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The exact transport equation obtained in a recent work on new renormalization methods
for single-time Green'’s functions is applied to weakly inhomogeneous quantum systems. The
initial density matrix and the external fields are assumed to vary slowly over microscopic
length scales like the de Broglie wavelength 4, of the particles, the range 4, of the interaction
and the lattice constant a. In addition, the Hamiltonian without the external fields has to fulfil
{quasi-)momentum conservation. The final result is given by a set of local and nonlinear
integral equations for the Weyl transforms of all one-particle distribution functions occurring
in the system. As an application a quantum solid of Bloch electrons, phonons, and impurities
in arbitrarily time-dependent and weakly inhomogeneous electric and magnetic fields is
studied. The fields can be moderately high in the sense that r, »max{4,,4,,a} and
eEmax{Ag, Ay, a} <ep. Here rp denotes the radius of the Landau orbits, £ is the electric
field, and &, is the fermi energy of the electrons. In Born approximation, a set of generalized
Boltzmann equations is obtained which include interband transition terms from scattering and
Zeener tunneling as well as collisional broadening and intracollisional field effects.  © 1994

Academic Press, Inc.

1. INTRODUCTION

In a previous paper [1] (hereafter to be referred to as I) we have derived an
exact transport equation for all single-time distribution functions

Furlt;bb')y= F<bpbd s (1.1)

occurring in an arbitrary multi-component quantum many-body system (b and &’
can be creation or annihilation operators of any component). The purpose of the
present work is to specialize this result to the case of weak inhomogeneities and to
apply it to quantum solids in high electromagnetic fields.

In the conventional Keldysh formalism for double-time Green’s functions, a
standard method to obtain kinetic equations for small variations in time and space
is to use a so-called gradient expansion [2, 3]. However, since (1.1) is already a
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single-time quantity, this procedure is only needed here for the spatial variables.
Thus, in our formalism there is no restriction with respect to the time dependence
of the external fields. Moreover, we will show that the precise conditions for the
application of a gradient expansion in x are:

1. The Hamiltonian without the external fields has to fulfil (quasi-)momen-
tum conservation.

2. The wavelength A, of the inhomogeneities in the initial density matrix p(¢,)
and in the external fields has to be large according to

AO>}"F’}“Vaaa (12)

where A, denotes the de Broglie wavelength of the particles, 4, is the range of the
interaction potential V, and a is the lattice constant.

The final transport equation for the Weyl transform F}P(x;1;¢;bb’) (we use
the notation /=1, a, where 1 is the quasimomentum and « denotes the set of the
remaining quantum numbers) will have a local structure in the spatial coordinates.
This means that all quantities in the generalized collision integral depend on the
same parameter x and the structure in the remaining variables 1, « is just like in the
homogeneous case. Consequently, the result can be written independent of the
representation by transforming it to an operator form where the spatial and
temporal coordinates appear simply as parameters. The homogeneity of all these
operators, together with the possibility of using other sets of one-particle wave
functions, will be especially important for the treatment of Bloch electrons in
external fields.

The transport equation is presented as a systematic perturbation expansion in the
coupling parameter, each order being defined by the general Feynman rules
developed in 1. Furthermore, the derivation is independent of the special form of
the interaction.

The second part of this paper is devoted to the case of quantum solids in time-
dependent and weakly inhomogeneous electric or magnetic fields. We will consider
a system of Bloch electrons, phonons, and impurities which can interact in all
possible ways: electron-electron (e-e), electron—phonon (e-p), electron—impurity
(e-1), phonon-phonon (p-p), and phonon—impurity (p-i) interaction.

In order to apply our general transport equation to this system we will take care
of the fact that weak inhomogeneities in the external fields and in the electro-
magnetic potentials are not necessarily equivalent. We will show that this problem
can be removed by imposing the conditions

ipeB 111
;‘J <min{— ! —} (13)

c A Ay a

and

eEmax{ir, 4,,a} <eg (1.4)
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on the magnitude of the magnetic field B and the electric field E; ¢5, e, and m
denote the fermi energy, charge, and mass of the electrons. Equations (1.3) and
(1.4) mean that the radius r, = fic/A.eB of the Landau orbits is large compared to
max {2, 4,, a} and that the energy transfer to an electron over a distance A, 4,
or a by the electric field is small compared to &.

