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Abstract

The elastic modulus E of diamond is often set equal to 1/s;, = 1050 GPa, which assumes that it does not vary much with orientation,
and many authors use v = 0.2 as an appropriate average value of Poisson’s ratio, which is incorrect. In fact, since the elastic constants
of diamond are known with great accuracy, it is a straightforward matter to derive exact numbers for E and v that take into
consideration the stress direction and the intrinsic anisotropy as well as the crystalline configuration. For diamonds synthesized by
chemical vapor deposition (CVD) we find that in a first approximation the Hershey—Krdner—Eshelby averaging procedure yields
acceptable numbers, E = 1143 GPa and ¥ = 0.0691, which are quite compatible with available experimental evidence. Our measure-
ments of the biaxial modulus E’ = E/(1 — v) make use of the bulge test method to characterize the elastic behavior of both microwave-
power- and hot-filament-assisted CVD diamond films. High quality deposits yield E' ~ 1180 and 1220 GPa for randomly orientated
and (110)-textured deposits respectively; these results confirm that state-of-the-art deposits exhibit elastic properties that are in
accord with the measured stiffnesses of natural single-crystal diamond. The residual hydrogen content strongly impacts the elastic
behavior and appears to be responsible for the degradation of the modulus observed in this and previous work.

1. Introduction

The successful synthesis of diamond by means of
chemical vapor deposition (CVD) techniques has
stimulated enormous interest in potential applications
of diamond for a variety of engineering tasks. Many
of these applications involve evaluating thermally or
mechanically induced stresses, which requires a proper
characterization of the elastic properties, i.e. Young’s
modulus E and Poisson’s ratio v. In this regard it is
commonly assumed that the modulus of diamond can
be set equal to 1050 GPa, since “E does not vary greatly
with orientation” [1]; furthermore, it has been stated
[1] and generally accepted that “v varies between 0.1
and 0.29 (v ~ 0.2)”, which is incorrect. In fact, since the
elastic constants of diamond are known with great
accuracy, it is a straightforward matter to describe the
elastic behavior, which includes assessing the directional-
ity of E and v in single crystals as well as obtaining the
elastic coefficients of CVD deposits that may exhibit
crystallographic texture. In this paper we will address
this problem by first providing numerical resuits for the
orientational dependence of the elastic moduli and the
Poisson ratios (Section 2), keeping in mind that there
are two ratios to be considered in dealing with
anisotropic cubic media. These results will assist us in
applying the theory of elasticity to textured CVD
diamond films (Section 3) and thus in interpreting
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available experimental data. Our own measurements
make use of the bulge test method (Section 4) for
obtaining the biaxial elastic modulus of both microwave-
power- and hot-filament-assisted CVD diamond films.
The results are summarized in Section 5 and evaluated
in the light of theoretical considerations as well as
evidence concerning the impact of residual hydrogen
on the modulus of CVD diamond. Finally, the conclu-
sions are stated in Section 6.

2. Single-crystal diamond

In terms of the anisotropy parameter S=
(511 — $12) — S44/2, the condition for elastic isotropy
in cubic crystals is S=0 [2]. Since the compli-
ances of diamond as listed in Table 1 yield
S =0.183540.0020 TPa ™", it follows that single-crystal
diamond is elastically anisotropic, which implies that
directionality equations must be used to describe
Young’s modulus as well as the two Poisson ratios. In
this connection we remind the reader that, given a
crystallographic plane and a stress within that plane
(longitudinal stress), orthogonal strains may vary
depending on the direction; the definition of Poisson’s
ratio must therefore be extended in the sense that v
refers to the longitudinally induced orthogonal elonga-
tion whereas v refers to the transversely induced
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TABLE 1. Elastic stiffnesses (¢;;) and elastic compliances (s;;) of single-crystal diamond. The tabulated c;; values reflect the results of the most
recent measurements. The compliances are as derived from the stiffnesses by means of standard relations [2]

Measurement Cqy C1s [ Siy S12 Saa
technique (GPa) (GPa) (GPa) (TPa™ 1) (TPa™ ) (TPa™ ")
Ultrasonic pulse® 1079 £ S 124 +£5 578 +2 0.9493 —(.0978 1.7301
Brillouin scattering® 1076.4+0.2 1252 +23 5774+ 14 0.9524 —0.0991 1.7331

