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Recent advances in the modeling of semiconductor heterostructures with complex geome-
tries allow one to go beyond band-structure engineering to the more general concept of
wevefunction engineering. In this work, we illustrate how tailoring the band mixing and
spatial distribution of the carriers leads to an expanded degree of control over such prop-
erties as the dispersion relations, interband and intersubband transition matrix elements,
nonlinear optical and electro-optical coefficients, and lifetimes. The computaticns are
based on a multiband finite element method {(FEM) approach which readily yields energy
levels, electron and hole wavefunctions, and optical matrix elements for heterostructures
with arbitrary layer thickness, material composition, and internal strain. Application of
the FEM to laterally-patterned heterostructures is alse discussed.

1. Introduction

It has been more than two decades since Esaki and Tsu' originally proposed the
superlattice as an artificial substance whose properties could be tailored through
a binary modulation of the material composition along one spatial axis. Once the
fabrication of multi-layers with thicknesses less than 100 A became feasible with the
advents of molecular beam epitaxy (MBE) and metalorganic chemical vapor depo-
sition (MOCVD),%? that concept laid the groundwork for a vast array of optical
and electronic devices based on quantum-mechanical phenomena in semiconduc-
tor heterostructures. Commercially-significant examples include the double-barrier
resonant tunneling diode,* the quantum-well diode laser®® and the high-electron-
mobility transistor (HEMT).”

Although materials design through the adjustment of the layer thicknesses and
compositions was a recurring theme from the outset, about ten years ago Ca-
passo and co-workers significantly expanded the available degrees of freedom by
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introducing the concept of ‘bandgap engineering’, which is essentially an arbitrary
grading of the energy gap so as to achieve independent modulation of the field-
dependent conduction and valence band profiles in the presence of an applied or in-
ternal electric field.®® New devices resulting from this approach included avalanche
photodiodes with enhanced ionization ratios and hence reduced noise, channeling
diodes, high-speed photo-transistors, and bipolar transistors with graded-gap base
regions.

Over the past decade, improved growth techniques (which now allow control
down to the atomic scale) coupled with rapid advances in device-fabrication tech-
nologies (including the capability of inducing quantization along more than one
spatial dimension) have encouraged a trend toward increasingly complex structural
configurations. These employ not only a larger number of material constituents in
the same device, but also more intricate substructures (often involving asymmetry)
and an expanded menu of parameters which may be modulated. Although the term
‘bandgap engineering’ is sometimes still used, it is by now far too restrictive to
encompass the enhanced flexibility which may currently be exploited in the design
of advanced heterostructure materials. The same also applies to the alternatives
‘band-strueture engineering’ and ‘band engineering’ which sometimes appear in the
current literature.'®'2 We will instead base our discussion on the more general
concept of ‘wavefunction engineering’, which is intended to signify no less than a
fundamental redesign of the electronic states at the quantum mechanical level, so
as to maximize the desired band mixing and spatial distribution of the electron and
hole wavefunctions.

Accurate theoretical modeling of the electronic dispersion relations and opti-
cal properties of the new multi-layered quantum heterostructures entails a serious
computational investment. Whereas standard multiband k - P model calculations
are adequate for treating simple, two-constituent quantum wells and superlattices,
the boundary conditions become intractable whenever there is either a larger mul-
tiplicity of constituents or a substructure within each period. Here we discuss a
multiband finite element implementation of the k - P model, which is particularly
well suited for taking into account the details of the geometry and the complex
boundary conditions imposed on the wavefunctions of the carriers. This computa-
tional package permits a straightforward and flexible construction of the geometrical
model for the heterostructure. The energy levels and wavefunctions of the carriers
can then be obtained in a routine manner. Excellent precision can be achieved by
improving on the standard engineering finite element methods for application to
quantum heterostructures.

The finite-element method (FEM) has long been a standard computational tool
in such engineering and scientific fields as structural mechanics, fluid dynamics,
and atmospheric modeling,'® but has rarely been applied to quantum mechanics
except in crude one-band approximations. This is probably due in large part to
the unfortunate perception that the FEM is a clumsy method of last resort, which
should be avoided whenever more elegant techniques are available. However, it will
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‘bitrary become apparent in the following sections that the FEM is in fact ideally suited to
e field- - the types of computation required here, i.e. finding solutions to complex systems

d or in- of coupled nonlinear and partial differential equations with complicated boundary
alanche conditions.
nneling The algorithm derives much of its power from a particularly effective manner
ap base of treating the boundary conditions, as well as from an optimization of the non-
' uniform inter-element boundary placements. This separates it from more elemen-
control tary FEM calculations carried out previously for quantum systems, even in the limit
m tech- where only one band is considered. Thus, besides enabling one to accurately cal-
lan one culate the electronic structure and optical properties of complex structures which
-«uctural would otherwise be intractable without severe approximations, our FEM algorithm
ients in is also remarkably efficient. We find that the computer time required to treat sim-
umetry) ple two-constituent quantum wells or superlattices is only marginally greater than
he term that needed for a conventional 8band k - P calculation. It should be noted that
stive to the tight-binding approach.}*!3> may be viewed as a limiting form of the FEM,
s design - in which each atom or plane of atoms functions as a separate element. However,
-natives while tight-binding calculations can in principle treat many of the same problems,
I in the .excessive matrix sizes and computation times significantly limit their practical-
general ] ity when applied to complex systems of the type which are quite tractable within
than a : the FEM. Furthermore, the tight-binding parameters are not directly related to
evel, s0 [ experimentally-observable quantities, as in k - P, which adds another layer of un-
ron and certainty to the input parameters.
The implementation of this high-precision FEM model has several useful aspects.
d opti- These include the ability to incorporate any III-V or II-VI direct gap semiconducting
serious material in any geometry, and to include the effects of built-in strain and external
wlations perturbations such as electric or magnetic fields or hydrostatic pressure. One of the
lattices, most valuable features is the ability to generate the carrier wavefunctions and then
«er mul- display them on the computer screen. This visualization should be viewed as an
iscuss a integral component of wavefunction engineering as it is ideally practiced, since in
icularly ~ effect it allows one to manipulate the electron and hole spatial distributions dynam-
;omplex ically to achieve a desired set of properties. The tailoring may be accomplished, e.g.,
mputa- by changing the geometrical placement of different materials in the heterostructure
netrical 0 so as to maximize the desired localization or shape of the wavefunctions.
carriers i This has profound implications for both optoelectronics device design and the
eved by ' exploration of fundamental physical issues. By tailoring the wavefunctions we can
ition to control the optical selection rules, optical matrix elements, carrier lifetimes, overlap
integrals, tunneling currents, electro-optical and nonlinear optical coefficients, and
nal tool so on. The discovery that carriers with energies above the barrier height in su-
namics, perlattices are localized in the barrier layers and have quantum well-like spectra is
sehanics . leading to a new spectroscopy of above-barrier states. Other quantum phenomena
part to b that are currently being explored with the finite element method with very interest-
;, which . ing results include surface quantum wells and their role in defining heterostructure
e, it will S optical properties, bound states and their symmetry properties in laterally-confined
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systems, control over optical nonlinearities in checkerboard superlattices of quan-
tum wires, modification of the density of states in Type-II laser diodes, and the
suppression of saturation effects in intersubband second-harmonic generation de-
vices.

In the following, we elaborate on the implications of wavefunction engineering
and describe the integration of the 8-band k-P model for calculating band structures
of composite quantum heterostructures into the finite element method. Following
a summary of the multiband FEM theory in Sec. 2, we will provide in Sec. 3 an
overview of the numerous mechanisms and design parameters which may be ex-
ploited in wavefunction engineering as it is currently practiced. We then consider
several examples illustrating application of the FEM modeling and wavefunction
engineering to quantum systems of practical and fundamental interest. Calculated
wavefunctions, interband and intersubband optical matrix elements, and energy
levels and dispersion relations will be discussed for both complex multi-layer 2D
quantum wells (Sec. 4) and lateral superlattices of 1D quantum wires (Sec. 3).