A second problem arises from the question of which representation of
one-particle wave functions is the most suitable for the Bloch electrons. For
homogeneous fields one often uses the lattice Weyl transform [3-5] with respect to
magnetic Wannier functions [6-8], also called Roth functions in k-space. Although
it is possible to generalize these functions to the case of weak inhomogeneities, we
will use a more obvious choice in the present work. It consists in a complete and
orthonormal set of instantaneous and local eigenfunctions of the unperturbed
Hamiltonian including the external fields. As a result we will obtain a driving term
consistent with the well-known relation [9, 10]

0)

. e Oel
ik = ¢E(x, 1) + 2= =2 (k) A (. 1) (1.5)

for the time evolution of the wave vector k of a Bloch electron (¢, (k) denotes the
dispersion law for the band «).

For small tunneling rates, being equivalent to the condition (1.4), we will also
consider the electronic Wigner function F P for « # «’. This leads to a correction
of the driving term by interband transition effects due to Zeener tunneling. For the
case of e-p and e-i interactions in homogeneous electric fields, the same result has
been obtained in [11].

The collision integral is calculated in Born approximation. However, since
the external fields can be very high, the transition probabilities are not given by the
usual golden rule. Actually the whole equation has a non-Markovian form and the
fields enter the collision term, a property which is known as the intracollisional field
effect [11-17]. Finally, as has been shown in detail in I, one can also include colli-
sional broadening effects by simply replacing the unperturbed evolution operators
by the retarded or advanced Green’s functions.

Transport theory of quantum solids in electric or magnetic fields has been the
subject of many previous works [2-5, 11-21]. However, all these treatments are
resticted to homogeneous fields and there are further assumptions depending on the
formalism used (see especially Section 5 for a detailed discussion).

The work is organized as follows. In Section 2 we will give a short review over
the general theory developed in L. All basic notations in the exact transport equa-
tion (2.24) are explained in detail, but for the graphical techniques and the general
Feynman rules, the reader is referred to I. The properties of weakly inhomogeneous
quantum systems and a generalized Weyl transformation are presented in Section 3.
The Weyl transform of the exact formula (2.24) will lead to the quantum transport
equation (3.31) for weak inhomogeneities. Section 4 is devoted to the case of
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quantum solids as described above. Finally, Section 5 contains some conclusions
and a comparison with other methods in the literature.

2. THE EXACT TRANSPORT EQUATION

In this section we will give a short summary of the results obtained in 1. Thereby
we will try to use a notation which is as compact as possible. The final equations
are exact and can be used for weak as well as strong inhomogeneities.

We consider a general quantum many-body system of several components
characterized by discrete one-particle quantum numbers /. An arbitrary creation or
annihilation operator of any sort of particle is denoted by b,. The Hamiltonian is
written as

H(t)=Hy(1)+ V, (2.1)

where H,(t) is assumed to have the bilinear form

Ho(t)=1Y Y e,(1;61b") N(b).b) (2.2)

1" b

and V describes the general interaction

1 _
V=z; Y X 6L b BTYN(B, - b)) (2.3)
r Cheel BBt

with N(---) being the normal ordering.
The full double-time Green’s functions are defined by

G, 566"y = F O ) b ) ooy

, , (24)
G4, 166"y = (o Du b1 ) i

where the upper (lower) sign always corresponds to fermions (bosons) and
{ -+ uy denotes the expectation value with respect to the initial density matrix
p(ty). The Heisenberg and interaction operators of b, are given by b,(1) and b,(1),
respectively. For the unperturbed Green’s functions we write

G (1, 160"y = F LAY b)) piay

. o o (2.5)
G, 68" ) = b () :(8)) iy

and the symbol F is used for the corresponding single-time quantities

Fi(r;bb)y=GE(1, 1;6b)),  FO(1:b6')=GOE(1, 1; bb'). (2.6)
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The connection between G'° and F‘® can easily be obtained by using the trans-
formation law I (2.29)

b(t)y=Y Y Wt t'; b6’y bi(1') 2.7
e

with
R A

and
G 21, 15 bb" )y = {L[b/(1), b1(1)] 4 D iy (29)

where, in (2.8), we have used the general definition of a transposed operator

Al 1 bbY . = AL, 15 b'b) . (2.10)

