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On Miller-Bravais Indices and four-dimensional Vectors

By F.C.FrRANK
H. H. Wills Physics Laboratory, University of Bristol, England

(Received 29 June 1964)

The Miller-Bravais and Weber symbols for planes and directions in hexagonal crystals can be interpreted
as four-dimensional vectors, which are confined to a particular three-dimensional section of 4-space
by the rule that the first three indices sum to zero. This is useful for the calculation of distances and
angles in hexagonal crystals. The direction symbolized by [uvtw] is that of the cartesian 4-vector [u, v, t,
Aw] and the normal to the plane (hkil) is the cartesian vector [h, k, i, I/2], where 1=(2/3)* (c/a). The
angle between two of these 4-vectors is given by the usual formula cos a=(r; - r2)/r1r2, and other useful
vector f::quations apply to these 4-vectors just as for the 3-vectors associated with Miller indices. Seeming
inconsistencies in the naming of axes for the reciprocal lattice of a hexagonal structure are eliminated
by regarding the direct lattice as the projection on to three dimensions and the reciprocal lattice as the
three-dimensional section of four-dimensional lattices reciprocal to each other.

Introduction

The impetus to write this note came from discoveting
that a research student could work for some years
with hexagonal crystals and still need a stereogram
or a model to ascertain whether the direction [1013],
for example, was parallel to the plane (2111), and
that though the author could tell him how, he could
not easily explain why. In fact, though all who have to
do with hexagonal crystals employ the Miller-Bravais
notation, few exploit its capabilities to the full, the
reason being that most students receive only an ad
hoc exposition of the system in relation to its use in
descriptive crystallography, which makes no attempt
to relate it to any more general system of mathematics.

Three dimensions for the representation of two

It is a fairly familar device (not always explained in
these terms) to use a three-dimensional coordinate
system for a two-dimensional figure where that figure
has threefold or sixfold symmetry, exploiting the
redundant dimension to obtain a much more symme-
trical algebraic representation, while still retaining the
advantages of cartesian coordinates. Thus the equ-
ations for the sides of a regular hexagon, centred
on the origin, when expressed in two-dimensional
cartesian coordinates (x, y):

hx+ky =+d (la, 1b)
—3h+V3k)x+3(Y3h—k)y=+d (lc, 1d)
—3(h—30)x—3(3h+K)y=+d  (le 1f)

by no means reveal the symmetry instantaneously to
the eye: whereas if we consider the figure to be des-
cribed on the plane

x+y+z=0 )

of a three-dimensional cartesian system the equations:

hx+ky+iz=+d (3a, 3b)
kx+iy+hz=+d (3¢, 3d)
ix+hy+kz=+d (3e, 3)

are simpler and more immediately revealing.

By themselves, of course, equations (3a. . .f) define
planes in the three-dimensional space (x,y,z): butitis
only the intersections of these planes with the (111)
plane through the origin defined by (2) which we
regard as significant. The normal from the origin to
any one of the six planes (3a...f), say to the plane
defined by (3a), is simply expressed by the equations:

x[h=ylk=z|i, @

or, in equivalent terms, its direction is the vector with
components [/1,k,i]. We here employ square and round
brackets for directions and planes respectively in
accordance with crystallographic conventions. The
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crystallographer’s custom is also to employ other let-
ters [uvw] or [uvtw], when symbolizing a direction,
from those, (hkl) or (hkil), which he uses to symbolize
a plane. This extravagance in letters of the alphabet
would be inconvenient to follow systematically in this
paper, and will not be followed: the shape of the
brackets must generally suffice to distinguish planes
from directions. Now, since it is not the planes (3a. . .f)
to which we attach significance, but only the lines
in which they intersect plane (2), it is convenient
to arrange that this normal should lie in this plane
and thus coincide with the normal to the appropriate
line. That is to say, we impose the equation:

h+k+i=0. )

We are free to do this, since, when equation (2) is
satisfied, addition of any arbitrary constant to A, k
and i is without effect on the validity of equations
(3a...f). Geometrically, the effect of this is to make
the planes (3a...f), which pass through the sides of
our hexagon, stand perpendicular to plane (2).

For any vector we may define in this system, since
only vectors in the plane (2) are to have significance,
we shall likewise impose the condition, as in (5), that
the sum of the components is zero.

