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ABSTRACT
The multiple trapping model may be applicable to a wide variety of time-
dependent pre in semiconductors. However, previous simple treatments

developed to explain power-law current transients sssumed trapping in an
exponential density of states with a constant trapping *cross-section’. We
present a more detailed analysis of multiple trapping by examining the trapping
and emission rates from traps, as well as their occupation. This shift of emphasis,
while retaining and enhancing a simple physical picture of the process, allows us
to treat several new situations, We give simple resulta for the effect of repetitive
pulses. The effect of variations in trapping * cross-section ® among traps is also
found to be fairly simple. We classify all possible current transients into five
basic, types, for which different sets of states dominate the dynamical behaviour,
and derive the form of the current transient for each type.

§ 1. INTRODUCTION

The multiple trapping (MT) problem was originally formulated to deal
with the highly dispersive current transients found in time-of-flight measure-
ments on amorphous semiconductors (Schmidlin 1977, Noolandi 1977). More
recently, the model has been applied in a simplified form to other transient
phenomena in amorphous materials (Orenstein, Kastner and Vaninov 1982,
Vardeny, Strait, Pfost, Tauc and Abeles 1982) and even to luminescence in
the band tails of a crystalline semiconductor (Gtbel and Graudzus 1982). A
rigorous analysis of MT was presented in the pioneering papers of Schmidlin
and of Noolandi. Unfortunately, in these papers the generality and rigour
was achieved at the cost of a high degree of formality. Specifically, one
must perform an inverse Laplace transform in order to interpret experimental
results. In contrast, more recent treatments (Tiedje and Rose 1981, Orenstein
and Kastner 1981 a, b ; together referred to hereafter as the TROK model)
have provided a more simple, physical picture, which leads to an intuitive
understanding of the process. It is not clear from the latter discussions,
however, how general the simple picture is. In view of its widening scope of
application, it appears appropriate to try to provide a rigorous method of
generalizing the TROK model.

The purpose of this paper is to show how some of the assumptions made
in the TROK model may be relaxed without sacrificing the physical intuition
that is possible with a simple argument. Specifically, we wish to treat a
non-exponential density of states (DOS), and to allow more freedom in the
trap parameters. In order to accomplish these goals, we look at the MT
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process in a slightly different light, and try to clarify the nature of the assump-
tions being made. We cannot anticipate all possibilities, but it is hoped that
the approach outlined here will allow a better appreciation of the important
issues in generalizing the MT picture to other systems and other phenomena.
As applications of our more general approach, we discuss in detail two
specific situations which have not been treated previously. The first is a
generalization of the formalism to include variations of ° cross-section’ for
the traps. We show that the major effect of such variations is that each
state participates in MT only in proportion to its ¢ cross-section ’, so that the
effective DOS measured in an experiment is really the product of the true
DOS and the ‘cross-section’. The other application discussed is that of
MT at temperatures higher than the energy spread of an exponential DOS.

§ 2. THE MULTIPLE TRAPPING PROBLEM

The MT problem addresses the dynamics of carriers in transport states
interacting with a distribution of traps. The essence of MT is the neglect of
transitions directly between traps (the hopping problem). Each trap thus
interacts directly only with the mobile carriers. We limit our attention to
carriers in a single band (for concreteness, the conduction band) and assume
that all the mobile carriers are in equilibrium with one another, so that they
represent a single reservoir of carriers, occupying an effective number of
states N,. The zero of energy is taken to be the mobility edge, so the thermal
energy E of a trap is negative.

Each of the traps, temporarily labelled by i, can be completely charac-
terized, for our purposes, by two coefficients; the release rate v; (in s-?),
and the trapping coefficient b; (in em?®s—!). These coefficients are defined
by the equation for the occupation number f; of trap 1,

d
b im0 (1)

Examining this equation for equilibrium occupancies shows that
vy=b,N, exp (— |E|[kT). (2)

This equation states the result of detailed balance that the ratio between the
trapping and release coefficients is determined solely by the energy of the
trap, and is valid even when the trapping coefficient is not the product of
a mean velocity and a cross-section.

However, the individual magnitudes of the trapping and release rates are
not determined by this argument. Before discussing the way in which these
rates affect the results of MT, we discuss these coefficients in a more physical
way. Their magnitudes involve some very complicated and interesting
physics which is not well understood, even in crystals. The energies typical
of MT are several tenths of an electron-volt, so that the transitions between
traps and transport states is likely to involve the emission and absorption of
many phonons. Calculating the magnitudes of the transition rates therefore
requires a detailed knowledge of the local phonon modes at the trap, as well
as the actual wavefunctions of both the trapped and the mobile electron.
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One would expect a strong temperature dependence for the coefficients, and
presumably different coefficients for different types of trap. Clearly, the
question of the magnitude of b; is a very subtle one, and requires a degree
of knowledge that is only rarely available.