2. Theory

We firsts consider planar layered semiconductor heterostructures with the modula-
tion only along the growth direction z. The layers are taken to be composed of
compound ITI-V or II-VI semiconductors with their conduction- and valence-band
edges located at the I-point in the Brillotin zone {BZ}. The periodic components
of the Bloch functions, u;,k=o(r), with j being the band index, at the band edges
are assumed not to differ much as we traverse the layer interfaces.!1# We assume
that the original bulk crystal translational symmetry is maintained in the transverse
direction.

‘We consider the zone-center bulk band structure of the constituent semiconduc-
tors, within the spirit of the k - P model. The usual eight-band model consists
of the I's conduction band (c), the I's heavy-hole (hh)} and light-hold {lh} bands
and the I'; spin-orbit split-off band (s.0.), with their spin degeneracies. The com-
plete 8 x 8 Hamiltonian is displayed in Ref. 19. However, for the sake of clarity in
the presentation, we will consider here the simplified example of a layered system
with no external electric or magnetic fields or built-in strain, and in the limit of
vanishing-in-plane wavevector [k = (k2 + k2)/2 — 0]. We note that the following
considerations also hold for the more general case, except that there the dimensions
of the matrices correspond to the full 8-band model and with external perturbations
or finite k)| the Kramers degeneracy of the bands is lifted.

With these simplifications, the problem reduces to a three-band model, with the
hh band factoring out. Within the envelope function approximation, the problem
then reduces to the solution of a set of three simultaneous second-order differential
equations for the envelope functions of the constituent layers. We have

Hi(ky =0, k) f;(2) = Efl2), (1)
where k. has to be replaced by the differential operator —i8/8z.

=
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H
f quan- The eigenvalues of the 3 x 3 matrix are given by the secular equation (in atomic
und the - units)
ion de-
Ec+(F+%)kE—E —\/Epf3kz —-\!Ep/()'kz
neering —/Ep/3k, E,—Ym+2mk2-E  —Vipk? =0. (2)
uctures ~/Ep/6k. ~vZ0k? B, —jnki-E
llowing .o
'c. 3 an f Here E., By and E, are the band edge energies of the conduction, lh and s.0. bands.
be ex- The 3 coupled second-order differential equations represented by Eq. (2) can he
'onsider written as 52 5
unction —Ags 55 — iBap 7 +Cas| fo2) = Efalz). (3)
culated &z 9z
Energy While the matrix coefficients A, B, C in Eq. (3) are usually assumed to be con-
wer 2D stant in each layer, there are cases for which each material parameter should more
5)- generally be considered to be a function of coordinate, e.g., in a graded-bandgap
- system or a structure for which the strain is a function of position within a given
layer. In a heterostructure, the differences in the band edge energies give rise to
nodula- . the confining potentials experienced by the carriers. In the full 8-band formalism,
osed of . Eq. (3) consists of 8 coupled Schridinger equations as discussed in Ref. 19.
-o-band - The finite element method®*2% may be used to solve Eq. (3) for symmetric as
ponents well as asymmetric quantum wells, for superlattices with two or more than two con-
d edges | stituents in each period, for resonant tunneling structures, etc. In fact, this method
assume : can accommodate the possibility of every material parameter being a function of co-
nSverse ordinate. It has been demonstrated that the present FEM can be adapted to yield
very accurate eigenvalues for bound state problems,?*?® and for obtaining solutions
~onduec- in quantum semiconductor heterostructures with complex geometries.2%2" One be-
consists gins by writing out the appropriate symmetrized (hermitian) Lagrangian that would

) bands generate Eq. (3) through a variational procedure. The integral over the physical re-
gion of the Lagrangian density, the action integral, is then split up into a number of

1€ com-
arity in > ‘cells’ or elements, in each of which the physical considerations of the problem hold.
system The wave functions are assumed to be given locally in each element by fifth-order
limit of Hermite interpolation polynomials, which have the property that the expansion co-
Howing Pt efficients correspond to the values of the wave function and its derivatives at select
\ensions ‘ points, called nodes, in the element. The global wave functions f;{z) are constructed
‘bations by joining the locally-defined interpolation functions and matching the function and
its derivatives across the element boundary for each of the bands included in the

vith the analysis. The heterointerfece boundary conditions consisting of continuity of the
sroblem envelope functions and of the probability current, and the houndary conditions for
erential the bound states as well as for scattering states?® at z = 200 are readily incorpo-
rated into the FEM. It is useful to derive the probability current density that is

1) 3 conserved across the interfaces by employing a gauge-variational approach for the

multi-component wavefunctions using an extension of the gauge variational method
T of Gell-Mann and Levy.?® The spatial dependence of the wavefunctions, manifested
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through the interpolation polynomials, is next integrated out, leaving the action
integral dependent on the unknown nodal values of the wavefunction. The usual
variational principle is then implemented as a variation of the nodal values of f*(z)
under which the action integral is a minimum. This nodal veriational principle
leads to a ‘Schrddinger equation’ for the nodal values. The integration of the action
integral is performed element by element, giving rise to element matrices which are
then overlaid into a global matrix in a manner consistent with the boundary con-
ditions. This results finally in a generalized eigenvalue problem,?°? which may be
solved for the eigenenergies and wave functions with a standard diagonalizer on a
computer workstation.

Use of the 8-band FEM with three elements per layer leads to very accurate
quantum well and superlattice energies and eigenfunctions. In the limit of simple
geometries the eigenvalues agree with those obtained from the eight-band transfer-
matrix method!®®1-33 to within 1078 eV, and double-precision accuracy can be
obtained by employing more elements in the computation. As an example of a
band structure calculation,®* we show in Fig. 1 the conduction and valence bands
for a 18 A/10 A GaAs/Aly 3Gag 7As superlattices. This energy band diagram was
generated in about 3 minutes on a DEC3100-workstation.
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Fig. 1. Conduction and valence bands in the first Brillouin zone for a 18 A/10 A GaAs/
Alp.3Gap.7As superlattice, as computed by the FEM. All energies are referenced to the GaAs
valence band edge, and the dashed lines indicate the AlgaGag.rAs band edges. The left panel
is the superlattice dispersion along the growth direction, while the right panel is the in-plane
dispersion (After Ref. 34),
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The methods described above can be extended to the cage of carrier confinement
in two dimensions (quantum wires and other structures) and to three dimensions.
The results based on two-dimensional considerations with just one energy band are
already interesting and will be discussed in Sec. 5. The power of the finite ele-
ment method becomes particularty apparent when applied to the two-dimensional
Schrodinger equation, since the ‘kitchen sink’ potential experienced by a carrier in
a quantum wire structure is non-separable. The FEM has revealed the interesting
removal of ‘accidental’ degeneracy®® in wires with a square cross-section. (This
is relevant to the theory of dielectric microwave waveguides as well). A further
example will be the calculation of wavefunctions, energy bands and optical nonlin-
earities in a bidirectionally-pericdic stacking of quantum wires — the checkerboard
superlattice.?” Here again the potential is non-separable, and the FEM provides an
elegant and natural approach to solving this problem.