Now, the intercepts of the plane (3a) on the axes
x,y,z are inversely proportional to 4, k, and i respect-
ively (being d/h, d/k, dJi). Thus (h, k, i) are in the
crystallographer’s sense the ‘indices’ of this plane.
Since these axes are equally inclined to the plane
(2), and planes (3) are constrained by equation (5)
to be normal to plane (2), the intercepts on the pro-
jections of these axes on (2), which are in the directions
of the vectors [2,1,1], {1,2,1}, and [1,1,2] respectively,
are likewise inversely proportional to A, k, and i [being
2/)* d/h, (2/3)* d]k, (2/3)* d/i]. (h, k,i) may thus be
taken as the indices of the line defined by (3a) and (2),
and these indices can be read off as the reciprocals of
intercepts on three lines in the plane.

Defining the normal vector to our line (hki) as

p=Ih, k, i] ©)
and using the general position vector
r=[x, y, z] ™

equation (3a) becomes the simple vector equation
defining a plane in terms of its normal from the origin:

p.r=d. ()

It is thus that, when we can retain a cartesian refer-
ence system, the ‘indices’ of a plane and its normal
correspond.

Four dimensions for the representation of three

Coming now to the case of a hexagonal crystal, we
have need of a real, physical, dimension normal to the
base plane while at the same time it remains advan-
tageous for the representation of symmetry to use
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three dimensions, rather than two, in which to repre-
sent coordinates in the base plane. We can satisfy
both of these requirements by representing the crystal
in a certain three-dimensional section of a four-
dimensional space. In this space the general position
vector is

r={x, y, z, w] ©

The four axes x, y, z and w are all orthogonal to
each other. The section we employ is parallel to w
and equally inclined to x, y and z, satisfying equation
(2). Thus the sum of the first three components of r
is always zero. There are now two directions ortho-
gonal to each other and both orthogonal to the base
plane x+y+z=0, w=constant: these are the vectors
[1,1,1,0] and [0,0,0,1] respectively. The first is physically
empty, but usefully visualized for interpreting the basal
coordinates of position: the second is physically
occupied. It is unfortunately impossible to visualize
both of these at once, together with the base plane, at
least for the majority of people — but it is not difficult
to visualize one or the other alternately.

We can now define a plane in our three-dimensional
section of four-dimensional space by the equation

hx+ky+iz+iwli=d, (10)

in conjunction with equation (2): the reason for
introducing the factor 1/4 will emerge presently. We
are free, as before, to impose equation (5), which
causes the normal

p=I[h k, i, ]3] 1

to the hyperplane (10) to lie in our chosen three-
dimensional section of the four-dimensional space,
and coincide with that to the plane defined by (10) and
(2). Equation (10) can be written as equation (8), with
the difference of significance that the vectors now have
four components instead of three.

The intercepts of the hyperplane (10) on the axes
x, ¥, z, w are of course d/h, d/k, d[i, 2d]l, respectively:
but more valuable to us are the intercepts on four
‘crystallographic axes’ which lie in the physical section
of the 4-space, namely on lines from the origin in the
directions of vectors

2,1,1,0], [1,2,1,0], [1,1,2,0] and [0,0,0,1].
These intercepts are:
©2/3)¥d/h, (2/3)¥d/k, (2/3)*d[i, and Ad/i.

Now, in the crystallographic application we have
natural units of length (lattice parameters), a in the
first three of these directions, and ¢ in the fourth.
Measured in terms of these units, the intercepts are

2/3)*d/ha, (2/3)*d|ka, (2/3)*dlia, Ad]lc.
If we now set
A=(2[3)*(c/a) ,
the intercepts measured in natural units become
Ach, Adck, Adjci, Adcl.

(12)
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Crystallographic indices for the plane defined by (10)
and (2) are thus (hkil).

There is one special axial ratio for a hexagonal
crystal, (c/a)=(3/2)%, for which the reference system
becomes four-dimensionally cubic. The vector which
is normal to the plane (kkil), given in general by
(11), is in this case [A, k, i, /], showing the same cor-
respondence between its components and the indices
of the plane to which it is normal, as we have in the
case of ordinary cubic crystals. The lattice with any
other axial ratio, (c¢/a), may be thought of as derived
from this special case by an affine deformation, an
elongation by the factor A along the ¢ axis. The vector
{h, k, i, 1] thereby becomes [A, k, i, Al], according to
the cartesian reference system, but its crystallographic
direction-symbol remains [#kil]. The condition that
a line lies in, or is parallel to, a plane is one that is
retained under affine deformation. Thus the condition
that a direction [uvtw] lies in or is parallel to a plane
(hkil) (the zone law) is in four-dimensional notation,
as in three, the zero scalar product relation:

uh+vk+ti+wli=0. (13)

This was the basic fact which confirmed Weber
(1922) in his choice of a four-index zone symbol.