In this paper it will be assumed that all of the temperature dependence of
the trapping coefficients, as well as the variations in magnitude for different
traps, can be described by an activated form,

b;=by exp (— E,[kT), (3)

where E, represents the energy barrier which must be overcome for trapping
to occur, and may be different for different traps. The prefactor b, is taken
to be the same for all traps. In spite of its simplicity, this form represents a
significant increase in sophistication over the TROK model, in which the
barrier energy was taken to be zero. Although our main results will not
depend on this form, let us try to justify it in a little more detail. An activated
form is exactly what one would expect on the basis of a naive configurational
coordinate model (Mott 1938). More sophisticated quantum-mechanical
treatments (Struck and Fonger 1975) of this type of model alter somewhat
the activated form. As the temperature is lowered, the trapping coefficient
cannot, of course, continue to be activated, but rather must approach a
minimum rate as the temperature is lowered, corresponding to transitions
induced by the zero-point motion of the phonons. Actually, the quasi-
activated behaviour is expected to be valid only for traps in which the electronic
states are strongly coupled to phonons. For weakly coupled traps, the rates
have a power law (7'") dependence on temperature, but this weak depend-
ence is not very important for our purposes (for a review, see Stoneham 1981).

Experimentally, several different traps were studied in crystalline III-V
semiconductors by Henry and Lang (1977), using DLTS to obtain the
temperature dependence and magnitude of the trapping cross-sections. Their
observations showed exactly the sort of behaviour described above : at high
temperatures, the cross-sections were roughly activated, but for temperatures
below about 100 K the cross-sections became constant. The barriers to
trapping varied widely, from 0 to roughly 0-5eV. The room-temperature
cross-sections varied by several orders of magnitude, but the extrapolation
of the various cross-sections to infinite temperature was quite similar (within
a factor of ten or so) for most, but not all, of the traps they studied. This
last observation motivates our assumption that the trapping-rate prefactor
by is the same for all traps, an assumption that is particularly plausible for
states with a similar microscopic nature such as band tail states. It remains
to be seen, however, whether the diffusive nature of band transport in
amorphous semiconductors affects the trapping processes in a fundamental
way.

In fact, the relationship between the time dependence of the current at
a particular temperature and the distribution of traps, derived below, does
not depend on the assumption of an activated form for b, Rather, the
effective DOS measured at a given energy will be just the actual DOS,
multiplied by the value of b; at that energy and temperature. However, in
order to compare transients observed at different temperatures, some assump-
tion about the temperature dependence of b, is necessary, and the activated
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form seems a reasonable choice. Now that we have discussed the microscopic
nature of the coefficients for individual traps, we return to the dynamical
behaviour of a system with many different traps.

§ 3. TIME-DEPENDENT OCCUPATION NUMBER

The dynamics of the MT process can be understood most easily from an
examination of the occupation number at various times. The occupation
of each trap at any time can be determined from a knowledge of the number
of carriers in transport states, n(t), at all previous times. Since carriers in
transport states are responsible for the current, we will refer to n(t) as the
current.

In this paper we do not discuss saturation of the traps, i.e. we assume that
fi<1 for all times and for all traps important to the dynamics. The question
of saturation in MT is closely connected to recombination, as has been discussed
elsewhere (Orenstein and Kastner 1981 b, Orenstein, Kastner and Vaninov
1982). By taking 1—f,=1, eqn. (1) becomes linear, and can be integrated :

t

ft)=b; [ dt' n(t') exp [—v(t—t)]. (4)

-0

This expression is easily understood : carriers fall into the trap at a rate
bm(t’'), and then leak out at a constant release rate v;, We see that the form
of this integral depends only on y; and the time dependence of the current ;
b; enters only as a prefactor.

One interesting limit of eqn. (4) is when the release time v;,~! is much
longer than the time-scale of variations in n(t). For example, in a repetitive
pulse experiment, the latter time-scale is the time between pulses ¢,,,. When
vitrep €1, combining eqns. (2) and (4) shows that

fizexp (= EyfkTYn|Ne, vibrep<1. (8)

This time-independent occupation is simply the steady-state Boltzmann
distribution corresponding to the awerage number of mobile carriers 7. Thus
states which have a release rate slower than the repetition rate of the experi-
ment have a steady-state occupation, and do not contribute to the dynamics.
This is clearly also valid for slow states which have become saturated, in
which case eqn. (5) must be replaced by the full Fermi distribution. The
simple formulation of eqn. (4) shows that very deep traps are unlikely to have
significant impact on a repetitive pulse experiment, except to the extent that
they alter the steady-state background.