3. Overview of Wavefunction Engineering

This section will briefly overview some of the numerous ways in which wavefunction
engineering may be exploited, either to enhance the performance of optical devices
‘or to probe new physical phenomena.,

Even in the case of bulk semiconductors one can exercise a degree of control
over the band structure, e.g., by varying the temperature or pressure, by applying
an external electric or magnetic field, by varying the alloy composition or extrinsic
doping level, or by employing optical excitation to generate non-equilibrium elec-
trons and holes. However, a much richer range of phenomena becomes accessible
when one introduces some additional type of modulation on a length scale small
enough that the free carrier energy levels become quantized along at least one axis.
Familiar examples include compositional modulation in layered heterostructures
grown by MBE or MOCVD, band bending accompanied by charge redistribution in
gated metal-insulator-semiconductor structures, carrier confinement induced by se-
lective doping (e.g., in n~i-p-is or modulation-doped structures), and strain-induced
confinement resulting from a lattice-constant mismatch between the quantum-well
layer and the substrate or buffer layer. In recent years, epitaxial growth technol-
ogy has advanced to the point where even atomic-scale control over the interface
characteristics has become a viable mechanism for band structure engineering (e.g.,
one can modulate the lateral island size for monolayer-scale fluctuations of the
interface-boundary position,®® or the valence band offset at the interface between
two constituents having no common cation or anion®%37). Quantum wires, quan-
tum dots, and other mesoscopic nanostructures can also be fabricated by a variety
of techniques, including sub-micron etch lithography,®® laterally-patterned gates,®®
laterally-selective doping or ion-beam damage,?® laterally-modulated strain,*® se-
leciive growth onto V-grooved substrates,® cleaved-edge overgrowth,*? or vicinal
growth onto misoriented substrates.*3
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With so many knobs now available for turning in a controllable and reproducible
way, we find ourselves presented with numercus opportunities for fabricating new,
artificial materials whose properties differ substantially from those of the bulk con-
stituents. Optical and electronic devices based on the successful application of band
structure engineering have been reviewed by a number of previous authors,}!-44-43
Here we will approach the toptc from a slightly more fundamental standpoint hy
emphasizing the tools of the trade, i.e. the primary physical mechanisms which may
be invoked in adapting the material properties to the needs of the various device
classes.

3.1. Modulation of Energy Levels and Dispersion Relations

The most obvious and direct consequence of quantum confinement is that one gains
a high degree of control over the electron and hole energy levels. This enables
us to modify the fundamental band gap which is the key to detectors, lasers, self
electro-optic effect devices (SEED),*? etc. However, we in fact have a much broader
capability of altering the fundamental nature of the electron and hole dispersion re-
lations [E(k|, k.)]. For example, when the dimensionality is reduced from 3D in
bulk to 2D in a single quantum well or interface layer, we ‘flatten out’ the disper-
sion along k. and thereby increase the density of states near the bottom of the
band. It is well known that this has important consequences for laser thresholds
and gains, %843 clectro-optical (EQ) and nonlinear optical (NLO) modulation coef-
ficients and saturation properties,5° resonant-tunneling-diode (RTD) peak-to-valley
ratios,?! ete. In a superlattice, varying the barrier thickness leads to a continuous
tuning of the growth-direction dispersion, from the 3D limit where the growth-
direction mass (m.}) can be equal to the in-plane mass (m) to the 2D limit where
m; is effectively infinite. The collection efficiency and tunneling noise for phote-
voltaic infrared detectors are governed by m,.5%%% Adjustment of the miniband
width through tuning of the barrier thicknesses can be used to obtain mass filter-
ing, i.e. a nearly infinite ratio between the vertical mobilities for light-mass carriers
(usually electrons) versus that for heavier carriers (heavy holes), which can lead to
large gains in photoconductive detectors.** Miniband transport plays an important
role in some classes of QWIP designs.54:58

Heterostructure geometry also influences the in-plane effective masses. First,
a shift of the electron and light hole masses automatically accompanies the
confinement-induced modulation of the direct energy gap, since my o« F, from
k - P theory.®® In addition, the in-plane hole mass is particularly sensitive (by more
than two orders of magnitude in the extreme case of HgTe-CdTe superlattices5”)
to whether the highest-energy valence subband has a primarily heavy-hole-like or
light-hole-like character (it is important to remember that the heavy hole is heavy
along the growth axis but light in the plane, whereas the light hole is light along
the growth axis but heavy in the plane).*® The ordering of the valence subbands
is generally governed by a competition between quanium confinement (which tends
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to push the light-hole-like subbands to lower energies) and strain {which pushes
the light hole down and the heavy hole up when the strain is compressive but has
the opposite effect when it is tensile). Strain therefore becomes a powerful design
parameter for band structure engineering.%® In laser applications, it is advanta-
geous to design structures with small in-plane hole masses, not only because the
population-inversion threshold is then reduced, but also because the non-radiative
Auger process is suppressed.’%*6 Whereas only compressive strain makes the hole
mass lighter, even tensile strain has a beneficial effect on the polarization selection
rules, since it serves to match the symmetry of the carrier distribution with the uni-
axial symmetry of the laser beam.!! Strain tuning of the valence bands also leads
to improved properties for p-type quantum well infrared photodetectors (QWIPs)
operating at normal incidence.’® When the hole mass is modulated, there is natu-
rally a corresponding modulation in both the valence-band density of states and the
in-plane hole mobility. These manipulations of the valence band properties should
be viewed as wavefunction engineering through modulation of the band mix, which
is an alternative to modulation of the wavefunction’s spatial profiles.

3.2. Modulation of Energy Resonances and Forbidden Gaps

Closely connected with the tuning of a given band’s energy levels is the capability of
bringing bands into and out of resonance with one another (e.g., in RTDs* and EQ
devices employing injection via tunneling®®) or of bringing the intersubband energy
splittings into resonance with a given photon energy (QWIPs, intersubband EQ and
NLO modulators, intersubband lasers,?1:%2 etc.). In NLO applications, one can use
resonances to enhance the nonlinear susceptibilities.83-8% In other cases one would
like to remove a resonance, e.g., that between the energy gap and the split-off gap
which is detrimental to Auger lifetimes in many IR laser materials!!%® (see Sec. 4.1.).
In 0D quantum boxes, the energy levels can in principle be placed such that all Auger
processes are forbidden.%™*® One sometimes wishes to induce optical transparency
by causing the photon energy to fall within a forbidden gap between the electronic
levels, which again in the 0D limit can occur even above the fundamental band edge.
In the opposite extreme, photonic bandgaps which do not support the propagation
of light in certain spectral regions have been demonstrated.5”

3.3. Carrier-Concentration Modulation

The electron and hole densities in a quantum heterostructure may be varied in
a number of ways, e.g., through controlled doping, a gate voltage, spatial charge
transfer, electrical or optical injection, thermal activation from impurity states or
across the band gap, etc. The resulting values for n and p then govern many
of the properties most relevant to device operation, including absorption satura-
tion and gain, optical or electrical modulation of the refractive index {e.g., through
Kramers-Kronig and plasma contributions}, the Fermi energy [the key to field-effect
transistors (FETs), RTDs, quantum transport, etc.] quasi-Fermi energies (popu-
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lation inversion, NLO saturation, ete.), space charge and band bending, electrical
conductivity, and screening (important, e.g., in spatial light modulators™). Fre-
quently, complex graded-gap or multi-constituent band profiles are employed to
tailor the Fermi energy or quasi-Fermi energies as a function of vertical position in
the structure. Modulation doping for enhancement of the electron and hole mobil-
ities is a central feature of many heterostructure electronic devices (e.g., HEMTs”
and microwave FETs’!) as well as for optical devices in which narrow linewidths
are essential.”? "™

3.4. Modulation of the Conduction Valley Minima (', L and X)

Because the energy levels in a quantum heterostructure are so readily tuned, one
Las much more flexibility than in bulk for reordering the relative positions of the
T, L and X conduction band minima. This choice radically affects the density of
states, effective mass, mobility, and selection rules for both interband and inter-
subband optical transitions. The T valley has a light, isotropic mass and strong
interband coupling, but nearly-vanishing intersubband oscillator strength at nor-
mal incidence.™ By contrast, the L and X valleys have much heavier and highly-
anisotrgpic masses, weak interband coupling, and strong intersubband interactions
at normal incidence™ as long as the growth axis is misaligned with the symmetry
axes of the effective mass ellipsoids. In many high-speed electronic applications, one
wonld like to minimize the role of L and X states because intervalley scattering rep-
resents a significant parasitic process.”® However, intersubband transitions involv-
ing L-valley or X-valley states in Sij_,Gez,”” Al;Gai_,As,"® or Ga;_,Al,Sb78!
quantum wells are currently being investigated for potential use in QWIPs,”® EO
modulators,8? and second-harmonic generation (SHG) devices®® operating at nor-
mal incidence. Also interesting is the possibility of establishing a competition be-
tween [-valley and L-valley or X-valley states at approximately the same energy
(see Sec. 42). We have recently proposed that for an asymmetric double-well struc-
ture with one well having its conduction band minimum at the I’ point and the
other having its minimum at the L-point, one can obtain nearly complete dynamic
transfer of the electron population from I states to L states through the variation
of an external electric field.3* We also note that I-X intervalley transfer can domi-
nate the resonant tunneling characteristics of GaAs(T")/AlAs(X) single-barrier and
double-barrier structures.?3:#8 Furthermore, one should view the dominant growth-
direction transport process for GaAs/AlAs superlattices with thick barriers in terms
of intervalley scattering rather than tunneling through the barriers.5”