We may now summarize the relation between
Miller-Bravais indices and vectors as follows:

The normal to the plane crystallographically indexed
as (hkil) is the cartesian 4-vector [A, k, i, //A]: the
direction symbolized as [uviw] is that of the cartesian
4-vector [u, v, t, Aw].

Interconversion of coordinates

One of the easier ways to find the four-dimensional
components of a vector from any three-dimensional
representation is to consider its projection on to the
crystallographic axes aj, a,, a3, ¢ which have the direct-
ions [2110], [1210], [1120] and [0001]. The vector being
Ix, y, z, w], these projections are

6 *2x—y-z), 67*(—x+2y-2),

6~ (—x—y+22), w:

and thus by use of (2):

G/*x, G2y, (3/2)*z, w. (14)

If the vector is [u, v, ¢, Aw] (3/2)*a, then these pro-
jections are:

G2ua, (G2va, G2ta, (15)

There are several different triaxial systems which
are for various purposes convenient for the descrip-
tion of hexagonal crystals and interconversion between
the four component system and any one of them may
be required. The vector equation:

[h, k, i, A} (3/2)*a=sa’ + b’ +uc’ (16)

readily gives the conversion formulae for direction
symbols, once the expressions in the four-component
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system for the three triaxial basis vectors a’, b’, ¢’ are
known. The conversion formulae for planes are equally
readily obtained from the equation p.r=constant,
where p=[h, k, i, //A] is the normal to the plane
(hkil), by putting r=a’/s, b’/t, ¢’/u in turn (that is, by
using the intercepts on the new axes to define Miller
indices (stu) in the usual way). We thus obtain, apart
from a constant multiplying factor of no importance:

s=p.a’, t=p.b", u=p.c, a7

these being four-component scalar products.
Thus for the conventional hexagonal unit cell, with
the three basis vectors
a,=[2,1,1,0] 6-%a,
a2=[T, 23 T; 0] 6_*‘1 )

¢ =[0,0,0,1]c=]0, 0,0, 34] 6-%a, (18)
we obtain the correspondences for directions:
[Akill—[(h—1) (k— DI}, 19)
[stu]l>[(2s—1), (—s+2¢t), (—s—1¢), 3u], (20)
and for planes:
(hkil)—(hkl) , 21
(stuw)—[st(—s—1t)u] . (22)

For the rhombohedral reference system, with basis
vectors

a’=[2,1,1, A 6-%a,
b'=[1,2,1,1 6%,
¢ =[1,1,2,1]6"%a, (23)
we obtain
[Akill—[(h+ D) (k+1) G+ D) 24)
[stu] >[Q2s—t—u) (—s+2t—u) (—s—1+2u) (s
+t+u)] (25)
(hkiD—[Bh+D Bk + 1) (3i+D)] (26)
(stw) ~{(B3s—t—w) (—s+2t—u) (—s—1+2u) (35
+3t+3u)], 27

and for the orthorhombic reference system, with basis
vectors

a"=[2,1,1,0] 6-%a,

b’ =[0, 3, 3, 0] 6-*a,

¢''=[0,0,0,32] 67%a, (28)

we obtain

{hkill—() BAk—1) 211, (29)
[stu] —(3) [2s(—s+31) (—s5—3¢) 3], (30)
(hkil)—~[h(k — )i}, 31
(stw) —>[2s(—s+1) (—s—1) 2u] . (32)

Lengths and angles:
common planes and commeon directions

The recognition that Miller-Bravais indices are essen-
tially 4-vectors can be put to good use in calculating,
for example, the distance between two lattice points
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(or two points within the unit cell) or the angle between
two specified directions. The square of the length of
the vector r=[x, », z, w] is

r2=xr+y2+z2+w?. (33)

Here the sum of the first three terms is the square of
the basal component of length, and the last term is
the square of the axial component.