In contrast, states which release carriers more rapidly than the repetitive
rate will react significantly to the changing occupancy of the transport states
in a transient experiment. We consider the case where a number of carriers
is introduced into the transport states at time {=0, for example by a light
flash. Equation (4) then exhibits two interesting limits, in addition to the
slow, steady-state occupancy described above. The limit appropriate for a
given state depends on the release time v,~1, compared to the time ¢ that has
elapsed since the experiment was started.
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Shallow states

The current n(t') contributes significantly to the integral in eqn. (4) for a
time »;~! preceding t. For states with a rapid release rate, vi> 1, n(t') will
be essentially constant during the entire interval during which the occupancy
was determined. The occupancy is therefore given by

fa(t) ;% exp (— E;[kT), vi>1. (6)

This has the same Boltzmann form as eqn. (5), for the very deep states, except
that these shallow, rapidly releasing states have come into equilibrium with
the instantaneous value of n(t). The carriers in these states form a buffer
to changes in the current, since their occupancy must also be changed to
change n(t).

Deep states
When v;<1, the exponential expression in eqn. (4) is equal to one. Thus
!
0
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(@) The occupation number of traps as a function of their release rate, at a time
delay ¢, for a steep power law {°?, The occupancy of deep traps is pro-
portional to b, which is assumed to be constant for this figure. The release
and demarcation energies, K, and E,, are defined in the text. (b) The
emission and capture rates of eqn. (8) for the occupancy of (@). The magni-
tudes shown do not depend on a constant value for b. The dashed line
indicates the uncovering term of eqn. (9).
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These slowly releasing states have only experienced capture events; any
carriers that have been captured by them are still trapped. The occupation
number is plotted, for constant b, in fig. 1 (a). We have taken {<t,,,, so
eqns. (6) and (7) are the two limits represented.

This description of the occupation number was used in the TROK model
as the basis for deriving the form of the current transient. Our approach
differs in that we immediately focus instead on the trapping and release from
the traps as the driving force behind the dynamics. Clearly, trapping will
be the most important process for the deep states, while states intermediate
in energy will be changing from deep states into shallow states with time, and
will be releasing more than trapping.

The exact trapping/release rate df,/d¢ is given by eqns. (1) and (4) for any
n(t) and v,. In order to understand the dynamics more clearly, we have
performed some straightforward algebra on these equations to separate two
contributions. The result is

t
%%{-‘:exp (= v)n(t)— v, 6[ [n(t')—n(t)] exp [— vy(t —2')] dt'. (8)

These terms correspond to trapping and release, respectively, and will be
discussed in turn. They are plotted in fig. 1 (b).

The trapping term is straightforward : carriers are trapped at a rate
bn(t). The reason for the exponential cut-off for shallow states is that those
states have come into equilibrium with the transport states, so that trapping
and release are almost in balance. The separation of terms in eqn. (8) has
been performed to exhibit only the unbalanced part of the trapping and
release. To avoid confusion, we will use emission rate to refer to the rate per
trap, and release rate (v,) to the rate per trapped carrier.

The emission term is largest for release rates comparable to the time delay.
Clearly, the rate at which a given state can emit any excess carriers is limited
by its release rate, so on the slow side of the peak df,/dt is simply the product
of the release rate and the number of carriers in excess of its equilibrium
population which the state has captured. On the other hand, states with a
rapid release rate have already emitted most of their excess carriers. For
v;> 1, the emission is given by v,'dn/dt. This limit is also easy to under-
stand : it represents the inability of the states to follow changes in n(f) immedi-
ately. We therefore call this the  lagging ’ emission. The extent to which
the occupany lags behind is greater the slower the release rate, and is just
sufficient to keep these shallow states almost in equilibrium with the transport
states.

It is helpful to derive a lower bound on the emission term. To do this
we note that exp (v;t’) is always greater than one, so from eqn. (8)

df df

tﬁ>d_5 uncovering
This expression is also plotted in fig. 1 (b). It is sharply peaked at vit=1,
falling off very rapidly for v¢>1. We refer to the lower limit in eqn. (9)

as the ‘uncovering’ emission, since it represents the emission of overfilled
states as vt becomes significant.