“H. McSkimin and P. Andreatch, J. Appl. Phys., 43 (1972) 3944: "M. Grimsditch and A. Ramdas, Phys. Rer. B, 11 (1975) 3139,

elongation [3]. A convenient way of visualizing the
directionality then consists of focusing attention on a
specific crystallographic plane and examining the varia-
tions in E, v and v in that plane. By choosing a
proper set of “reference” planes, the directionality thus
can be assessed for all relevant orientations. In that
context, for crystallographic planes identified by Miller
indices (hkl), Turley and Sines [4] derive the equations

. N _
h(hkl)zslz+?+sgzz ! (1)
Van = — (812 + 8Q53) Euy (2)
Vi = — (812 + SQ5)E iy (3)

where the Q;; are functions of (a) the two Eulerian
angles of the plane under consideration and (b) the
angle 0 that specifies a direction in the plane. These
directionality functions reduce to expressions that are
made up of sinusoidal terms involving multiples of the
angle of rotation; specifically,

Q,,=a+ bsin(20)+ ¢ cos(20) 4)
Q,, = 3“4_1) — b sin(20) — ¢ cos (20)

— d sin (48) — e cos (46) (5)
Q,y= 1%“ + d sin (40) + e cos (40) (6)

with coeflicients q, b, ¢, d and ¢ that depend on the two
Eulerian angles. For our purposes the highest symmetry
planes, ie. (100), (110) and (111), are of special interest
because of the nature of the texture in CVD diamond
films. For such planes the coefficients are as given in
Table 2 and the angle 6 must be measured from one of
the principal axes.

Table 2 immediately tells us that in the {111}
orientation the directionality functions are independent
of the angle 6, which corroborates the well-known fact
[5] that the clastic properties of cubic crystals are
always isotropic in the (111) plane. For single-crystal
diamond the Turley-Sines equations yield E;,;, =
1164 GPa, v(,,=0.0791 and v{;,,,=0.0435; note that
the Poisson ratios are much smaller than for Ge or Si
[6], which Fukumuto [7] attributes to the character of

TABLE 2. Numerical coeflicients for the directionality functions Q;;
of highest symmetry cubic crystallographic planes [4]

(hkD) a b ¢ d ¢
(100) 0 0 0 0 -3
1 3
(110) 3 0 -3 0 =
(1 : 0 0 0 0

the carbon atom and in particular to the lack of core p
states. In the (100) and (110) planes the elastic response
of diamond is much more complex, as illustrated in
Fig. 1, which depicts how the elastic properties vary
when the stress direction rotates.

Young’s modulus exhibits relatively little anisotropy,
since the peak value, which always occurs along
the [111] direction if the condition S >0 holds [2],
does not exceed 1210 GPa. The generally accepted
E =1050 GPa value only holds for principal stresses
and represents a minimum value. The two ratios v and
v differ substantially except for principal stress directions
and show much more angular dependence than the
moduli. Poisson’s ratio has a maximum value of 0.115
in the [011]~[100] geometry and a minimum value of
0.00786 in the [011]-[110] configuration, thus emphasiz-
ing the highly anisotropic elastic behavior of diamond
in accord with the results of recent, first-principles
pseudopotential calculations [7]. The biaxial modulus
E/(1 —v), which relates longitudinal stresses and strains
and frequently emerges in situations of practical interest
[5], exhibits some angular dependence in the (110) plane
but, as expected, turns out to be isotropic in the
{100} orientation. In fact, the analytical expression for
[E/(1 —v)]i100) reduces to 1/(s;; +s;2), which yields
1173 GPa, i.e. less than the 1264 GPa obtained in the
fully isotropic (111) plane.