3.5. Type-I or Type-1I Band Alignment

Whereas an L-point or X-point conduction-band minimum leads to an indirect gap
in momentum space, Type-II heterostructures such as Si-Si;_,Ge,, GaAs-AlAs
(with thin GaAs layers), InAs-GaSb and ZnTe-ZnSe offer the additional possibility
of an indirect gap in real space,®®2° a phenomenon for which there is no analog
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in bulk. Since the electrons are confined primarily to one layer while the holes are
localized in another, the wavefunction overlap which governs the interband optical
coupling, band mixing and repulsion (which determines the electron and light hole
masses),’® carrier-carrier scattering,®® and recombination lifetime tends to be weak.
However, an applied bias can be used to dynamically tune the overlap integrals, since
the electric field either pulls both electron and hole wavefunctions toward the same
interface or pushes them both farther away. This leads to a strong EO modulation
of the optical coupling observed in photoluminescence®® and photoconductivity®9*
experiments, and also significantly enhances the interband Stark shift. Under some
conditions, an applied field can also be used to convert the heterostructure from
Type-1I to Type-1.%5% A Type-II alignment is advantageous in applications for
which weak optical coupling is required in order to minimize the device insertion
loss, since the interband absorption coeflicient can then be low even for above-gap
photon energies. " ?" Recombination lifetimes on the order of microseconds or longer
have been observed in GaAs-AlAs Type-II heterostructures, since in that system
the energy gap is indirect in both real space and momentum space.®®%

One general consequence of a Type-II band alignment is that the heterostruc-

ture energy gap becomes smaller than the gaps of either of the constituent semi-

conductors. In the extreme case of InAs-GaSbh (the first Type-II system to be
fabricated'"?), the resulting material can actually be semimetallic because the va-
lence band offset is such that the conduction band minimum of InAs lies somewhat
below the valence band maximum of GaSb. That arrangement provides a fertile
basis for imaginative device concepts, particularly when consideration is extended
to more complex geometries involving three or more constituents (e.g., incorporat-
ing AlSb, Ga;_.ALSb or Ga;_.In.8b). An example is the development of high-
performance RTDs based on interband tunneling resonances.“271% Furthermore,
it has been demonstrated that strong interband optical coupling can he achieved
despite the Type-II band alignment, simply by making the quantum wells for both
electrons and holes very thin so as to maximize the wavefunction overlap. When
strain is introduced in an InAsGa,_.In.Sb heterostructure to further increase the
semimetallic offset,!% strong absorption can be combined with small energy gap
for longwave (8-14 pm) and very longwave (> 14 pm) infrared detectors.'®® The
strong optical coupling and large band offsets are also favorable for midwave in-
frared lasers!?®1%7 (see Sec. 4.1). It has recently been demonstrated that layers of
elemental Sb can be integrated into InAs-GaSb-AlSb-family heterostructures grown
along the (111) axis, enabling the possibility for a much larger Type-II semimetallic
overlap between InAs and Sb.1%®

3.6. Wavefunction Localization

A Type-II heterostructure may be viewed as one example of a more general class
of engineered materials for which one has the ability to strongly modulate the
spatial position of the electron and hole wavefunctions. Wavefunction localization
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is key to a wide variety of device properties, including elecirical confinement for
lasers, increased gain in photodetectors,** transistors based on real-space transfer!®
and electrical isolation in numerous devices. Localization along one axis in a
quantum well significantly enhances the exciton binding energy {crucial in SEED
modulators?®11%:111} and similarly enhances the binding energy for shallow
impurities.!'? Wannier-Stark localization due to removal of the miniband disper-
sion by an electric field is the basis for a family of electro-optical modulators.113:114
In barrier, reservoir, and quantum well electron transfer (BRAQWET) devices,
electron wavefunctions localized in a reservoir at zero bias significantly overlap a
quantum well once a reverse bias is applied.!'® Bragg confinement can localize the
wavefunction in a central well surrounded by short-period superlattices.!!® Field-
induced modulation of the wavefunction overlap between two states localized pri-
marily in different spatial regions, e.g., electrons and holes at a Type-II interface or
two electron subbands in an asymmetric double quantum well, can dramatically al-
ter not only the matrix elements for optical transitions,1® but also the electron-hole
recombination rates®” and intersubband relaxation times.117:118

Another class of wavefunction confinement which has attracted attention re-
cently is the localization of above-barrier states in the barrier regions rather than
the well regions of a superlattice.!'® This effect has been confirmed experimen-
tally and has led to a new type of spectroscopy which will be discussed further in
Sec. 4.4, The hybridization of well and barrier states has also been studied.'®® A
related phenomenon is ‘kinetic confinement’,1#1-123 which tends to localize carriers
with large in-plane wavevectors in regions where the effective mass is larger, even
in a superlattice or quantum well barrier if the barrier is not too high.

3.7. Wavefunction Manipulation

By now it is well known that the dynamic modulation of quantum-well wave-
functions by an external electric field'?* is significantly enhanced in stepped wells
and asymmetric double quantum wells (ADQWSs).1%® This asymmetric distortion
of the electron wavefunctions is being exploited in a wide variety of applications
including SEED devices,!?® voltage-tunable QWIPs,'27:1?8 intersubband EOQ ab-
sorption and phase modulators,125:12984 IR bistable devices,!3® and intersubband
SHG devices.'3411783 Fyrthermore, the trend in recent years has been toward quan-
tum wells with complex internal structures (e.g., additional thin barriers or mini-
wells within each well), which permit a more general tailoring of the wavefunc-
tions. This is wavefunction engineering in its purest form, and it can be used to
control the gaps between the minibands,'®%13% enhance the mobilities associated
with optical phonon scattering'® and ionized impurity scattering,!®® obtain dy-
namic ‘wavefunction sweeping’' from one side of the well to the other,’*® optimize
the intersubband Stark shift,!*” enhance or suppress the dipole matrix elements
for intersubband transitions,'%!3® enhance the responsivity for QWIPs,'3® shift the
intersubband transition energies,'%"142 or shift the relative energies for interband
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¢ransitions vs subband index.'*® It has also been proposed that the incorporation
of periodic é-doping planes of impurities into a superlattice can be employed to
create and annihilate bands,'** significantly broaden the minibands,'*® or suppress

the mobility.14¢

3.8. Lateral Confinement

Further reduction of the system dimensionality, from 2D to 1D, 0D, or more gen-
eral mesoscopic configurations, will naturally induce additional modulation of most
of the properties discussed above. Among the most prominently-affected are the
energy levels and dispersion relations, density of states'*” (particularly important,
e.g., in lasers'® and RTDs!%:150), exciton binding energies,'®! optical matrix el-
ements and selection rules,’®® absorption and gain lineshapes,*” relaxation rates
and the possible presence of a ‘phonon bottleneck’, 153154 transport,'*® quantum
transport,®® plasma and plasmon properties,®® and Auger lifetimes.57:0%156 Al
though nanostructure science currently remains primarily a research field which
has completed relatively few transitions to commercial products, the rich possibil-
ities for additional wavefunction engineering make it an attractive area for future

device concepts.