Given two vectors, r; =[x, y1,z;, wi] and ry=
[x2, ¥2, 22, Wy, the square of the difference vector is

(r2—1)?2=(x2— X2+ (P2 — y1)? + (22— 21)?

+(W—w)2=034+17—2(r; . 1) . (34)
But, by the usual trigonometric formula
(ty—r)2=r2+r2—2r; . F,cO8 @ (35)
where « is the angle between r; and r,. Hence
cos a=(ry . I)/rrs ; (36)

i.e. we can calculate the angle between the two vectors
from their scalar product and a normalizing factor
in the four-component case exactly as in the three-com-
ponent case. The angle between directions symbo-
lized by [hkii],] and [hyk,iz]y] is thus given by:
h1h2+k1k2+l'1i2+)»21112

(M + k34242203 (MB+ k3 + 0%+ A2I3)*
where 12=2c¢2/342.

To find the plane common to these two directions,
when this cannot be done by inspection, it is easiest
to convert to one of the three-axis systems, e.g. by
(19), form the cross-product, and convert back, in
this case by (22). For the inverse problem, of finding
the direction common to two planes, there is some
advantage, as already noted by Weber (1922), in
making use of the duality between planes and direct-
ions (faces and zone axes) basically implied by equa-
tion (13), and thus making the conversions as though
the planes were directions and the common direction
a plane: in this way formally identical algorithms can
be used for both problems.

For the angle between the direction A;k,i;/; and the
plane (hyk,i,l,) we have

hihy+ ko +ivix + 1,

(B + I3+ i34 R215)* (B + kG + i34 13/A0)* .(38)

COS o=

(37

sin o=

The reciprocal lattice

The reciprocal lattice of a hexagonal lattice is a source
of some confusion to students. It seems to be a rather
puzzling accident that no contradiction arises from
two alternative ways of defining the reciprocal lattice
and the four-figure labelling of its points. By the first
approach, the reciprocal lattice point hkil lies at a
distance from the origin inversely as the spacings
between (hkil) planes in the direct lattice, in a direction
normal to these planes. This prescription yields a
lattice, in which points are labelled as to position ac-
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cording to the four-index symbols for vectors. How-
ever, the axes, aj, a, aj, ¢*, of the reference system
according to which they have this labelling do not
appear to be related to the direct crystallographic
axes in the customary way. The directions coincide,
a’ with a; and ¢* with c: the length of ¢* is ¢~!; the
length of each a} is 3-* times the distance from the
origin to the nearest actual reciprocal lattice point,
and thus equal to (2/3)a"1.

Quite different axes are obtained by an equally
regular approach, according to which the primitive
cell edges e/ of the reciprocal lattice are related to
those, e;, of the direct lattice by:

1,i=j

* o= y= L =1,2,3. (39
e . e=0y {O,i#j}l] (39

Identifying e, with a;, e, with a,, e; with ¢ (dis-
carding a;) we obtain an e; identical with ¢* above,
but a pair of axes ef and e; in the base plane making
an angle of 60° with each other. These axes put the
reciprocal lattice points Ak ./ in the same positions
as the former approach, when no account is taken of
the third index, and one may proceed blindly to restore
this third index by using the rule A+k+i=0: but as
they do not describe a conventional hexagonal cell,
and do not provide a symmetrical third position for
a third basal axis, the geometrical significance of the
restoration of the third index is in this case a complete
change of the basal axes, from e} and e;, 60° apart, to

ar =%e;k _%—e; s

*

A = _%ef +%e; ’ (40)

and aj

120° apart.

This untidiness is removed when we appreciate that
the four-index system brings in an auxiliary dimension.
To explain the matter in visualizable terms, let us
consider how we generate the two-dimensional reci-
procal lattice of a two-dimensional hexagonal direct
lattice: the subsequent extension in the ¢ or ¢* dimen-
sion is entirely straightforward (by way of equation
(39), with i, j=1, 2, 3, 4).

Let the two-dimensional hexagonal lattice Dp, (of
lattice parameter a) be regarded as the projection on
the plane x+y+z=0 of a simple cubic lattice D,
having a lattice parameter a.=(3/2)* a, and its axes
along x, y, z. The reciprocal lattice Re; of the latter is
another simple cubic lattice, similarly oriented, with
lattice parameter aX=(2/3)*a~!. Those of its points
which lie in the plane x+y+2z=0 form the required
two-dimensional lattice Rp, which is the reciprocal
lattice of Dy, since these points correspond to those
planes of D.; which are parallel to the projection axis
[111] and appear as lattice rows in Dpy. Ry is a hexa-
gonal lattice of lattice parameter 2*a¥ =(4/3)*a1, dif-
fering in orientation by 30° from Dp,. The reference
axes af, a5, ay of length (2/3)a~! which appeared above
are now seen to be the projections on x+y+z=0 of
the cubic reciprocal lattice axes a.

