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Abstract 

The elastic modulus E of diamond is often set equal to 1/sla = 1050 GPa, which assumes that it does not vary much with orientation, 
and many authors use v = 0.2 as an appropriate average value of Poisson's ratio, which is incorrect. In fact, since the elastic constants 
of diamond are known with great accuracy, it is a straightforward matter to derive exact numbers for E and v that take into 
consideration the stress direction and the intrinsic anisotropy as well as the crystalline configuration. For diamonds synthesized by 
chemical vapor deposition (CVD) we find that in a first approximation the Hershey-Kr6ner-Eshelby averaging procedure yields 
acceptable numbers, E = 1143 GPa and ~ = 0.0691, which are quite compatible with available experimental evidence. Our measure- 
ments of the biaxial modulus E' = E/(I - v) make use of the bulge test method to characterize the elastic behavior of both microwave- 
power- and hot-filament-assisted CVD diamond films. High quality deposits yield E' ~ 1180 and 1220 GPa for randomly orientated 
and (ll0)-textured deposits respectively; these results confirm that state-of-the-art deposits exhibit elastic properties that are in 
accord with the measured stiffnesses of natural single-crystal diamond. The residual hydrogen content strongly impacts the elastic 
behavior and appears to be responsible for the degradation of the modulus observed in this and previous work. 

1. Introduction 

The successful synthesis of  d i amond  by means of  
chemical vapor  deposit ion (CVD) techniques has 
stimulated enormous  interest in potential  applications 
of d i amond  for a variety of  engineering tasks. M a n y  
of  these applications involve evaluating thermally or 
mechanically induced stresses, which requires a proper  
characterizat ion of  the elastic properties, i.e. Young's  
modulus  E and Poisson's  ratio v. In this regard it is 
commonly  assumed that the modulus  of  d i amond  can 
be set equal to 1050 GPa ,  since "E does not  vary greatly 
with orientat ion" [1]; furthermore,  it has been stated 
[ l ]  and generally accepted that  "v varies between 0.1 
and 0.29 (~ ~ 0.2)", which is incorrect. In fact, since the 
elastic constants  of  d i amond  are known  with great 
accuracy, it is a s traightforward mat ter  to describe the 
elastic behavior,  which includes assessing the directional- 
ity of E and v in single crystals as well as obtaining the 
elastic coefficients of C V D  deposits that  may  exhibit 
crystallographic texture. In this paper  we will address 
this problem by first providing numerical results for the 
orientat ional  dependence of  the elastic moduli  and the 
Poisson ratios (Section 2), keeping in mind that  there 
are two ratios to be considered in dealing with 
anisotropic cubic media. These results will assist us in 
applying the theory of elasticity to textured C V D  
d iamond  films (Section 3) and thus in interpreting 

available experimental data. Our  own measurements  
make  use of  the bulge test method (Section 4) for 
obtaining the biaxial elastic modulus  of both  microwave- 
power- and hot-filament-assisted C V D  d iamond  films. 
The results are summarized in Section 5 and evaluated 
in the light of  theoretical considerations as well as 
evidence concerning the impact  of  residual hydrogen 
on the modulus  of C V D  diamond.  Finally, the conclu- 
sions are stated in Section 6. 

2. Single-crystal diamond 

In terms of the anisot ropy parameter  S =  
($11--S12)--S44/2 , the condit ion for elastic isotropy 
in cubic crystals is S = 0  [2]. Since the compli- 
ances of  d iamond  as listed in Table 1 yield 
S = 0.1835 + 0.0020 T P a - 1 ,  it follows that  single-crystal 
d i amond  is elastically anisotropic, which implies that 
directionality equat ions must  be used to describe 
Young's  modulus  as well as the two Poisson ratios. In 
this connect ion we remind the reader that, given a 
crystallographic plane and a stress within that  plane 
(longitudinal stress), o r thogonal  strains may  vary 
depending on the direction; the definition of  Poisson's  
ratio must  therefore be extended in the sense that v 
refers to the longitudinally induced or thogonal  elonga- 
tion whereas v' refers to the transversely induced 