3. Polycrystalline diamond elasticity

Polycrystalline CVD diamonds can be expected to
exhibit elastic properties that reflect not only the
intrinsic diamond elasticity but also the crystalline
orientation of the deposit. In this connection it is
important to remember that preferred orientation may
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Fig. 1. Rotational dependence of the elastic modulus, the biaxial modulus and the two Poisson ratios of single-crystal diamond: (a) applied

stresses within (100) planes; (b) applied stresses within (110) planes. Poisson’s ratio v refers to a longitudinal orthogonal elongation, whereas v

refers to a transverse orthogonal elongation.

occur as the deposition progresses; in effect, by con-
trolling the deposition conditions, highly oriented struc-
tures can be prepared with texture axes that are parallel
to the [100], [110] or [111] directions [8]. Within the
deposition plane, however, the “distributions” obey
rotational symmetry, which means elastic isotropy and
therefore average values for the elastic moduli and the
Poisson ratios (see Table 3) that can be derived by
numerical integration on assuming that the grain
boundaries do not impact the elastic behavior of the
aggregate, In this context it is also of interest to obtain
accurate numbers for Young's modulus and Poisson’s
ratio of a randomly oriented, densely packed aggregate
of diamond grains. This can be done simply by
expressing E and v in terms of the bulk modulus B and

TABLE 3. Calculated values of Young’s modulus (E), Poisson’s ratios
v, v) and the biaxial modulus for fiber-textured CVD diamond
deposits and for random aggregates of diamond crystallites

Texture E v v E/(1—-v)
(GPa) (GPa)
(111 1164 0.0791 0.0435 1264
(110) 1151 0.0730 0.0592 1242
(]00) 1106 0.0569 0.1089 1173
Random® 1143 0.0691 0.0691 1228

2Based on the Hershey—Kroner—Eshelby averaging method.

’

the shear modulus G [9] as

_  9BG
E_G+BB @
_ 3B2—-G

" G+3B @®)

since B=(c;; +2¢;,)/3 i1s an invariant and G is a
solution of the Hershey—Kréner—Eshelby equation [10]

8G*®+(9B+4C')G1—3C(B+4C')G—6BCC' =0  (9)

where C and C’ are the two Zener elastic constants
(C=cy4q and C’ =(c,; — ¢12)/2). On inserting the elastic
stiffnesses ¢;; of Table 1, eqn. (9) yields G = 535 GPa; in
conjunction with a bulk modulus B of 442 GPa, this
leads to the results listed in Table 3, row 4, and the
reader may verify that these numbers correlate very
well with our evaluation of average elastic properties
for the main symmetry planes of diamond.

4. Bulge test method

Relevant concepts and instrumentation for obtaining
the modulus of diamond films by means of bulge testing
are described in a recent paper by Cardinale and
Tustison [11]. A circular membrane of radius r, and
thickness ¢, is subjected to a differential pressure Ap
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Fig. 2. An illustration of the bulge test method for obtaining the biaxial modulus E’ of diamond films: (a) measured peak deflections as a
function of the differential pressure; (b) stress—strain plot derived from the deflections upon using eqns. (10) and (11) with f§ set equal to 2.46;
note that the slope yields E'= 1217 4 18 GPa, in good agreement with the predicted value for randomly orientated diamond aggregates (see

Table 3).

which induces a deflection of height h on the center-
line. Since the peak tensile stress amounts to [12]

2

Apr,

J:Ito—h (]0)

if the condition h <« r, holds, and since the strain obeys
the relation [13]

pr*

&=
2

(11)
where f represents a numerical factor, it follows that
the biaxial modulus can be derived from a stress—strain
plot on using the differential pressure as a variable.

For spherical deflections the factor § is known to be
equal to % In our experiments, however, the shape of
the deflected films was found to be non-spherical, which
required “calibrating the instrument” in the sense that
f had to be determined empirically by performing a
sequence of bulge tests on reference materials (silicon
and glass) in appropriate geometries. By comparing
measured and known values of the biaxial modulus, it
was established that § = 2.46 should be suitable for the
range of deflections of interest here.

Figure 2 illustrates the procedure in the light of data
collected on a typical diamond film membrane
(r, =9.53 mm, t,= 16 um) obtained by the microwave-
power-assisted deposition process. In Fig. 2(a) are the
peak deflections recorded for differential pressures
ranging up to 1.12kPa; in Fig. 2(b) the stresses are

plotted as a function of strain, based on the results of
evaluating eqns. (10) and (11). A least-squares fit to the
linear portion then yields

o=—1027+1.217¢ (12)
where ¢ is in megapascals and ¢ is in parts per million,
which indicates that this film has a residual compressive
stress of 10.3 MPa and a biaxial elastic modulus of
approximately 1220 GPa.

