressions can be converted to the more
familiar expressions for dilute solutions by replacing u’
with the standard chemical potential, typically denoted
by u° but denoted by E by Baker and Cahn.
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generalize this concept so that it is defined at all v.
The flux of B in a coordinate system fixed on the
lattice across a plane at arbitrary y is j,(v) =
(e/D[X(y) — Xs). If the concentration profile is as
displayed schematically in Fig. 3 (middle). then j, (1)
is as displayed in Fig. 3 (bottom). Note that
Jp = js(6). Substituting the expression for j,(1) into
(30), we obtain

PQ= —AGDF+(Q/U)

XJ JaOd(up — pa)dy]dy.  (31)
0

By comparison of the above integral with equation

. (21) we see that the dissipation due to solute-solvent

redistribution per unit area of interface per unit time
is now given by the product of a varying diffusive flux
and its conjugate driving force, integrated across the
interface.

This integral cannot be evaluated without specific
knowledge of ug(¥), u4 (1), and an equation relating
the rate of redistribution to the driving force. such as
(5).1 Baker and Cahn assumed a continuum diffusion
equation instead of (5), and chose a family of linear
forms for E(y) that facilitated the solution of the
diffusion equation. They were able to obtain solu-
tions for an arbitrary degree of impurity adsorption
or desorption at the interace. The Baker~Cahn model
gives a useful qualitative picture of the transition
from equilibrium partitioning to a partitionless trans-
formation. However, the assumed form for E(y) and
the use of the continuum diffusion equation produces
results for k(v) that are not in quantitative accord
with solidification experiments [28]. Without further
speculation about the correct rale cquation, we can
examine two limiting cases for j (1) when there is no
preferential solute adsorption or desorption at the
interface (i.e. the composition lies between X and X;
throughout the interface). Suppose that, due to a
particular form of u/(») and pj(») and a particular
redistribution rate equation, j, werc constant across
the interface and equal to its value at y = §, as shown
by the dashed curve in Fig. 3 (bottom). In this case
the integral in (31) can be evaluated readily, yiclding

PQ = —{(1 — Xs)Aup + XsAuy

— (XL — Xs)(App — Apy). (32)

or

PQ = —AGg, (33)

as can be seen by comparison with (20). If, on the
other hand, j; were constant and equal to its value at
y =0, as shown by the dotted curve in Fig. 3
(bottom), we would have

PQ=—(1 — X)Au, — XsApy = — AGpy. (34)

With the further assumption that for small forces on
the interface the velocity is proportional to the force,
(33) corresponds to (27), the model “with solute
drag”, and (34) corresponds to (25), the model “*with-
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out solute drag”. Thus either result appears to be a
physically plausible description of a transformation
and experiments may be necessary in order to ulti-
mately determine which, if either, model is more
appropriate.t Certainly for phase transformations
occurring at an atomically sharp interface, we can
only define the forces and fluxes in terms of the
concentrations on either side of the interface. In this
case (33) or (34) may have more validity than (31) in
properly describing the interface kinetics.

4. RESULTS

In this section we present and compare results of
the model “without drag’ (equations 11 and 25) and
“with drag” (11 and 27). These kinetic models require
as input the chemical potential of each species in each
phase at all temperatures and compositions of inter-
est. An accurate thermodynamic model is essential if
we hope to compare the predictions of any kinetic
model with experimental results, for if the predictions
do not agree with experiment we must know whether
the fault lies in the thermodynamics or in the kinetics.
We first present the results of calculations for solidifi-
cation of a two-component system in which the liquid
and the solid are both ideal solutions. Next we
present the results of calculations for solidification of
a popular thermodynamic model of Ag-Cu, a simple
eutectic system in which the terminal phases have the
same crystal structure. Ag—Cu has been modeled
thermodynamically throughout the undercooled lig-
uid regime [38, 39]. The only free parameters are the
two kinetic parameters: the speed of redistribution at
infinite driving force v, and the speed of crystal
growth at infinite driving force r,. We assume that
the collision-limited growth model describes
solidification in these systems. and therefore use an
estimate of v,/vp = 100. independent of composition

+This result is to be contrasted with the unproven claim of
Caroli et al. {37] that (27) is the only reasonable way
the free energy can enter into the expression for the
growth velocity. In addition, note that these authors are
describing a different physical process than we are by
the term “solute drag™.