= v, exp (—vgd) of [n(t')—n(t)] d¢'. 9)
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The relative magnitude of the lagging and uncovering terms depends on
the decay of n(t). Specifically, for rapid decays the integral of n(t') becomes
more important than. the value of n(f) itself, or of its derivative, and the
uncovering term therefore becomes more important when ¢ is of the order
of one or smaller. Figure 1 (b) represents a t~9® decay, which is fast enough
to make the uncovering term apparent near the peak, but slow enough for
the lagging emission also to be apparent, at faster release rates. For slower
decays, the lagging emission merges smoothly into the peak in emission.
For decays faster than ¢-1, the emission is described accurately by the un-
covering term throughout the peak region, and the lagging part of the emission
is much smaller. The importance of this last feature will become apparent
below when we discuss various types of decay.

Two important points should be noted here. The first is that the trapping
coefficient enters as a simple factor, and therefore the contribution of each
state to the trapping and release depends only on its release rate, except for
a prefactor of b;, The second is that several of the contributions to the
trapping and release rate depend on this history of n(t) only in a very simple
way. For example, trapping is proportional to =(t), the lagging emission is
proportional to dn/dt, and the uncovering depends on =(t) and [ n(t')dt'.
If one of these processes dominates the decay, then we can hope to construct
a simple differential equation for n(f). In fact we construct such equations
below, but in order to do so we must first discuss the role of the distribution
of traps.

§ 4. DensiTY OF STATES (DOS)

So far we have treated the current n(t) as an independent variable which
determines both the occupation and the rate of trapping and emission for
any given trap. In reality, of course, the observed n(f) is a result of the
sum of the trapping and emission from all the traps, and therefore depends
on how many traps there are of each type.

The occupation number and its rate of change depend principally on the
release rate v;, In this section, however, we express our results in terms of
a closely related quantity—the energy required to remove a carrier from the
trap. To this end, we replace the trap index ¢ with the energy E. We
assume that all traps at a given energy have the same barrier to trapping K, (E).
Combining eqns. (2) and (3) gives

W(E)=bN, exp [~ (| E| + Ey(E))/kT]
= vpexp (— E,JkT), vp=boN,, (10)

and
E.=|E|+ Ey(E) (11)

is the ‘release energy’ for a state of energy E. This release energy is
positive, and in the absence of a barrier is simply the depth of the trap. We
demonstrate below that if the DOS is expressed in terms of release energy,
the simple relationship between the time dependence of n(¢f) and the energy
dependence of g(E), derived in the TROK model, can still be obtained. The
difference is that the quantity measured is not g(F), but §(E,)b(E,), an
effective DOS reflecting the degree to which the states participate in the
MT process.
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In our discussion of the occupation number of the traps, we distinguished
two limiting cases on the basis of release rate., By using eqn. (10), we can
also make this distinction on the basis of release energy. The cross-over,
at which v(E)t=1, occurs when the release energy is equal to a demarcation
energy, K4, given by

Ey=kT In (vgt). (12)

It is this separation of states in energy which led to the names shallow and
deep for the two types of occupation. E; moves to larger release energies
logarithmically in time.

In order to determine the dynamics, we need to define a density of release
rates. We do this in terms of a density of release energies, £,. We denote
the density of states in release energy §(E,) to distinguish it from the true
DOS g(E). The two quantities are related by -

oE _\1 oF, \1
J(E)=g(E) (m,—-l) —g(E) (”'3"1"51) , (13)

which is well defined as long as 0E,[2|E|> —1 everywhere. Normally the
two densities of states will be of the same order of magnitude, and the energy
dependence of their ratio will be insignificant compared to the frequently
observed exponential changes in the DOS as a function of energy, and generally
we will not mention it.

We denote by b(E,)=b,exp (— E,(E,)/kT) the trapping coefficient for
the release energy in question. We can then write

dn Ld
— E 7
7 I dE, §(E.)b(E,) bdt|,.., exp (—E./kT,

where the quantity |(1/b)(df/dt)| is given by eqn. (8). It should be noted that
each state is reflected in our general dynamical equation, eqn. (14), in propor-
tion to its trapping coefficient, as first stated by Orenstein and Kastner (1981 a).
This weighting of states by their trapping coefficients is still valid, it should
be emphasized, even if the coefficients are not correctly described by an
activated form. This simple multiplicative effect of variations in the trapping
coefficient is one of the principal results of this paper, but it appears in the
present treatment in a very straightforward way. Of course, in the presence
of saturation this result would no longer be correct.