5. Results and discussion

Our results are summarized in Fig. 3. With micro-
wave-power-assisted CVD diamond, which exhibits no
or little texture, we find that for high quality deposits
with hydrogen contents of less than 0.3% the biaxial
modulus E' = 1177 + 98 GPa is in reasonable agreement
with the predicted value for randomly orientated
aggregates (see Table 3); specimens of higher hydrogen
content have significantly lower moduli, in accord with
observations made on hydrogenated hard carbon films
[14]. Hot-filament-assisted CVD diamond exhibits a
high degree of (110)-preferred orientation, which implies
a biaxial modulus of about 1240 GPa, in good agreement
with the results of measurements that were carried out
on material deposited in our B reactor (see Fig. 3);
A-reactor material, which is of lower quality as ascer-
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Fig. 3. Summary of biaxial modulus test results. Microwave-power-assisted CVD diamond films have no texture, but the modulus is dependent
on the residual hydrogen content. Hot-filament-deposited CVD diamond films exhibit some strong (110) texture; A-reactor deposits are of lower
quality than B-reactor material as evidenced in terms of hydrogen and/or silicon carbide content.

tained by Fourier transform IR spectroscopy, again
yields moduli that are below the expected value.

Similar but slightly higher numbers have also been
reported by Windischman et al. [15], who made use of
the bulge test technique to measure the biaxial modulus
of a broad array of CVD diamond specimens and
observed a strong dependence of E' on the methane
concentration during deposition. More recently, Gray
[16] reported on the results of ultrasound velocity
measurements that were performed on “optical grade”
CVD diamond and concluded that Young’s modulus
and Poisson’s ratio should be close to 1180 GPa and
0.148 respectively. Since the elastic constants of CVD
diamond are known to be similar to those of single-
crystal diamond [17], such large Poisson ratios are
incompatible with the results of our analysis (see Fig. 1);
in this connection we note that Gray’s bulk modulus
(B=558 +12GPa vs. 442 GPa as derived from the
elastic constants) cannot be accurate, since B is an
invariant and therefore independent of any preferred
orientation (see Section 3).

With regard to direct measurements of the elastic
modulus of single-crystal diamond, the recent ultralow
indentation experiments performed by Cooper and Beetz
[18] on (100), (110) and (111) faces of type IIa monoliths
probably provide the best available data, but excessive
scatter precludes a meaningful assessment of the aniso-

tropy; nevertheless, the data point to an average modulus
of about 1150 GPa, in excellent agreement with the
predicted value of 1143 GPa, especially since the slope
of the unloading curve generated through indentation
yields an effective modulus E* = E/(1 — v?) rather than
a true modulus [5]. McHargue’s [19] indentation testing
of a Ila diamond gave E* ~ 1280 GPa, which is larger
than expected though not surprising considering that
at higher loads the indenter may cause some densifica-
tion and thus enhance the effective elastic modulus.
Poisson’s ratio has not yet been measured on single-
crystal diamond, but as early as 1978 it was known
that ultrasound propagation experiments yield
v =0.0718 for sintered polycrystalline diamond compacts
[20], which we believe to be a “good number” even
though it was not given proper consideration in
subsequent work.

6. Conclusions

We have shown that setting E equal to 1050 GPa
and v equal to 0.2 is inappropriate for describing the
elastic properties of monocrystalline as well as poly-
crystalline diamond. Single-crystal diamond exhibits
isotropic properties in the (111) plane (E = 1164 GPa,
v=10.0791), but directionality equations must be used
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for characterizing Young’s modulus and Poisson’s ratio
when the stresses are not in that plane. Textured CVD
diamond films may have significantly different elastic
coefficients depending on the nature of the preferred
orientation (see Table 3); presently available experimen-
tal data are not precise enough to demonstrate unambig-
uously the clastic anisotropy, but they confirm that the
elastic constants of high quality CVD diamonds should
be the same as those of natural type Ila diamonds.
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