The symbols &'~ ¢’ or &’ ~ ¢ in (2.8) mean that 5’ is proportional to a creation or
annihilation operator. Using (2.7) in (2.5) we immediately obtain the important
relation

GO (1, )= WO L, t=) F O (=) W=, )T, (2.11)

where < =min{¢, ¢’} and the operator product is defined by the generalized matrix
multiplication

(4B)y (bb')y=Y 3 Ay (bb") By (bb"). (2.12)

i b

The replacement of H, by the full Hamiltonian H in (2.11) would lead to the
generalized Kadanoff-Baym ansatz [1, 17]

G=(1,1')y=W(t, 1<) F(t=) W=, t')T, (2.13)
where
G8(t,t'; bb") if o ~ct
Wit t;bb')= i ) .
(& £355°) {G”(t, Pibb)T i b~ (2.14)
and
Gult, 560"y = <by()y b1(1 e ) o) (2.15)

is the retarded or advanced Green’s function for the nonequilibrium case. Although
(2.13) is not correct, the central result in our first work I was that (2.13) can be
used exactly for all unperturbed Green’s functions in the perturbation series of F *.
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Simultaneously one has to disregard certain reducible graphs and only the so-called
PSD2-diagrams remain (see Section 4 of 1). To specify this let us first write down
the perturbation series for the time derivative of F* according to [{2.60),

é

é—tF”i,(z; bb') + il (1), F £ ()15 (bb")

=§ T Y Y Jdt,zj dr- [ ar,

m=0 Guu (... in) ~10 i}
DERIGA g,~~ ; (2.16)
ten} =1 Jj=1 =t

G, is a graph with n vertices and m correlations, 1y, .., ¢, are the times at the
vertices ordered according to ¢, >¢,> --- >, >, denotes the sum over all
quantum numbers, and z; is the prefactor of the graph G, (see 1(2.51)). The factor
¢! for the vertex i is defined by

=TI Gﬁ‘”*{ [T ¢ 1 GL"'*—(+H—)}, (2.17)

s

L=T1,=1 =T,<T =1 <71

where G''* are the unperturbed Green’s functions at the line s:
GO = FLP (1) b7 ()
G =<b(t,) b (1))

plig)

(2.18)

plig):

The matrix elements 0; and the correlations g; are given by (see also 1(2.36))

Bo=0(ly---1,5b)" - -b7) (2.19)
| pataaaaey
g,=g(t, -1, L1 b! ‘--b’)=b},(11)-'-b;,(t,), (2.20)

where b' ... b" are the operators at the vertex i or at the correlation j, respectively.
The exact order of the creation and annihilation operators in (2.18), (2.19), and
(2.20) is given by the general Feynman rules set up in Section 2 of 1. Using (2.7),
g, can also be written as

Z Z FIW“” titos b6 gltg; I - [ B' -8, (221)
B oi=1

where

r
glrgs - 1;b" b )y=b; --- b}, (2.22)

are the correlations at the initial time.
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Finally, the driving term [e,(z), Fit(¢)]*" in (2.16) is given by

Leur) F (1)1 (bb")

Le\(r), FE(1)]_ (bb) if b~c, b ~ct
) e, FE(n5 (b)) if bob ~o,
") £Le(0), FE), (Bb) 0f b6 ~c (223)

£Le (1), FE(O] (b))  if b~c' b ~e,

where we have used the generalized matrix multiplication (2.12).
Applying the renormalization methods of I to (2.16), one arrives at the following
exact transport equation (see 1(4.12})

jF//(t bb') +i[&,(1), F (1)1} (bb")

P TR M Wl RN A

n=1 m=0 Gam {1y s in) fo
(n, m)# (1, 0)

x Z H 5, H g®

i=1 ji=1

(2.24)