tFor the purpose of these calculations, Qy, is defined to be
u’ of the transition state minus the greater value of p’
of the states on either side of the transition state. With
this definition. the assumption that Qp is a constant
across the entire phase diagram results in realistic
diffusive fluxes across a nonvanishing barrier, indepen-
dent of the magnitude or sign of (Aug — Auj ). Because
of this definition. however, (6} and (7) must be replaced,
respectively. by
J§ = (frd) (X /(1 = X,)
x exp{ — [Qp — (Aug — Ap)Y/RT}  (6)
and
Jo = (fra)(X QN — Xg) exp! — Qp/RT}, )

when Apug — Ap, is negative, which occurs on the Cu-rich
side of the kinetic interface condition diagrams in Figs
S and 6.
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and temperature (in practice, vp may depend more
strongly on temperature and composition than does
vo)-¥

The four variables X, X . T and v are related by
the pair of equations (11) and (25) in the model
“without solute drag”, or (11) and (27) in the model
“with solute drag”. We can thus express any pair of
variables in terms of the other pair. We display our
results in the kinetic interface condition diagrams of
Figs 4-6. They show, for example. the interface
temperature and solid composition that result if one
imposes a certain velocity and liquid composition at
the interface. Alternatively. they show the interface
temperature and the liquid composition at the inter-
face that result if one imposes a certain velocity and
solid composition on the system. as in steady-statc
welding [40].

The system in Fig. 4 is an ideal solution in both the
liquid and the solid. The melting points are 1700 and
100 K; the molar entropy of fusion is taken to be
constant at 2.3 R. The dilute solution limit k&, of the
equilibrium partition coefficient of Bin A is 0.34. The
solution of equations (11) and (25) for ¢ = 0. dis-
played as dashed lines in Fig. 4(a). are the solidus and
liquidus of the equilibrium phase diagram. The dot-
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Fig. 4. Kinetic interface condition diagram for ideal solution
liquid and solid with melting points as shown, entropy of
fusion = 2.3 R, and vy/vp, = 100. (a) Solutions of equations
(11) and (25) “without solute drag™; (b) equations (11) and
(27) *“with solute drag™; for values of r/r;, shown. Dashed
lines: solutions for v = 0 corresponding o equilibrium phase
diagram. Dotted line: T, curve. Solid line: kinetic liquidus.
Dot—dashed line: kinetic solidus.
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ted line is the T, curve, which is the locus of the
intersections of the solid and liquid free energy curves
in Fig. 2; it represents the maximum temperature at
which a solid of a given composition can be formed
from a liquid of any composition. The solid and
dot—dashed curves labelled “.1” in Fig. 4(a) are the
*“kinetic” liquidus and solidus (solutions to the equa-
tions) for an imposed interface speed of 0.1 vp. The
liquidus and solidus begin to approach each other,
reflecting the increasing partition coefficient (which is
the ratio of the kinetic solidus and liquidus com-
positions). The curves labelled ““.3” and “1” are the
solutions for v = 0.3 vp and v = vy, respectively. As v
increases, the kinetic solidus initially rises toward the
T, line more rapidly than the kinetic liquidus drops,
as predicted by the construction in Fig. 2(a). As the
velocity increases beyond v, (not shown), the under-
cooling increases further while the kinetic liquidus
and solidus merge (k — 1).

In Fig. 4(b) are plotted the solutions to equations
(11) and (27) for the same conditions as in Fig. 4(a).
We see that in the formulation “with solute drag”,
the kinetic liquidus approaches the 7, line more
rapidly than does the kinetic solidus {compare Figs
4(b) and 2(b)]. Eventually, of course, the kinetic
solidus and liquidus merge and the interface tem-
perature drops as v exceeds tp.

If several solid phases with different crystal struc-
tures can grow from the melt then separate solutions
must be obtained for each structure. In such a case,
the resulting kinetic interface condition diagram is
obtained by superposition of one simple diagram
[such as Fig. 4(a)] for each structure. For example,
solidification in a simple eutectic system in which the
terminal phases have different crystal structures
might be described by a superposition of Fig. 4(a) on
its mirror image. The model presented in this paper
does not predict which phase will actually be ob-
served.