1% 1k
—3€ —36,
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Since the generation of a reciprocal lattice is a
genuinely reciprocal process we could, as an equally
valid alternative, have employed selection of points
on the plane x+y+z=0 from a simple cubic lattice
to represent Dp; and would then have found that
projection on this plane of the simple cubic reciprocal
lattice reproduced Rp,: the imaginary simple cubic
lattices used for these two alternative representations
have different orientations with respect to the direct
hexagonal lattice.

Since selection of the points on one plane is equi-
valent to multiplication by a plane delta function,
since the generation of a reciprocal lattice is equivalent
to Fourier transformation, and since the Fourier trans-
form of a plane delta-function is a rod delta-function
normal to that plane, the whole representation (in
either alternative) is an application of Parseval’s
theorem, namely that the Fourier transform of the
operation ‘multiply by’ is ‘fold with’: folding a [111]
rod delta-function with the simple cubic lattice points
is equivalent, after discarding the superfluous dimen-
sion, to projection on the (111) plane.

Of the two alternative representations (the first, in
which Dy, is a projection, Rz, a section, of a cubic
lattice, and the second, in which Dy, is a section, Rp,
a projection of a cubic lattice in another orientation)
the first is to be preferred: it is only in this represen-
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tation that names of points in Dy, or Rp,, according
to customary conventions, correspond directly (save
for scale factors) with their names in the cubic reference
system. Now an inconsistency seems to have emerged,
since in the earlier sections of this paper, while lattices
were not under discussion, the re-lowering of dimen-
sionality after introducing an auxiliary dimension was
considered to be performed by taking a section. This
was the effect of equation (2). However, the procedure
in that part of the paper, which related to the descrip-
tive crystallography of macroscopic bodies, clearly
ought to correspond to the procedure employed for
the representation of the direct, rather than that of
the reciprocal lattice, namely a lowering of dimensio-
nality by projection. The inconsistency is only apparent,
since we also imposed equation (5); the projections and
sections on plane (or hyperplane) (2) of all planes
conforming to (5) are identical with each other. Pro-
jection for real space, section for reciprocal space is
thus the representation applying consistently through-
out.

The author expresses his thanks to Dr A. R. Lang
for several discussions on these topics.
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The metastable form of acetamide has been studied by X-ray diffraction. The crystals are orthorhombic,

space group Peccn, a=7-76, b=19-00, ¢=9-51 A

, Z=16. There are two molecules in the asymmetric

unit. These are bound in two-molecule units by a pair of hydrogen bonds. Further hydrogen bonds link
these dimers together in columns parallel to ¢. The average bond lengths in the planar molecules are
C-C, 1-505+0-013; C-N, 1:334+0:017; C-O, 1-260+0-011, in good agreement with those in the
stable (trigonal) solid phase, the vapor, and in similar compounds.

Introduction

Acetamide, CH;CO-NH,, exists in two crystalline mod-
ifications. The structure of the stable (trigonal) form
has been reported by Senti & Harker (1940)f. The

* Research performed under the auspices of the U.S.
Atomic Energy Commission.

1 A reinvestigation of this structure is presently being car-
ried out by Mills, Harris & Harker (1964). The original inves-
tigation, carried out long before the age of the modern digital
computer, is noteworthy for being the first example of the
use of a Fourier refinement in an acentric structure,

metastable (orthorhombic) form at room temperature
is obtained on cooling from the melt. The two forms
differ markedly in their behavior when irradiated by y
rays (Rao, 1960). The principal products obtained from
the irradiated crystals are acetonitrile (CH;CN) and
water. The yields per 100 eV of deposited energy are
considerably greater for the trigonal form than for the
orthorhombic. Since one would presume that the mol-
ecular structure is the same in both compounds, it must
be details of the intermolecular interaction which are
responsible for the differences in the radiation chemi-
stry. In particular, one might expect the hydrogen bond-