0925-9635/93/$6.00 © 1993 - -  Elsevier Sequoia. All rights reserved 



C. A. Klein, G. F. Cardinale Young's modulus and Poisson's ratio qf  CVD diamond 919 

TABLE 1. Elastic stiffnesses (%) and elastic compliances (s~j) of single-crystal diamond. The tabulated % values reflect the results of the most 
recent measurements. The compliances are as derived from the stiffnesses by means of standard relations [2] 

Measurement CI I C12 C44 SI 1 512 g44 
technique {GPa) (GPa) (GPa) (TPa 1) (TPa ~) {TPa I I 

Ultrasonic pulse ~ 1079 _+ 5 124 ± 5 578 ± 2 0.9493 -0.0978 1.73{/1 
Brillouin scattering ~' 1076.4 _+ 0.2 125.2 + 2.3 577.4 + 1.4 0.9524 0.0991 1.7331 

"H. McSkimin and P. Andreatch, J. Appl. Phys., 43 (I9721 3944: bM. Grimsditch and A. Ramdas, Phys. Ret,. B, II [19751 3139. 

elongation [3]. A convenient way of visualizing the 
directionality then consists of focusing attention on a 
specific crystallographic plane and examining the varia- 
tions in E, v and v' in that plane. By choosing a 
proper set of "reference" planes, the directionality thus 
can be assessed for all relevant orientations. In that 
context, for crystallographic planes identified by Miller 
indices (hkl), Turley and Sines [4] derive the equations 

$44 
E ( h k l  ) : S12 -}- ~ "Jc 8 ~ 2 2  1 

V(hk l  ) = (S12 q- S ~ 2 2 3 ) E { h k l  ) 

U'(hkl  ) = - -  (S12 -}- SQl2)E(hgl)  

tl) 

(2) 

(3) 

where the f2~j are functions of (a) the two Eulerian 
angles of the plane under consideration and (b) the 
angle 0 that specifies a direction in the plane. These 
directionality functions reduce to expressions that are 
made up of sinusoidal terms involving multiples of the 
angle of rotation; specifically, 

~c~12 ~-" fl q- t~ sin (20) + c cos(20) (4) 

3(1 - a) 
(222 - b sin (20) - c cos (20) 

4 

- d sin (40) - e cos (40) (5) 

1 --  a 
f223 - + d sin (40) + e cos (40) (6) 

4 

with coefficients a, b, c, d and e that depend on the two 
Eulerian angles. For our purposes the highest symmetry 
planes, i.e. (100), (110) and (l 1 l), are of special interest 
because of the nature of the texture in CVD diamond 
films. For such planes the coefficients are as given in 
Table 2 and the angle 0 must be measured from one of 
the principal axes. 

Table 2 immediately tells us that in the [ l l l l  
orientation the directionality functions are independent 
of the angle 0, which corroborates the well-known fact 
[5] that the elastic properties of cubic crystals are 
always isotropic in the (111) plane. For single-crystal 
diamond the Turley Sines equations yield EI1111= 
1164 GPa, V~ll~) = 0.0791 and Vla~x ) = 0.0435; note that 
the Poisson ratios are much smaller than for Ge or Si 
[6], which Fukumuto [7] attributes to the character of 

TABLE 2. Numerical coefficients for the directionality functions f2~/ 
of highest symmetry cubic crystallographic planes [4] 

(hkl) a h c d e 

100) 0 0 0 0 ~- 
3 I I O) 14 0 - 14 0 1¢, 

l l l l  ~ 0 o o o 

the carbon atom and in particular to the lack of core p 
states. In the (100) and (1101 planes the elastic response 
of diamond is much more complex, as illustrated in 
Fig. 1, which depicts how the elastic properties vary 
when the stress direction rotates. 