4. Applications of Wavefunction Engineering — Layered
Quantum Heterostructures.

In this section and the next, we illustrate application of the FEM to the determina-
tion of energy levels, dispersion relations, wavefunctions and optical properties for
several specific wavefunction-engineered materials. Layered heterostructures hav-
ing complex compositional modulation along the growth axis will be considered
here, whereas Sec. 5 will treat the effects of lateral confinement on the properties
of quantum wires and quantum wire superlattices.

4.1. Type-II Laser

Virtually all of the quantum well (QW) lasers developed thus far have employed
well and barrier constituents having a Type-I band alignment, since the achieve-
ment of gain requires strong optical coupling between the conduction and valence
band states. However, it is known that Type-II InAs-Ga;_ . In.Sb superlattices can
digplay a large interband absorption coefficient as long as the layers are thin enough
to allow significant interpenetration of the electron and hole wavefunctions,104:10
Clearly, the same Type-II structures should produce substantial gain if the electrical
confinement is adequate and the nonradiative lifetimes are long enough to estab-
lish a population inversion. In fact, it will be argued below that mid-wave infrared
(MWIR,) lasers based on the InAs-GaSb-AlSb family of TypeII heterostructures
are not only feasible, but they may be expected to exhibit some significant advan-
tages over Type-I I1I-V systems which have been investigated previously for this
application.
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Despite reports of dramatic improvements in the performance of diode lasers
emitting at IR wavelengths out to about 2.5 pm,'3" the development of longer-
wavelength diodes with high output powers and non-cryogenic operating tempera-
tures has proven to be much more challenging. 15812 Fundamental limitations in-
clude inadequate electrical confinement due to the small conduction and /or valence
band offsets in most of the heterostructure systems considered thus far'®® (which
leads to escape from the active region at higher temperatures} and the increasing
predominance of Auger recombination when the energy gap is lowered and the tem-
perature raised.!®* The nonradiative decay in most II1I-V systems currently under
investigation tends to be dominated by the so-called CHHS Auger process, in which
the conduction-to-heavy-hole (CH) recombination is accompanied by a heavy-to-
split-off-hole (HS) transition. In InAs-rich alloys such as InAsSb, InAsSbP and
InGaAsSb, this process easily conserves both momentum and energy because the
energy gap is nearly equal to the split-off gap Ag.'%1%% It will be seen below that
the Type-II band alignment effectively eliminates CHHS Auger transitions by re-
moving the resonance between E, and Ag, and also introduces large conduction
and valence band offsets which make it straightforward to maintain electrical con-
finement. Grein et ol theoretically discussed the minimization of Auger rates in
Type-II InAs-Ga, _;In. Sb superlattices for MWIR laser applications'®® and Miles et
al. have quite recently achieved lasing in an optically-pumped InAs-Gag »5Ing.055b
superlattice device emitting at 3.2 um.*%7

The conduction, valence, and split-off band profiles for the structure studied
by Miles et al. are illustrated in Fig. 2. Also shown are the corresponding energy
levels and wavefunctions calculated using the 8-band FEM algorithm. Note first
that even though the electron wavefunctions (solid curves) have their maxima in
the InAs layers and the hole wavefunctions (dashed curves) are centered on the
Ga,_.In.Sb layers, there is significant overlap because each (particularly ¢, } pene-
trates into the adjacent layers. Hence, the optical matrix element (Poy ~ 6.5 eV A)
is nearly as large as values typically obtained for Type-I heterostructures. We also
find that the resonance between E, (the separation of E1 and H1} and Ay (the dif-
ference between H1 and S1) is completely removed by the Type-II band alignment,
even though it is present in bulk InAs and GaSb, and is potentially an issue in
Gaj—zIn,Sh. Furthermore, Grein et al. pointed out that for these particular layer
thicknesses, the energy gap does not resonate with any intervalence transitions in-
volving H1 near its maximum (it falls approximately halfway between HI-H2 and
H1-13).1%6 Hence, all multi-hole Auger processes are energetically unfavorable, and
CCCH events [in which the CH recombination is accompanied by an electron tran-
sition to a higher-energy conduction-band state (CC)} will probably dominate the
nonradiative lifetime. Moreover, even the CCCH rate is suppressed hy the small
in-plane effective mass for holes near the band extremum (= 0.047mg). Youngdale
et al. have recently demonstrated experimentally that at 77 K, InAs-Ga;—zIn,Sb
superlattices can display Auger lifetimes which are two orders of magnitude longer
than those in Hgy ., Cd, Te alloys with the same energy gap, which is consistent with
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Type-1I InAs(17A)-GalnSb(354) SL

E, ~ 310 meV, Poy ~ 6.5 eVA
3D Electrons (mygy = 0.030mg, m,; = 0.037my)
2D Holes (my) & 0.047my)
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Fig. 2. Conduction, valence (heavy-hole}, and split-off band profiles for the Type-II InAs-
Gag.75Inp.25Sb superlattice (clad by Gag gaAln,129b) studied experimentally by Miles et al 107
Strain is included in the band alignments, assuming growth on a buffer layer whose lattice con-
stant is matched to that of GaSh. Also shown are 8-band FEM results for the electron (solid) and
hole {dashed) wavefunctions, along with energy minima for the various conduction and valence
subbands. Note that the electrons have 3D dispersion with a nearly isotropic effective mass.

theoretical predictions.?®8:187 The reduced density of states which accompanies the
small in-plane hole mass also serves to decrease the threshold carrier density re-
quired to achieve population inversion!! {Grein et al. have estimated a threshold
concentration of & 6 x 107 cm~* at 300 K).

However, the structure shown in Fig. 2 is non-optimal in that the electron dis-
persion is effectively three-dimensional. It is well known that QW lasers (2D) usu-
ally significantly outperform®%4® double heterostructure lasers (3D) once a given
fabrication technology has matured, primarily because the more concentrated 2D
density of states yields much higher gain per injected carrier at threshold.!®® While
the holes in the Type-II superlattice shown in Fig. 2 have minimal dispersion along
the growth axis {i.e. they are quasi-2D), the strong penetration of the electron wave-
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functions into the thin Gai_,In,Sb barriers leads to a nearly isotropic electron mass
(mn./ T 1.2). Thus, only a fraction of the hole population (which is distributed
along the entire &, axis) can participate in vertical stimulated emission processes
since the thermal distribution of electrons is confined to small k..

The most straightforward approach to reducing the electron dimensionality is
clearly to convert the superlattice into a multiple quantum well. Figure 3 illustrates
the incorporation of additional Ga;_ . Al, Sb layers, which serves as barriers for both
electrons and holes, into each period of the structure. We emphasize here that while
most multiband heterostructure k - P calculations can treat simple two-constituent
superlattices such as that shown in Fig. 2, they are not easily adapted to more
complicated geometries such as the three-constituent multiple quantum well shown
in Fig. 3. In contrast, the multiband FEM algorithm readily yields band structures,
wavefunctions, and optical properties for layered structures of arbitrary complexity.