In Figs 5 and 6 we show the solutions to equations
(11) and (25). and (11) and (27), respectively, for
Murray’s thermodynamic model of the Ag-Cu sys-
tem [38]). Again we assume r,/vp = 100. The equi-
librium solidi and liquidi are again denoted by dashed
curves and the T, curve is dotted. Solid—solid equi-
librium below the eutectic has been omitted; meta-
stable solid-liquid equilibria are depicted instead.
The solid and dot-dashed curves in Fig. 5(a) are the
kinetic liquidus and solidus solutions to equations
(11) and (25) “without solute drag” for an imposed
interface speed of 0.01 vp. At this speed, the kinetic
liquidus has not yet moved noticeably but the kinetic
solidus has already moved in somewhat. Multiple
solutions are found in the middle of the diagram. This
region of the phase diagram lies under the chemical
spinodal for the solid and may therefore be un-
observable experimentally. Since our treatment
neglects effects such as coherency strain that tend to
stabilize the solid against spinodal decomposition, we
have included these solutions in the event that some
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of them might be realized experimentally. Note that
Duwez and coworkers apparently produced Ag-Cu
solid solutions across the entire phase disgram by
splat quenching [41]. Note also that strictly speaking
the solutions are for a planar interface only. whereas
experimental conditions may often result in cellular
or dendritic breakdown of the interface in this region
of the phase diagram. However, for first-order phase
transitions such relations yield reasonable results for
a curved interface if the driving free energy is
modified by a capillarity term [12]. In Fig. 5(b) we
plot the solutions for an imposed interface speed of
0.1 vp. As the interface speed is increased further to
0.7 vp [Fig. 5(c)], the kinetic solidus approaches the
T, curve and k approaches unity. The kinetic liquidus
and solidus merge and the transformation becomes
virtually partitionless at ¢ = 30 vy, [Fig. 5(d)].

The interface condition diagrams are quite
different if we use (27), in which we subtract off the
solute drag, rather than (25). In Fig. 6(a) we show the
numerical solutions of equations (11) and (27) for an
imposed interface speed of 0.1 r,. The already sub-
stantial undercooling of the kinetic liquidus below the
equilibrium liquidus is due almost entirely to the
solute drag term. In Fig. 6(b) we plot the solutions for
an interface speed of 0.3 r,. Representative tie-lines
are shown to aid the reading of the diagrams. At this
speed, the kinetic liquidus is approaching the T, curve
as the degree of solute trapping and of interfacial
undercooling increase. At r =3 r, [Fig. 6(c)], the
solute drag term is rapidly disappearing. This conclu-
sion can be drawn by comparing the undercooling in
the middle of the diagram to that of pure Ag and pure
Cu at the two ends of the diagram, where the solute
drag term is identically zero. Note that at this speed
a partitionless transformation is thermodynamically
possible but, however, does not occur until still
greater speeds, where the kinetic solidus and liquidus
merge and become completely indistinguishable [Fig.
5(d)].

In the model “with solute drag™, significantly more
undercooling is predicted than without solute drag.
The difference between the predicted undercoolings
in the two models is evident at v /vy = 0.1 [Figs 6(a)
and 5(b)]. This behavior can be understood in the
context of Fig. 2. Note how close the kinetic solidus
lies to T, at v/vy, = 0.7 [Fig. 5(c)] in the model without
solute drag, compared to the proximity of the kinetic
liquidus and T, at v /v, = 0.3 [Fig. 6(b)] when solute
drag is included.

An instability in the steady-state solution occurs
where a tie line connects a kinetic solidus and a
kinetic liquidus having opposite slopes, such as in the
central regions of Figs 5(a) and (b) and 6(a) and (b).
A fluctuation whereby a small amount of crystal
grows with more solute than the steady-state amount
will make the liquid at the interface leaner in solute,
thus shifting the steady-state kinetic solidus solution
to yet greater solute concentrations. The unstable
branches of the kinetic solidi and liquidi are denoted
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by thin lines in Figs 5 and 6. This effect could give
rise to oscillatory behavior when a constant solidifi-
cation velocity is imposed on material with a bulk
liquid composition in this region [42]. Strictly speak-
ing, the models presented in this paper yield steady-
state response functions only, and any oscillatory
behavior cannot be described in terms of such roots.
However, we expect the time it takes for the interface
to reach a “steady-state” configuration to be rather
short, on the order of 6%/D;, where 8 is the width of
the interface. Thus a steady state model may ade-
quately describe unsteady behavior also.