Young's modulus exhibits relatively little anisotropy, 
since the peak value, which always occurs along 
the [ l l l ]  direction if the condition S > 0  holds [2], 
does not exceed 1210GPa. The generally accepted 
E =  1050GPa value only holds for principal stresses 
and represents a minimum value. The two ratios v and 
v' differ substantially except for principal stress directions 
and show much more angular dependence than the 
moduli. Poisson's ratio has a maximum value of 0.115 
in the [011]-[100] geometry and a minimum value of 
0.00786 in the [011] [110] configuration, thus emphasiz- 
ing the highly anisotropic elastic behavior of diamond 
in accord with the results of recent, first-principles 
pseudopotential calculations [7]. The biaxial modulus 
E/(1 - v ) ,  which relates longitudinal stresses and strains 
and frequently emerges in situations of practical interest 
[5], exhibits some angular dependence in the (110) plane 
but, as expected, turns out to be isotropic in the 
{100} orientation. In fact, the analytical expression for 
[ E / ( 1 - v ) ] ( l o o  ) reduces to 1/(811+, ' ;121, which yields 
1173 GPa, i.e. less than the 1264 GPa obtained in the 
fully isotropic (111) plane. 

3. P o l y c r y s t a l l i n e  d i a m o n d  e l a s t i c i t y  

Polycrystalline CVD diamonds can be expected to 
exhibit elastic properties that reflect not only the 
intrinsic diamond elasticity but also the crystalline 
orientation of the deposit. In this connection it is 
important to remember that preferred orientation may 
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(a) Diamond (100) Plane (b) Diamond (11 O) Plane 
scale: 1TPa [c ,1] scale: 1TPa [o 1 ]  scale: 1TPa {o01] scale: 1TPa [0!1] 
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Fig. 1. Rotational dependence of the elastic modulus, the biaxial modulus and the two Poisson ratios of single-crystal diamond: (a) applied 
stresses within (100) planes; (b) applied stresses within (110) planes. Poisson's ratio v refers to a longitudinal orthogonal elongation, whereas v' 
refers to a transverse orthogonal elongation. 

occur as the deposition progresses; in effect, by con- 
trolling the deposition conditions, highly oriented struc- 
tures can be prepared with texture axes that are parallel 
to the [100], [-110] or 1-111] directions [8]. Within the 
deposition plane, however, the "distributions" obey 
rotational symmetry, which means elastic isotropy and 
therefore average values for the elastic moduli and the 
Poisson ratios (see Table 3) that can be derived by 
numerical integration on assuming that the grain 
boundaries do not impact the elastic behavior of the 
aggregate. In this context it is also of interest to obtain 
accurate numbers for Young's modulus and Poisson's 
ratio of a randomly oriented, densely packed aggregate 
of diamond grains. This can be done simply by 
expressing E and ~7 in terms of the bulk modulus B and 

TABLE 3. Calculated values of Young's modulus (/~), Poisson's ratios 
(,7,~ 7) and the biaxial modulus for fiber-textured CVD diamond 
deposits and for random aggregates of diamond crystallites 

Texture /~ ~7 ~7 E/(1 - v) 
(GPa) (GPa) 

(111) 1164 0.0791 0.0435 1264 
(I10) 1151 0.0730 0.0592 1242 
(100) 1106 0.0569 0.1089 1173 
Random a 1143 0.0691 0.0691 1228 

"Based on the Hershey-Kr6ner-Eshelby averaging method. 

the shear modulus G I-9] as 

9BG 
/~ = (7) 

G+3B 

3B/2 - G 
- - -  (8) 

G+3B 

since B=(c11+2c12)/3 is an invariant and G is a 
solution of the Hershey-Kr6ner-Eshelby equation 1-10] 

8G 3 + (9B + 4C')G 2 - 3C(B + 4C' )G-  6BCC' = 0 (9) 

where C and C' are the two Zener elastic constants 
(C = C44 and C ' =  (cll - C12)/2). On inserting the elastic 
stiffnesses ci~ of Table l, eqn. (9) yields G = 535 GPa; in 
conjunction with a bulk modulus B of 442 GPa, this 
leads to the results listed in Table 3, row 4, and the 
reader may verify that these numbers correlate very 
well with our evaluation of average elastic properties 
for the main symmetry planes of diamond. 