We have described our results in terms of a release energy, a quantity
which is meaningful only if the trapping coefficient has an activated form.
However, the results for the time dependence at a fixed temperature actually
depend only on the release rate; the release energy was introduced to give
a more physical picture. Thus, in principle, we could define an effective
release energy as E_ =kT In (v,/v), at any temperature. This is the true
release energy if the trapping coefficient is activated. Moreover, if the
density of states is defined in terms of this quantity, the results obtained
below relating the DOS to the current will be valid. The physical meaning
of the release energy so defined is not at all clear, however. This ‘ release
energy ' also depends on temperature (for a non-activated trapping coefficient),
rather than being a fixed quantity for a given trap. In any event, the MT
process is not very sensitive to changes in the magnitude of b(E), since that

(14)
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quantity enters only logarithmically into the release energy. It can therefore
be hoped that the description in terms of an activated barrier to trapping
(and the resultant description in terms of release energy) is close enough to
the true physical situation for meaningful results to be obtained.

§ 5. TYPES OF DECAY

In this section we discuss several types of decay within the framework of
the various contributions to trapping and emission depicted in fig. 1 (b).
For simplicity of notation, we express our results assuming a constant trap-
ping coefficient of b, for all traps. The more general statement of the results
can be determined by interpreting g(E) as §(E,)b(E,)/b,, as described in the
preceding section.

Before going further, it is convenient to introduce the logarithmic derivative
of the DOS, which we define as

AT L (15)

This quantity is positive for a DOS which is larger near the mobility edge,
e.g. the DOS for a band tail. It should be stressed that B, need not have
the same magnitude—or even the same sign—at all energies, as it would for
an exponential DOS. If the DOS is exponential, then 8,=1/kT,, in the nota-
tion of Orenstein and Kastner (1981 a). Rather, the form of the current transient
at a given time will depend on the value of B, (actually BykT") at the demarca-
tion energy corresponding to that time, as will be shown below. It should
be clear (for example, by examining fig. 1) that the resolution of the measure-
ment is usually of the order of k7', so that only very closely spaced discrete
levels could escape detection, and the logarithmic derivative in eqn. (15) is
to be interpreted as an average over a region of width k7.

We now describe the results of a transient current measurement, although
features of the distribution relevant to other experiments may easily be
deduced. As time progresses after the initial excitation, the carrier distri-
bution evolves towards the steady-state distribution, for which there is no
net trapping or release. The attainment of this distribution is delayed by
the trapping of carriers into some traps at occupations greater than their
steady-state occupation. The approach to the steady state is then limited
by the release rate from those states.

At any given time the dynamics of n(f) depend on which states dominate
the emission and which states dominate the trapping. The behaviour of
n(t), in turn, determines the occupancy, release and trapping rates for all
traps. In order to determine which states dominate, we assume that the
general features of the DOS are known. The dominant states for trapping
(emission) are found by multiplying the DOS at each energy by the trapping
(emission) rate from eqn. (8), and determining the energy at which the product
is a maximum. This is most easily done graphically : if 1/g(¥) is plotted
logarithmically on fig. 1 (b), then the height of the trapping (emission) curve
above the 1/g(E) curve represents the logarithm of the product g(E) df/dt.
The maximum product is then easily determined. Since several parts of
the curves on fig. 1 (b) are exponential with an energy width of k7, it is clear
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that the magnitude of S,k7' will have an important effect on which states
dominate. Now let us use this procedure to distinguish different types of
decay.

Let us first examine the total trapping rate. The rate of trapping,
bn(t) exp (— vt), is negligible for states much shallower than —E,; and is
approximately bn(t) for deeper states. The total deep trapping rate is there-
fore given by

d [= =]
?? =n(thNy(t)=n(t) { bg(E)dE exp (- )

trapping
— Ea
~n(t) _'L bg(E) dE. (16)

The total number of trapping centres N4(f) decays with time. However,
this decay will be negligible unless the states at — E; dominate the integral.
1f deeper states dominate the trapping, then the trapping rate will be roughly
independent of time. This latter condition also describes what happens
during monomolecular recombination, and the part of a time-of-flight experi-
ment long after the transit time, because, in both these cases as well, the
rate of removal of carriers from the transport states is independent of time.
Therefore we can distinguish two very difference types of decay, depending
on which states dominate the trapping : states at — E,, or deep states.

The form of the decay will also depend on the source for the emitted
carriers : shallow states (lagging emission), states near — E; (uncovering)
or deep states. We first discuss the case in which uncovering dominates
the emission, then lagging, and finally domination by deep states. For the
uncovering and lagging emission, the decay will also depend on the dominant
trapping states.