During rapid solidification following pulsed laser
melting of semiconductors, the interface has been
observed to slow down upon encountering a heavily
doped region [43,44]. The interface velocity was
measured in these experiments by observing rapid
changes in the transverse electrical conductance of a
thin film specimen as the phase transformation pro-
ceeds [3, 45]. Whether the observed interface slow-
down is mainly due to solute drag, a reduced driving
force for solidification, or a reduced interface mobil-
ity remains to be seen. This transient conductance
technique has recently been successfully applied to
metallic thin films [46] as well. In the near future,
experiments of this type may enable us to make
quantitative tests of models for the interface velocity
vs undercooling and composition response functon.

5. SUMMARY

A model has been developed for the two response
functions of a planar interface in a two-component
system and applied to alloy solidification.

The CGM solute trapping model, which has re-
ceived some experimental support, has been em-
ployed for the solute partitioning response function.

The velocity-driving force response function is
developed by generalizing the chemical potential
difference in a velocity-vs-driving free energy function
that is commonly used for solidification of one-
component melts. Two different ways of generalizing
the chemical potential difference are used. In the first,
denoted “without solute drag”, the chemical poten-
tial difference is replaced by the free energy change
upon solidification of one mole of alloy, resulting in:

v =4[] — exp(AGpe/RT)).

In the second, denoted “‘with solute drag”, some of
this driving free energy is assigned to drive solute-
solvent redistribution across the interface and is
considered to be unavailable for driving interface
motion. The result is

v = o[l — exp((AGpe — AGp)/RT)].
These two versions of the model are shown to be

limiting cases of the continuum model of Baker and
Cahn.
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The results have been presented in kinetic interface
condition diagrams, which reproduce the equilibrium
phase diagram at zero velocity and depict interfacial
undercooling and suppressed solute partitioning as
the interface speed increases. Predictions have been
made for an ideal solution and for a simple eutectic
system in which the terminal phases have the same
crystal structure.

Results have been presented both with and without
solute drag. If free energy dissipation due to solute
drag is not explicitly subtracted from the driving free
energy before the latter is employed to drive interface
motion, substantially less interfacial undercooling is
predicted than otherwise.

Acknowledgements—We thank J. W. Cahn and W. J.
Boettinger for much helpful discussion. One of us (M.J.A.)
was supported in part by an appointment to the U.S.
Department of Energy Faculty Research Participation Pro-
gram administered by Oak Ridge Associated Universities.
Work at Harvard was supported by the Harvard Materials
Research Laboratory under NSF contract DMR-83-16979.
Work in Oak Ridge was supported by the Division of
Materials Sciences, U.S. Department of Energy under con-
tract DE-ACO05-840R21400.

REFERENCES

1. J. C. Baker and J. W. Cahn, in Solidification, p. 23.
American Soc. for Metals, Metals Park (1970).

2. W. J. Boettinger. in Rapidly Solidified Amorphous and
Crystalline Alloys (edited by B. H. Kear and B. C.
Giessen). Elsevier/North Holland, New York (1982).

3. M. O. Thompson, J. W. Mayer, A. G. Cullis, H. C.
Webber, N. G. Chew, J. M. Poate and D. C. Jacobson,
Phys. Rev. Letr. 50, 896 (1983).

. J. C. Baker and J. W. Cahn, Acta metall. 17, 575 (1969).

. C. W. White, S. R. Wilson, B. R. Appleton and F. W.
Young Jr, J. Appl. Phys. 51, 738 (1980).

6. P. Baeri, J. M. Poate, S. U. Campisano, G. Foti, E.
Rimini and A. G. Cullis, Appl. Phys. Lett. 37, 912
(1980).

. K. A. Jackson, Can. J. Phys. 36, 683 (1958).

. R. N. Hall, J. Phys. Chem. §7, 836 (1953).

. A. A. Chernov, in Growth of Crystals, vol. 3 (edited by
A. V. Shubnikov and N. N. Sheftal), p. 35. Consultants
Bureau, New York (1962).

10. J. C. Brice, The Growth of Crystals from the Melt, p. 65.

North-Holland, Amsterdam (1965).

11. J. W. Cahn, S. R. Coriell and W. J. Boettinger, in Laser
and Electron Beam Processing of Materials (edited by

C. W. White and P. S. Peercy), p. 89. Academic Press,
New York (1980).

[2. M. Hillert and B. Sundman, Acta metall. 25, 11 (1977).