It is not surprising that the FEM calculation for the structure in Fig. 3 yields 2D
electron and hole dispersion relations (the electron miniband width is < 0.3 meV),
since both wavefunctions fall nearly to zero in the barrier layers and the coupling
between successive periods is quite weak. Unfortunately, a by-product of this par-
ticular asymmetric geometry is that the overlap is somewhat smaller than in the
superlattice of Fig. 2. Electrons from a given InAs QW penetrate only about halfway
into the adjacent Ga,_.In;5b layer, and now there are no InAs electrons from the
other side to overlap the other half of the hole wavefunction. As a consequence, the
interband optical matrix element is somewhat smaller (Poy ~ 3.6 eV A} and the
hole effective mass is more than twice as heavy (0.11myg) as it was in the superlat-
tice . The repulsion of the E1 and H1 dispersion relations is proportional to the
overlap integral, hence both masses in this narrow-gap system are quite sensitive to
the spatial distribution of the wavefunctions,%0

Fortunately, we can largely eliminate these drawbacks by performing some fur-
ther wavefunction engineering. Figure 4 illustrates the consequences of incorporat-
ing an additional InAs layer into each period, on the other side of the Gaj;_,In_Sb.
The entire hole wavefunction for this four-constituent quantum structure is now
seent to lie in a region of strong overlap with the electron wavefunction (as in the
superlattice of Fig. 2). Hence, the in-plane hole mass is virtually equal to that in the
superlattice (0.048myg) and the interband optical matrix element is nearly as large
(Poy = 5.3 eV A), yet the electrons and holes both have 2D dispersion due to the
Gaj; Al Sb barriers. Because of the coupled-well nature of the conduction band
profile, the electron states split into symmetric (E1S) and anti-symmetric (E1A)
levels. However, only E1S will be populated at the laser operating temperatures of
interest (< 300 K), since the energy separation between the two is 125 meV. The
structure in Fig. 4 is illustrated with AlSb Cladding layers, which provide excellent
optical confinement and provide a nearly exact lattice match to the active quantum-
well region (minor adjustments in the active-region lattice constant are easily made
through composition variations in the Ga;_.In,;Sb and Ga;_,Al;Sb layers). Note
also that we still expect intervalence Auger processes to be weak because the energy
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InAs(244)-GalnSb(314)-GaAlSb{434) MQW

By = 334 meV, Poy = 3.6 eVA
2D Electrons (my = 0.065m,)
2D Holes (my) = 0.11myg)

A
I 'llwp(z) foy 3
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Fig. 3. Band profiles and FEM wavefunctions and energy levels for a Type-II InAs-Gag,7pIng.305b-
Gag,1Alp,gSb three-constituent multiple quantum well which is lattice-matched te the AlSb
cladding layers. Although the electrons now have 2D dispersion due to the Gag,1Alp,9Sb bar-
rier layers, the wavefunction overlap is reduced from that in Fig. 1.

gap between E1S and H1 again falls halfway between the gaps for H1-L1 and H1-H3
(and is of course far out of resonance with the split-off gap). We finally point cut
that electrical confinement ceases to be an issue in InAs-GaSb-AlSb-family Type-
II laser structures because the AlSb or Ga;_ Al .Sb cladding layers provide large
offsets for both the conduction and valence bands, in addition to having low refrac-
tive indices for optical confinement (An > 0.2}. As in the intersubband quantum
cascade laser,%% the emission photon energy for the present Type-II laser is con-
trolled almost entirely by quantum confinement rather than by the energy gaps of
the constituents, and can in principle be tuned from zero to more than 1 eV,

We emphasize also that the quantum structural design considered here has quite
literally taken the form of wavefunction engineering.
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InAs(20A)-GalnSh(31A)-InAs(21A)-GaAlSh(434) MQW

L, =~ 322 meV, Pry- 22 5.3 eVA
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Fig. 4. Band profiles and FEM wavefunctions and energy levels for a Type-I11 InAs-Gag,7qIng 308b-
InAs-Gag,1 Alp.oSb four-constituent multiple quantum well which is lattice-matched to the AlSb
cladding layers. This structure combines both the 2D electron dispersion of Fig. 2 and the large
wavefunction overlap of Fig. 1.

4.2, Intersubband Second-Harmonic Generation with
Momentum-Space Reservoir

The multiband FEM also provides an attractive means of calculating the intersub-
band optical, nonlinear optical and electro-optical properties for complex, multi-
layered structures. For example, intersubband-based second-harmonic generation
has attracted a great deal of attention in recent years,169:11%.17¢ motivated in part
by the need for coherent, high-intensity optical pulses at wavelengths which are not
readily available from conventional sources. Intersubband X.E,i,) processes are espe-
cially attractive because they have narrow bandwidths and large oscillator strengths,
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and becanse they are particularly adaptable to wavefunction engineering through
' modification of the structural design. The use of stepped wells and asymmetric
171 4o hreak the usual wavefunction symmetries has led to the obser-
order nonlinearities which are more than 1000 times larger than

double wells
vation of second-

117
those attainable from bulk GaAs.
However, it has recently been shown!? that saturation imposes a fundamental

limit to the maximum second-harmonic conversion efficiencies that one might ulti-
mately hope to attain from optimized quantum-well devices. A key figure of merit
i the conversion efficiency at the onset of saturation, which may be reduced to the

approximate form

,
s = — Rz, (4)
T12
where 3
723413
Ry = | ———— . 5
12 (zfz +22%3) 5)

zij is the dipole matrix element for transitions between subbands i and j, v =1 /T
(T is the intersubband-transition broadening parameter), and 712 is the intersub-
+band relaxation time. Equation (4) is seen to contain no explicit dependences on
) most of the usual design parameters, including angle of incidence, fill factor, dop-
: ing density, refractive index, or resonance frequency. Furthermore, one has limited
flexibility in optimizing the parameters which do appear,'? i.e. the broadening is
ultimately limited by nonparabolicity, the intersubband relaxation must rely on in-
trinsic phonon processes, and interrelationships between the dipole matrix elements
limit the maximum magnitude of Rj;. Numerical solutions to the coupled propa-
gation equations for the pump and second-harmonic beams, accounting for beam
depletion and saturation of both the absorption coefficient and x{*, confirm that the
maximum conversion efficiency gmax attainable from “conventional” semiconductor
intersubband devices is fundamentally limited to 10 %.12
Ing.a0Sb- This limit is governed primarily by saturation, which occurs when the ground-
the AISb " state level becomes depopulated by intersubband absorption. The relatively-rapid

the large onset of saturation is in turn directly attributable to the inefficiency of the intersub-
band relaxation process, which unavoidably yvields 7i2 exceeding =1 ps for isolated
3-level subband systems with favorable xt2). While it would be difficult to increase
the relaxation rate for the usual phonon mechanism, there are nonetheless artifi-
cial means by which we can attempt to reduce the effective r2. One proposal has
been to use band structure engineering to place the subband system in contact with
1tersub- & high-density reservoir of optically-inactive states, whose function is to provide
, multi- elastic scattering into and out of the active subband states.!? Thus, whenever an
1eration absorption process excites an electron out of the ¢ = 1 subband, that carrier is
in part replaced by an electron from the reservoir on a time scale much faster than 5.
are not ! Similarly, electrons excited to the i = 2 and ¢ = 3 levels quickly scatter into reser-
re espe- voir states at those higher energies. Furthermore, saturation does not occur until
rengths, -7 the entire lower-energy portion of the reservoir is emptied.
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While spatial reservoirs could be placed on each side of the active asymmetric
region, the fill factor for such a device would be rather small due to the large ratio
of reservoir-region thickness to active-region thickness. Probably a more attrac-
tive alternative is to introduce a reservoir in momentum space.’? Figure 5 shows
the band profiles, energy levels, and wavefunctions for a GaSb-AlSb-Ga;_.In,Sb-
Gaj_zIngSbh-AlSb ADQW structure which embodies this concept. The key feature
is that the I-point conduction-band minimum (labeled T'; in the figure) is at only
slightly lower energy than the ground state for the four degenerate L-point valleys
(labeled L1). While the design of the asymmetric wells is such that the I’-point
subbands are doubly resonant (ET, =~ El; ~ fw = 122 meV in this example) and
have favorable dipole matrix elements (Ry» & 0.33, the L valleys are ideally suited
to serving as a reservoir. Their 2D density of states is roughly 30 times that of
the I" valley, yet they can be made optically inactive by detuning the intersubband
spacings to values far from resonance with the pump and second-harmonic photon
energies. Measured L-T' intervalley relaxation times tend to be extremely short,
falling in the 50-200 fs range, "1™ and it has been predicted theoretically that the
I'-valley intersubband relaxation rate can be increased by shunting through L-valley
states, 174175

Since the k - P method is inapplicable to systems with ellipsoidal constant-
energy surfaces, we derived L-valley subband energies and transition matrix ele-
ments from a 1-band version of the finite-element algorithm (the second-harmonic
generation will be relatively insensitive to the details of the L-valley properties).
That calculation employed L-point quantization masses for each constituent mate-
rial {m. = 3mgmy/(m; + 2m,) for (100) growth, where m; and my; are the L-valley
transverse and longitudinal masses]. Because the two lowest L-point subbands have
energies only slightly above the I-point minimum (L; is 38 meV above I'; and L;
is 17 meV above L) and their densities of states are much higher, roughly 90 %
of the electrons reside in the L-point reservoir in thermal equilibrium at 300 K.
Nonetheless, since the intersubband splittings are far out of resonance with both
hw and 2kw (e.g., By ~ 75 meV and E4 = 170 meV), the pump-beam and second-
harmonic-beam absorption coefficients due to L-point transitions are calculated to
be less than 10 % of those for resonant [-valley processes. A broadening parameter
of 10 meV was assumed for both I'-valley and L-valley interactions.