The first case we discuss is that in which the emission is dominated by
states near — E,; this has been treated by previous authors (Tiedje and
Rose 1981, Orenstein and Kastner 1981 a, b). In order for this situation to
occur it is necessary that Byk7 > 1, because if this condition were not satisfied
then the DOS would grow more rapidly at shallow energies than the excess
emission rate of eqn. (8) and fig. 1 (b) decays, and emission would be domin-
ated by the shallower states. It is possible, of course, that even if the DOS
is growing slowly with increasing energy near — E; (B,kT <1), it grows so
much faster at even shallower energies that the emission is still dominated
by shallow states. This will occur if the DOS at some shallower energy
exceeds the DOS at — E; by more than the corresponding Boltzman factor, a
condition which can easily be evaluated using the graphical method described
above, for a given DOS,

Now, for uncovering-dominated emission let us first treat the case in
which trapping is also dominated by states near —E,. This requires at
least that B,> 0, since otherwise deeper states will dominate. Unfortunately
this case is rather difficult to treat using the present method. The difficulty
arises because the total emission rate near — E; is not simply a multiple of
n(t) or its integral or derivative, but must be calculated from the full form of
eqn. (4). This calculation can be done numerically. For an exponential
DOS with 0< B,kT < 1, however, the current is given by a power law, a result
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which can be derived very simply. We reproduce very briefly the discussion
of this case presented for the TROK model, although strengthened somewhat
by eqn. (4).

The argument is based on the fact that, for a power-law decay of n(t),
the current n(t') at an earlier time ', depends on '/t in the same way at all
times {. Because of this absence of an intrinsic time-scale, the form of the
occupation number (eqn. (4)) is simply a function of v, except for an overall
factor. Thus, the occupation number curve does not change shape, but
simply moves through the DOS as K, grows. The overall magnitude of the
occupation number is determined by the requirement that the total number
of carriers remain constant. The magnitude is thus inversely proportional
to the DOS at — By, g[ —kT In (vot)]oc(vet)#e¥T. Since the Boltzmann factor
describing the occupation of shallow states and transport states differs by a
factor proportional to vyt from the occupation number at — E,, and since
the total number of carriers is conserved, the power-law exponent is given by
1—a, where a=8,kT. When this exponent is inserted into eqn. (4) and
integrated to give the total number of carriers, we obtain the magnitude of
the current as well ;

_ sin (am) ﬂ, , -

ﬂ(‘)—m ¥, N(vgt)~1*2, (17)
where a = B3k7', N is the total number of carriers, Ny, is the number of localized
states in the exponential band and y(«, 1) is the incomplete gamma function.
The numerical factor sin (am)/amy(e, 1) goes to zero as « for a approaching
zero, and as 1 —« for 1 —« approaching zero, but is otherwise unexceptional.

The above argument is rigorous only for an exact exponential DOS and
a power law which extends back to zero time. However, it can be seen that
the integral which gives the total number of carriers is sharply peaked around
— E4 (with a width of the order of kT or B;1), except when B,kT' is close to
either one or zero. Thus a DOS which varies in a roughly exponential way
with energy will still give rise to a slope which is given by a= B kT, with B,
evaluated at —kT In (y4). A change in « will also change the numerical
prefactor in eqn. (17), but this effect will generally be unimportant except for
a near zero or one,

All the other transients we discussed may be treated within the trapping/
release framework. For instance, in the example we have been discussing,
as the number of deep trapping states decreases with time, the removal of
carriers from transport states will eventually be dominated by some process
other than trapping at — E;. At that point, the decay will proceed much
faster, and very soon the lagging part of the emission term will be negligible
with respect to the uncovering term given by eqn. (9). Since the decay is
faster than ¢-1, as is shown below, the integral in eqn. (9) is sensibly constant
once the decay is well under way, so the emission rate is just proportional to
the DOS at — E; (the various contributions are again simply functions of »t)
and to the release rate 1/t at — E;. Therefore the current is given by

n(t) oc T+ 1)(vgh) 1=, (18)

It is worth noting that the argument leading up to eqn. (18) does not depend
on B,kT being less than one, and in fact that equation is still valid if Bk7T > 1,
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as long as emission is dominated by states at — E; and trapping is dominated
by deep states (or recombination or transit across the sample). Thus, if
emission is dominated by uncovered carriers, then the transient provides a
spectroscopy of the DOS : the slope of the log-log plot is either — (1 —BkT)
or —(1+ B,kT), depending on whether trapping is at — E; or deeper. The
first case corresponds to slopes shallower than —1, the second to steeper
decays.