13. K. A. Jackson, in Surface Modification and Alloying by
Laser, Ion and Electron Beams (edited by J. M. Poate,
G. Foti and D. C. Jacobson), p. 51, Plenum Press, New
York (1983).

14. M. 1. Aziz, J. Appl. Phys. 53, 1158 (1982).

15. M. 1. Aziz, Appl. Phys. Letr. 43, 552 (1983).

16. G. H. Gilmer, Mater. Res. Soc. Symp. Res. 13, 249
(1983).

17. R. F. Wood, Appl. Phys. Leu. 37, 302 (1980).

18. M. J. Aziz, J. Y. Tsao, M. O. Thompson, P. S. Peercy
and C. W. White, Mater. Res. Soc. Symp. Proc. 35, 153
(1985).

19. M. J. Aziz and C. W. White, Phys. Rev. Lett. 57, 2675
(1986).

W b

D 00 3



20

2L

AZIZ and KAPLAN:

. M. J. Aziz, in Laser Surface Treatment of Metals (edited
by C. W. Draper and P. Mazzoldi), p. 649. Nijhoff,
Dordecht (1986).

D. Turnbull, in Thermodynamics in Physical Metallurgy,
p. 282. American Soc. for Metals, Cleveland (1950).

22. G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

. D. Turnbull, J. phys. Chem. 66, 609 (1962).

. S. R. Coriell and D. Turnbull, Acta metall. 30, 2135
(1982).

. J. W. Chnstian, Theory of Transformations in Metals
and Alloys, 2nd edn. Part I, Chapter 4. Pergamon Press,
Oxford (1975).

. R.F. Sekerka and W. W. Mullins, J. chem. Phys. 73,
1413 (1980).

. A. C. Smith, J. F. Janak and R. B. Adler, Electronic
Conduction in Solids, Chapter 2. McGraw-Hill, New
York (1967).

. M. J. Aziz. J. Y. Tsao, M. O. Thompson, P. S. Peercy
and C. W. White, Phys. Rev. Letr. 56, 2489 (1986).

. M. Hillert and B. Sundman, Acta metall. 24, 731 (1976).

. D. Turnbull, J. phys. Chem. 66, 609 (1962).

. Ref. [25]., p. 479.

. S.-K. Cahn, J. chem. Phys. 67, 5755 (1977).

. W. B. Hillig and D. Turnbull J. chem. Phys. 24, 914
(1956).

. M. ). Aziz, J. Y. Tsao, M. O. Thompson, P. S. Peercy,

INTERFACE MOTION DURING ALLOY SOLIDIFICATION

2347

€ W, White and W. H. Christie. Mater. Res. Soc.

35

36.
37.

38.
39.

40.
41.

42.

43.
44

45.

46.

Svmp. Proc. 35, 153 (19895).
. W. J. Boettinger. S. R. Coriell and R. F. Sekerka,
Mater. Sci. Engng 65, 27 (1984).
J. W. Cahn, Acta metall. 10, 789 (1962).
B. Caroli. C. Caroli and B. Roulet. Acta meiall. 34, 1867
(1986).
J. L. Murray, Metall. Trans. A15, 261 (1984).
D. G. Beck, S. M. Copley and M. Bass. Metall. Trans.
Al3, 1879 (1982).
W.J. Boettinger, D. Shechtman. R. J. Schaefer and F.
Biancaniello, Metall. Trans. A15, 55 (1984).
P. Duwez, R. H. Willens and W. Klement. J. app!. Phys.
31, 1136 (1960).
M. J. Aziz, in Undercooled Alloy Phases (edited by
E. W. Collings and C. C. Koch), p. 390. TMS-AIME,
Warrendale, Pa. (1987).
G. J. Galvin, J. W. Mayer and P. S. Peercy, Marer. Res.
Soc. Symp. Proc. 23, 111 (1984).
P. S. Peercy and M. O. Thompson, Mater. Res. Soc.
Symp. Proc. 35, 53 (1985).
M. O. Thompson, G. J. Galvin, J. W. Mayer. P. S.
Peercy and R. B. Hammond, Appl. Phys. Lett. 42, 445
(1983).
J. Y. Tsao, S. T. Picraux, P. S. Peercy and M. O.
Thompson, Appl. Phys. Lett. 48, 278 (1986).