4. Bulge test method 

Relevant concepts and instrumentation for obtaining 
the modulus of diamond films by means of bulge testing 
are described in a recent paper by Cardinale and 
Tustison [ l l ] .  A circular membrane of radius ro and 
thickness to is subjected to a differential pressure Ap 



C. A. Klein, G. F. Cardinole / Young's modulus and Poisson's ratio of CVD diamond 921 

50 

E 4C 
::L 

Z 
o_ 
I-- 
o 30 
W 
-J 
U. 
Ul 

U,I 
z 20  
< 
er 

m 

I I I - 

(a) 

CVD DIAMOND SPECIMEN RDD-197 
m e m b r a n e  radius: 9.53 mm 
m e m b r a n e  th ickness:  16 tim 

[ ]  
[ ]  

[ ]  
[ ]  

[ ]  
[ ]  

[ ]  
[ ]  

[ ]  

I 

[ ]  
[ ]  

0 I I I [ I 

[ ]  l 4O 

~ 3o~ 

2o! 

101 

01 

I I I 

(b) 

CVD DIAMOND SPECIMEN RDD-197 
[ ]  der ived  f rom e x p e r i m e n t  

l inear  l e a s t - s q u a r e s  fit 

0 200 400 600 800 1000 1200 0 10 20 30 40 50 
DIFFERENTIAL PRESSURE (Pa) STRAIN (ppm) 

Fig. 2. An illustration of the bulge test method for obtaining the biaxial modulus E' of diamond films: (a) measured peak deflections as a 
function of the differential pressure; (b) stress-strain plot derived from the deflections upon using eqns. (10) and (11) with fl set equal to 2.46; 
note that the slope yields E'= 1217 _+ 18 GPa, in good agreement with the predicted value for randomly orientated diamond aggregates (see 
Table 3). 

which induces a deflection of height h on the center- 
line. Since the peak tensile stress amounts to [12] 

apr~o 
a = - -  (10) 

4toh 

if the condition h << ro holds, and since the strain obeys 
the relation [13] 

/~h 2 
~ = ~ -  (11) 

Po 

where fl represents a numerical factor, it follows that 
the biaxial modulus can be derived from a stress-strain 
plot on using the differential pressure as a variable. 

For spherical deflections the factor fl is known to be 
2 

equal to ~. In our experiments, however, the shape of 
the deflected films was found to be non-spherical, which 
required "calibrating the instrument" in the sense that 
fl had to be determined empirically by performing a 
sequence of bulge tests on reference materials (silicon 
and glass) in appropriate geometries. By comparing 
measured and known values of the biaxial modulus, it 
was established that fl = 2.46 should be suitable for the 
range of deflections of interest here. 

Figure 2 illustrates the procedure in the light of data 
collected on a typical diamond film membrane 
(ro = 9.53 mm, to = t6 p,m) obtained by the microwave- 
power-assisted deposition process. In Fig. 2(a) are the 
peak deflections recorded for differential pressures 
ranging up to 1.12kPa; in Fig. 2(b) the stresses are 

plotted as a function of strain, based on the results of 
evaluating eqns. (10) and (11). A least-squares fit to the 
linear portion then yields 

a =  - 10.27 + 1.217~ (12) 

where a is in megapascals and e is in parts per million, 
which indicates that this film has a residual compressive 
stress of 10.3 MPa  and a biaxial elastic modulus of 
approximately 1220 GPa.  