In contrast, if the DOS rises more rapidly at shallower energies, and
trapping is not dominated by deep states, then the decay will be slow and
the lagging term large, and the emission will come primarily from states which
are shallower than — E;. We now discuss that case. The emission from
the shallow states results from the fact that their occupancy is lagging behind
n(t), and is therefore proportional to —dn/df. The effect of this term is to
slow the rate at which the thermalized shallow carriers are trapped, since
they spend only a fraction of their time in the transport states. That fraction
is given by N,/N,, where

= =]
N.= | g(E)exp(-E[kT)dE (19)
~kTn v

is the effective number of states at the band edge, including the shallow
traps. If emission is truly dominated by the shallow states, then the lower
limit of the integral is not critical and N, is not a function of time. (The
integrand in eqn. (19) is proportional to the emission from lagging traps at
energy E, so if shallow states dominate the emission they must also dominate
the integral.) The time dependence is thus determined by the number of
deep traps :

N,d
Eg = —bN4(B)n(e), (20)
8o that
N t
n(t)=n(t,) exp [-— N—" ‘I bN 4(t') dp]_ (21)

Here ¢, is the time at which emission begins to be dominated by shallow
states. We give a specific example of this behaviour below, but some com-
ments on the general case are in order here. Equations (20) and (21) represent
a process in which the rate of decay decreases with time (proportional to
N,4(t)). However, the requirement that the emission be dominated by lagging,
shallow states and the trapping by states near — E; also places restrictions
on the decrease in the decay rate. Specifically, the rate of decay must
decrease at least as fast as 1/t (since the DOS must decrease faster than the
Boltzmann factor increases, for deeper energies). What this restriction on
the decay rate means is that the decay, plotted on a log-log plot, must have
positive curvature as long as the system is in this regime.

This situation will continue until either (1) the trapping becomes domin-
ated by deep traps, or (2) emission from — K, or deeper begins to dominate
emission. If (1) occurs, and shallow states still dominate the emission, then
from eqn. (21) we see that the decay is a simple exponential. It should be
noted that the shallow carriers increase the lifetime by a simple (time-
independent) factor (¥N./N,). In contrast, if (2) occurs the current will
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change smoothly to the appropriate limit : either the power law-like behaviour
of eqn. (17) (for emission from — E,) or a constant (for emission from deeper
levels, which is described next).

The third case to consider is when deep states dominate the emission.
For this to occur, the DOS must rise very rapidly at deeper energies (faster
than a Boltzmann factor). The capture must therefore also be dominated
by deep states. The current in this trivial case is simply a constant until
— B4 reaches the states dominating the emission, at which time the states
being uncovered can finally deplete themselves down to an occupation in
equilibrium with the shallow states. The various possible types of decay we
have discussed are summarized in the table.

Possible decay types.
Dominant trapping
Dominant
emission Near — E, Deep
Shallow n(t)=mn(t,) n(t)=mn(t,)
laggi t =
N o b N o
Near — B, n(t)oct 1+AkT 0 < B kT <1 n(t)oct 1 AkT, BT > —1
(uncovering)
Deep Not possible n(t) constant

§ 6. ExaAMPLES

To give the reader a better feeling for the relationship between the various
types of decay, we examine a particular DOS in detail. We look at the decay
for an exactly exponential DOS with BkT >1. (The case 0<BkT <1 has
been adequately described by Tiedje and Rose (1981) and Orenstein and
Kastner (1981 a, b).) Specifically, we assume that

g(B)=Ny/kT, exp (E[kT,), T>T,. (22)

When the decay begins, there may be transient associated with time
initial condition of the carrier distribution. For ¢ greater than a few y,~%,
however, a condition such as that depicted in fig. 1 will arise. Since the
DOS falls away from E =0 more rapidly than the Boltzmann factor, the
emission will be dominated by lagging, shallow states. By inserting eqn. (22)
into eqns. (14), (19) and (21), we obtain

[Fe L varen]

In [2(t)]=In (%" N) + % ‘:E“;)

N
n(t)=N S ex
G e

(23)
exp [—(a—1) In (vgf)].
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This expression describes an exponential on a log-log plot, decaying to a
value N, /N, times the total number of injected carriers, if there is sufficient
time to reach this level. The time required for n(f) to become greater than
its final value by only a factor of ¢ is

P [NL aP(u)]li’(x——l). (24)

ca—1

This time is very short (of the order of v,~?) unless 7' is very close to T, at
which temperature the remainder of this transient becomes infinite. The
transient of eqn. (23) is very similar to those observed by Silver, Cohen and
Adler (1981) in numerical simulations of MT.