Clearly, there are a number of adjustable design parameters which may be tuned
in optimizing the structure shown in Fig. 5. For example, the splitting Ef; & 2hw is
determined primarily by the thickness of the Ga; _.In,Sb QW on the right, whereas
the I'y energy (and hence £, and EJ;) is governed by the thickness of the GaSb well
on the left. Similarly, the [',~L; energy difference (which is the key to the relative
populations of the active system vs the reservoir system) is largely controlled by the
alloy composition x of the Ga;__In.Sb well (note from the figure that the minima
for the T and L band profiles move in opposite directions when z is increased from
0 to 0.11). Finally, the matrix elements z12 and 233 are governed primarily by the
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AlSb-GaSb(46A)-AISh(6A)-GalnSh(784)-A1Sh MQW
EL, = Ef = lw =2 122 meV

m182A, ;= 1524, 25~ 3024

BL =17 meV, EL ~ 75 meV
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Fig. 5. [-point and L-peint band profiles and FEM wavefunctions and energy levels for a GaSb-
AlSb-Gag.glng.115b-AlSh asymmetric double quantum well. In second-harmeonic generation, the
T-valley states will be optically active while the L-valley sates function as a momentum-space
reservoir,

thickness of the barrier separating the two wells, This barrier could be somewhat
thicker if Gaj—,Al,Sb with relatively low y is employed instead of AlSb.

While the I'; wavefunction (solid curve) is seen to be concentrated mostly in the
right well and that for I'; (dashed curve) mostly in the left, it is the leakage of each
wavefunction into its opposite well which fixes the magnitude of the optical coupling.
Naturally, z;5 will become vanishingly small if the AlSb barrier is made too thick.
Although 1% (dotted curve) is somewhat more evenly distributed between the two
wells, it nonetheless has greater magnitude in the right well (it is well known that z;3
and hence y{?) vanish for any system having inversion symmetry). Note also that
while zy5 and z3 should ideally be of comparable magnitude so as to equalize the
depletion of the pump and second-harmonic beams, it is nearly always advantageous
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to maximize z93.17% The present structure has a large value (223 ~ 30.2 A) because
I and 9§ have relatively large overlap.

Since the L-valley shunt is expected to result in faster intersubband relaxation,
we estimate that saturation will be delayed nearly until the plasma-breakdown
point. With the resulting enhancement of n,, we obtain a maximum conversion
efficiency of = 20 %, which is a factor of 2 larger than that calculated for the same
[-valley subband system in the absence of the reservoir. Furthermore, the optimum
sample thickness is decreased considerably, to & 7 pm, which becomes quite feasible
for growth by MBE.

We thus predict that the incorporation of a momentum-space reservoir will sig-
nificantly enhance the performance of intersubband second-harmonic-generation de-
vices. While we have illustrated this concept with the example of GaSh-AlSb-
Ga;_.In,Sb-AlSb ADQWs, similar behavior is expected for Al Ga;__-As based
structures with L-point or X-point reservoirs.

4.3. Nowvel Localization of Carriers in Layered Heterostructures

Recent mvestlgatlons employing FEM-based computational methods have helped to
clarify the concept of wavefunction localization, and have provided a visualization
of that localization. Here we discuss several novel and perhaps counter-intuitive
findings from those studies: that quasibound states in compositionally asymmetric
quantum wells strongly participate in optical transitions, which may be exploited
in nonlinear mechanisms;?”” that the asymmetric vacuum confinement in a het-
erostructure cap layer leads to surface-bound states;'”® and that states with energies
above the barrier in a quantum well or superlattice localize in the barrier layers.

4.3.1. Quasibound Stafes

In quantum wells constructed using semiconductor heterostructures, well-defined lo-
calization of the wavefunctions below a barrier leads to increased excitonic binding,
which has been exploited in electro-optic devices based on the electric field modu-
lation of the excitonic transition. While it is well known that symmetric quantum
wells must have at least one bound state, this theorem does not hold in asymmetric
QWs. In fact, the asymmetric well can ‘push out’ the wavefunctions such that there
are no bound states at all in the well.

This feature of asymmetric wells has recently been verified experimentally.
Single asymmetric QWs made of GaAs were grown with unequal Al content in
the Al Ga,_,As barrier layers. This compositional asymmetry, shown in Fig. 6,
yields barriers on the two sides with different heights ¥; and V3, say, and leads to
a continuum of energy levels with half-confined states in the energy range V1 <
E < Vi. In this continuum, there exist special states which are ‘quasibound’ in
the sense that they have increased, or resonant, occupancy in the well layer. Such
states are remnants of the bound states which would be present in the symmetric
well if both barriers had height V3, and closely correspond to such states in energy
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Fig. 6. The band edge profile for a compositionally asymmetric quantum well.

+since the boundary condition on one side of the well is still the same as in the
symmetric well; they occur at energies where an integral multiple of half the particle
wavelength nearly fits within the well layer, and are associated with a maximum in
the occupancy of the QW layer as defined by the probability density of the carrier.

In the FEM, we employ 3 elements per layer, and use standard boundary condi-
tions for the vanishing of the wavefunctions at large distances into the barrier region
on the right. Typically, 300-500 A of the barrier layer is adequate to model the
wavefunction decay. On the quasi-bound side, we rearrange the values of the wave-
function and its derivative at the first node to correspond to the incoming amplitude
and the unknown reflected amplitude.?® The set of simultaneous equations for the
nodal values of the wavefunction that are obtained from the global matrix, after
applying the boundary condition on the incoming wave, are solved using LINPACK
routines. A reconstruction, by using the same interpolation polynomials that were
used to represent the wavefunction together with the solutions for the nodal values,
allows us to obtain the wavefunctions everywhere. With these wavefunctions we can
obtain the occupancy of the carriers within the quantum well layer. The occupancy
plots for the conduction and valence bands are shown for a 100 A asymmetric well
in Fig. 7. The peaks in the occupancy plot indicate the presence of two quasibound
heavy hole states, along with one quasibound state each for the conduction and
light hole bands.

These quasibound states are found to participate strongly in optical
transitions.!”” Estimates for the second-order nonlinearity using virtual transitions
involving such states are comparable to those with fully bound states in asymmet-
ric 4-layer QW structures with a step potential within the well region. Interband
transitions in a series of asymmetric wells of different width were observed exper-
imentally in piezomodulated reflectivity and fitted theoretically using the FEM.
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Fig. 7. Occupancy of the quasibound conduction, hh, and lh states in the well region versus
energy for a 100 A compositionally asymmetric quantum well {From Ref. 179).