5. R e s u l t s  and d i scuss ion  

Our results are summarized in Fig. 3. With micro- 
wave-power-assisted CVD diamond, which exhibits no 
or little texture, we find that for high quality deposits 
with hydrogen contents of less than 0.3% the biaxial 
modulus E' = 1177 _+ 98 G P a  is in reasonable agreement 
with the predicted value for randomly orientated 
aggregates (see Table 3); specimens of higher hydrogen 
content have significantly lower moduli, in accord with 
observations made on hydrogenated hard carbon films 
[14]. Hot-filament-assisted CVD diamond exhibits a 
high degree of (110)-preferred orientation, which implies 
a biaxial modulus of about 1240 GPa,  in good agreement 
with the results of measurements that were carried out 
on material deposited in our B reactor (see Fig. 3); 
A-reactor material, which is of lower quality as ascer- 
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Fig. 3. Summary of biaxial modulus test results. Microwave-power-assisted CVD diamond films have no texture, but the modulus is dependent 
on the residual hydrogen content. Hot-filament-deposited CVD diamond films exhibit some strong (110) texture; A-reactor deposits are of lower 
quality than B-reactor material as evidenced in terms of hydrogen and/or silicon carbide content. 

tained by Fourier transform IR spectroscopy, again 
yields moduli that are below the expected value. 

Similar but slightly higher numbers have also been 
reported by Windischman e t a l .  [-15], who made use of 
the bulge test technique to measure the biaxial modulus 
of a broad array of CVD diamond specimens and 
observed a strong dependence of E' on the methane 
concentration during deposition. More recently, Gray 
[16] reported on the results of ultrasound velocity 
measurements that were performed on "optical grade" 
CVD diamond and concluded that Young's modulus 
and Poisson's ratio should be close to 1180 GPa  and 
0.148 respectively. Since the elastic constants of CVD 
diamond are known to be similar to those of single- 
crystal diamond [17], such large Poisson ratios are 
incompatible with the results of our analysis (see Fig. 1); 
in this connection we note that Gray's bulk modulus 
( B = 5 5 8 +  12GP a  vs. 4 4 2 G P a  as derived from the 
elastic constants) cannot be accurate, since B is an 
invariant and therefore independent of any preferred 
orientation (see Section 3). 

With regard to direct measurements of the elastic 
modulus of single-crystal diamond, the recent ultralow 
indentation experiments performed by Cooper and Beetz 
[18] on (100), (110) and (111) faces of type IIa monoliths 
probably provide the best available data, but excessive 
scatter precludes a meaningful assessment of the aniso- 

tropy; nevertheless, the data point to an average modulus 
of about 1150 GPa, in excellent agreement with the 
predicted value of 1143 GPa, especially since the slope 
of the unloading curve generated through indentation 
yields an effective modulus E * =  El(1 - v  2) rather than 
a true modulus [-5]. McHargue's [19] indentation testing 
of a IIa diamond gave E* ~ 1280 GPa, which is larger 
than expected though not surprising considering that 
at higher loads the indenter may cause some densifica- 
tion and thus enhance the effective elastic modulus. 
Poisson's ratio has not yet been measured on single- 
crystal diamond, but as early as 1978 it was known 
that ultrasound propagation experiments yield 
v = 0.0718 for sintered polycrystalline diamond compacts 
[20], which we believe to be a "good number" even 
though it was not given proper consideration in 
subsequent work. 

6. Conclusions 

We have shown that setting E equal to 1050GPa 
and v equal to 0.2 is inappropriate for describing the 
elastic properties of monocrystalline as well as poly- 
crystalline diamond. Single-crystal diamond exhibits 
isotropic properties in the (111) plane ( E =  1164 GPa, 
v = 0.0791), but directionality equations must be used 
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for characterizing Young's modulus and Poisson's ratio 
when the stresses are not in that plane. Textured CVD 
diamond films may have significantly different elastic 
coefficients depending on the nature of the preferred 
orientation (see Table 3); presently available experimen- 
tal data are not precise enough to demonstrate unambig- 
uously the elastic anisotropy, but they confirm that the 
elastic constants of high quality CVD diamonds should 
be the same as those of natural type lla diamonds. 
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