The constant current, if it is reached, will continue as long as trapping
is dominated by states near the mobility edge. At some time, however,
some other mechanism will become dominant in removing carriers from
transport states ; for example, recombination or transient across the sample.
At this point the decay will become simply exponential (on a linear plot!) so
the current will rapidly decrease.

With the rapid decay of the current, the emission due to lagging will
become less and less important, while the emission due to uncovering of
deep states will become more important (see the discussion of eqn. (9)).
Shortly after the exponential decay begins, therefore, the lagging emission
will cease being the dominant emission, and emission from uncovered carriers
near — K, will dominate. We will then observe the power-law decay (steeper
than ¢-2l) of eqn. (18). The entire decay is illustrated in fig. 2.

Fig. 2
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The form of the current transient for an exponential DOS, N /kT, exp (E/kT,),
with T>T,. Three features are evident; (1) A concave upward trace,
which is exponential on this log-log plot, for short times, which becomes
constant as the carriers achieve a steady-state distribution. (2) A truly
exponential decay as thermalized carriers are trapped into a deep state.
(3) A steep power-law decay for which the trapping rate is limited by the
emission rate from states at the demarcation energy.
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Finally, we note that this paper provides a basis for evaluating the proposal
that there is an exponential DOS in several amorphous semiconductors (Tiedje,
Cebulka, Morel and Abeles 1981, Orenstein and Kastner 1981 a). In previousdis-
cussions the possible effect of a barrier to trapping was not explored rigorously.
In this paper, however, we have shown that a reduction in b by a factor has
two effects : the time at which the states are observed is increased, and the
effective DOS is decreased, both by the same factor. If one takes an activated
form for the coefficients b(E) it is possible to examine this possibility in detail.

Within the activated barrier approximation, the apparent DOS is approxi-
mately the true DOS g(E) times a Boltzmann factor exp (— E,/kT'), evaluated
where the release energy E + E, is equal to k7 In (v¢). In order to compare
the currents corresponding to the same release energy (and therefore the same
states), we therefore require a knowledge of v,. For power-law transients,
however, the current looks the same on all observed time-scales, so no precise
value for v, is required (although it can be inferred from experiment ; see
Orenstein and Kastner (1982).

In order to compare transients at different temperatures, one can simply
plot the current at a given time and temperature versus kT In (v f). If the
barrier to trapping E| is the same for all states, then the curves for different
temperatures should be parallel. This condition is in fact satisfied for power
laws which have a slope of —(1—-7'|T) at temperature 7. This temperature
dependence of the slope has been observed in time-of-flight measurements on
a-Si: H (Tiedje et al. 1981) and transient photocurrent in a-As,Se, (Orenstein
and Kastner 1981 a). Recently Khan, Kastner and Adler (1983) have
observed this temperature dependence in time-of-flight measurements on
a-As,Seg, in contrast to previous work (Pfister and Scher 1978). )

If the barrier E, were different for different release energies, then the
plot of current versus k7' In (vy) would not give the same shape at different
temperatures. A plot of the relative current at a given release energy versus
1/T will then determine the barrier to trapping, and the extrapolation of the
curves to infinite temperature will give the true DOS g(£), where E is deter-
mined from the release energy kT In (vyt) and the barrier E, at that release
energy. For the photocurrent and time-of-flight data just mentioned, how-
ever, there is no reason to carry out this procedure, since the data require an
exponential DOS with a constant barrier to trapping. Furthermore, the
magnitude of the parameter v, (related to b, by eqn. (12)), at around 1012 s-1,
is as large as is physically reasonable, implying that there is no significant
barrier to trapping into band tails in these amorphous semiconductors.

§ 7. CONCLUSIONS

In this paper we have focused on the trapping into and release from
localized states, rather than their occupation as had been done previously.
As a result we have been able to clarify the physical processes involved in
multiple trapping (MT), and to facilitate the generalization of the model to
a wider variety of situations. We have shown that the effect of a barrier to
trapping on MT is simply to give an effective DOS, which is approximately
the true DOS multiplied by the actual trapping coefficient. We have also
extended the formalism to deal with transients at all temperatures, including
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BokT >1, and we have demonstrated that these high-temperature transients
will still reflect the DOS if the removal of carriers from mobile states is inde-
pendent of time. . We have also clarified the physical nature of the non-power-
law transients observed at short times at all temperatures. In summary,
our new outlook on the MT process, while remaining physical and relatively
simple, enables the MT model to be extended to a variety of physical situations.
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