As an illustration of wavefunction engineering, calculations were performed to pre-
dict the well width for which no bound states should be present in the asymmetric
quantum well. Samples were MBE-grown to specifications, and experiments indeed
verified the absence of a bound lh state in a 20 A asymmetric well.1™

4.3.2. Surface Quantum Well Confinement and Above-Barrier Localization

Here we consider the confinement of electronic states in the simplest of semiconduc-
tor heterostructures, viz., a quantum well (QW) bounded by vacuum on one side and
a quantum barrier on the other.1”® Figure 8 illustrates the conduction-band profile
for vacuum/GaAs/Al; Ga;—_As QWs which were recently fabricated by MBE. The
piezo- and electro-modulated reflectivity spectra for these surface quantum wells
were found to exhibit an extraordinary number (as many as 69 in one sample) of
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clear signatures for optical transitions between the quantum-confined states in the
valence band to those in the conduction band.!™ Although the concept of the sur-
face QW3s and the occurrence of states confined in them had been contemplated in
earlier reports,'87-18% the sensitivity and power of modulation spectroscopy'®*!%%
as'exploited in Ref. 178 displayed their electronic structure with unprecedented
clarity and richness. By comparison, photoluminescence experiments allow one to
observe only optical transitions between the lowest quantum confined states in the

conduction and valence bands.
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Fig. 8. Potential energy diagram for a surface quantum well (QW) and single quantum barrier
(5QB). The surface QW states are localized within the GaAs layer, while the above-barrier resonant
states are localized within the Alg 3Gag,7As layers. The probability density of the wavefunctions
for the first surface QW and SQB energy levels are also shown (From Ref. 178).

Another unique property of a structure such as the one illustrated in Fig. 8
is the presence of states localized above the single quantum barrier (SQB} in the
Al,Ga;__As layer. These states are actually part of the continuum and not bound
states as in a single QW. However, their wavefunctions and energy-level dependence
on barrier thickness are remarkably similar to those for their bound counterparts
in single quantum wells. In Fig. 9, we show the FEM wavefunctions for a 400 A
surface quantum well with a 800 A barrier. Both the below-barrier well-confined
states and the above-barrier localized states are displayed here. The calculations
were carried out with a very high confining barrier to the right of the structure
in order to generate real wavefunctions. The barrier-localized states are found to
occur at energies where an integral multiple of half the particle wavelength nearly
fits within the barrier layer.!”"1™ In the modulated-reflectivity spectra of SQB's
a large number of above barrier states are observed in these structures. Figure 10
shows the electromodulated reflectivity spectra of two surface QWs with 1, = 400 A
and I, = 150 A, both samples having I, = 800 A. The features between the Ey and
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Fig. 9. The wavefunctions of {a) some states localized in the surface quantum well, and (b)
above-barrier localized states in the vacuum/GaAs/AlGaAs/GaAs structure.

Ey + Aq signatures of GaAs may be attributed to the surface QW states. As
expected, noticeably fewer transitions below the barrier energy are observed in the
sample with !, = 150 A as compared to that with I, = 400 A. These features arise
from transitions between the quantum heavy-hole valence band and well-confined
conduction band states. They are labeled nm(H, L), where H and L denote heavy-
hole and light-hole, respectively, and the transitions are between the nth conduction
and mth valence band states. For such wide surface QWs the light-hole transitions
are more difficult to observe in electromodulated reflectivity because they are three
times weaker than the heavy-hole transitions, although for {,, = 150 A Fig. 10 shows
evidence for the first light-hole transition 11L. Several transitions between surface
QW states in the conduction band and those in the spin-orbit split-off band are also
observed between Ey + Ag of GaAs and Ey of Aly 3GagrAs. In Fig. 10, transitions
involving SQB states in the 800 A thick Aly 3Gag.7As layer appear in both samples
above the Ey feature of the barrier layer. The optical transitions between such states
are very strong and, since both samples have I, = 800 A, the spectra are strikingly




1, and (b)

ates. As
red in the
ures arise
l-confined
te heavy-
mduction
ransitions
are three
10 shows
n surface
d are also
ransitions
1 samples
1ch states
strikingly

Multiband Finite Element Modelling of ... 217

T T T Y T T T T T T T

T=10K

1,=400 A 1,=800 A

il

ke

® |z ~

23 :

g |8 £

g | &

Q S

%’ < XIS X120

o ur l 1,=150 A 1,=800 A

o

ﬁ WMMWW
1.6 1.8 2.0 2.2 2.4 2.6

‘Energy (eV)

Fig. 10, The experimental electromodulated reflectivity spectra of two surface QWs. Hoth spectra
are for samples with {, = 800 A and show the above-barrier quasi-bound state rescnances. The
tap spectrum is for L, = 400 A and the bottom is for L, = 150 A. The spectra were recorded at
T =10 K {From Ref. I178).

similar above 1.943 eV. This shows that these states are not strongly influenced
by the thickness of the GaAs cap-layer, and confirms the interpretation!l®-186-138
that such states are strongly localized within the barrier layer. Above 2.1 eV a
change in the spacing of the transition energies can be seen in the sample with
L, = 400 A. In the sample with !, = 150 A this change does not occur; instead,
the intensity of the SQB tramsitions confined predominantly in the barrier layer
approaches zero. Given that the only difference between these two samples is the
change in 1, we attribute the extra transitions above 2.1 eV for 1, = 400 A to
a continuation of the surface QW states above the barrier energy. The surface
QW states in the sample with I, = 150 A are not observed to continue above
the barrier energy, presumably because their intensity decreases more rapidly with
increasing energy than in the [, = 400 A sample. Furthermore, SQB transitions
in a sample with a wide surface QW (I, = 1650 A) were not readily observed
because localization of the wavefunctions in the barrier was marred by its thinness
(3, = 120 A). While the spectra given in Fig. 10 were taken at 10 K, the surface
QW states were also easily observable in the modulated-reflectivity spectra for room




218 L. B. Ram-Mohen & J. R. Meyer

temperature, and piezomodulated reflectivity gave results which were quite similar
to the electromodulated spectra.

In order to establish the origin of the optical transitions as originating from
electronic states confined in the surface QW as opposed to those localized above the
SQB, we applied the finite element method to solve Schrédinger’s equation for the
envelope functions in the heterostructure with a one-band model as well as with an
empirical two-band model.?? The continuity of the envelope function and its ‘mass-
derivative’ was applied at the layer interfaces. The confining surface potential was
taken to be much larger than the By of GaAs, while the material parameters in the
layers were taken from Ref. 189. For each state, a calculation was made to determine
where the wavefunction was localized. The overlap integral was calculated between
conduction and valence states for all possible transitions; the ones with the largest
overlap values were selected as the theoretical transition energies. After applying
a correction for the excitonic binding energy as estimated by Nelson et al.,'% the
derived theoretical values were found to be in agreement with those obtained from
the experiment. The strong localization of SQB states in the barrier layer was
verified to be insensitive to the thickness of the GaAs cap-layer. The density of
states (DOS) were also calculated for the conduction and valence bands.'®' The
peaks in the DOS were used to re-confirm the above transition energies. Consistent
with the experiment, the envelope of the peaks in the DOS showed a fall-off with
energy, as well as oscillations whose maxima corresponded well with the observed
transitions at high energies above 2 eV.

Figure 11 displays the optical transition energies between the surface QW states
and the above-barrier SQB states as a function of transition index n for three differ-
ent samples. The data points obtained from the electromodulation spectra are fitted
with curves from the theoretical calculation, with I, and [; as the only adjustable
parameters. The Eqg gap of the barriers was determined from the experimental data
in Fig. 10 to be 1.943 eV in all samples. The departure of the theoretical calculation
and experiment at higher energies is due to the neglect of non-parabolicity in the
DOS calculation. Again, the data points for the SQB states from Fig. 10 virtually
overlap because both samples have identical barrier heights and widths. We have
plotted the 1, = 400 A surface QW states in Fig. 11 above 2.1 eV as a continuation
of the surface QW states from below the barrier energy. Strictly speaking, the DOS
was calculated for the combined surface QW and SQB structure. However, the
quantum numbers in Fig. 11 were still assigned above 2.1 eV as though the states
in the {, = 400 A sample are a continuation of the surface QW states. Between
the Ey of Alp 3Gag.rAs and 2.1 eV in Fig. 10, the theory correctly predicts the SQB
states to be highly localized in the barrier layer, the corresponding transitions being
more intense than the surface QW transitions below 2.1 eV.

The structure in Fig. 8 is not the only type which should exhibit surface QW
states. Virtually any structure with a GaAs cap-layer of 200 A or more can, in
principle, exhibit observable surface QW states which may co-exist with features
associated with the underlying heterostructure.