=1

The coefficients ¢{* and g{*' are given by (2.17) and (221) if we drop the
superscript ) and use the generalized Kadanoff-Baym ansatz (2.13) for G}.
Consequently the prime at the summation index and the sum ¥ ‘» indicate that we
are only considering PSD2-diagrams without one-point self-energy insertions (see
Section 4 of I for the precise definitions). The replacement of ¢,(¢) by &,(¢) in the
driving term, where

Ep(; 0Ty =g, (1; 6 DYY + 551 (15 b'1hY), (2.25)

corresponds to a renormalization of the unperturbed Hamiltonian by the
Hartree—Fock contributions (see 1(3.8))

i A 4 (1) ) (2.26)
! ob, ob; M o) :

In the next section we will use Eq. (2.24) as a starting point for the derivation
of a general transport equation in weakly inhomogeneous quantum systems. All
lowest order diagrams are explicitly calculated in Section 4 for a quantum solid in
high external fields.
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3. WEAKLY INHOMOGENEOUS QUANTUM SYSTEMS

To treat the case of weak inhomogeneities it is most convenient to work in
the momentum representation. Thus we choose /=1, & where | denotes the
quasimomentum of the particle and « are the remaining quantum numbers like
spin, polarisation, band index. Here we intend to develop the more general theory
for one-particle states which include the potential of a static lattice since this is
necessary for a treatment of quantum solids. The continuum case without a lattice
is then simply obtained by the limit a — 0, where a is the lattice constant.

To define a weakly inhomogeneous system we have to study translations in space
which, for an arbitrary lattice vector a,, are generated by the unitary operators [9]
(we set A=1)

R (3.1)

Here P% denotes the total quasimomentum operator

P*=Y Y 1bb, (3.2)
! bb~cte
and a, is defined by
a,=na, +n,a,+n;a;, n,eZ, (3.3)

with {a;},_, , ; being the lattice basis vectors.
From (3.2) one obtains immediately the transformation law for a single creation
or annihilation operator

eiPwa,bI eAiP'l’a. — e‘“‘(b)"'bl, (34)
where
1 if b~c'
1*(b)= ) 3.5
(6) {——l if b~ec. (35)
For an arbitrary operator 4 we will use the Fourier-decomposition
A=Y A" (3:6)
q
with
e'PTam g9 o= P¥m  plamn g 3.7)

This can always be achieved by applying (3.4) to the general representation (2.3)
of 4.

595229 2-8
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The Hamiltonian (2.1) is written in the form
H(t)=Hy+ V+ H_(2), (3.8)

where Hy+ V describes the time independent Hamiltonian of the equilibrium
system and H,(¢) includes all external fields. Since Hy+ V is translationally
invariant we have

P (Hy+ V)e P =H, 4 V (3.9)

which is also clear from

Ho=) Y &b, (3.10)
/

bh~cte
and from the quasimomentum conservation for the matrix elements #( ---) in (2.3)

Bl di b b =Y Oy kBl o d1 b b7, (3.11)
K

where K are the vectors of the reciprocal lattice defined by
¥ =, (3.12)

The property (3.9) implies that all Fourier components (H, + V)% are identical to
zero if q+#0; ie, Hy+ V describes a homogeneous system. However, the external
fields, as well as the initial state, may not be translationally invariant in general.
The corresponding Fourier components H.,(¢)? and p(¢,)9 are assumed to be only
relevant for

2n
|ql<qo=7, (3.13)
0

where A, characterizes the wavelength of the inhomogeneities in our system. Since
Hy+ V commutes with e’F**, the same property (3.13) then will also hold for the
Fourier components U(r, t')}; of the time evolution operator U(¢, ')y of H(t).

Now, let us denote by A(/,---L;b'---b)=4,  (--1;b"---b) any
of the functions FE(r;bb"), W,(t,t;bb"), oF(t;bb"), o(l,---1;b"---b") or
glto;,---1,; ' --- b") which can occur in our general transport equation (2.24). By
using the property (3.13) for p(z,)? and U(s, ¢'); together with (3.4) and (3.7), it
is straightforward to see that A(/,---1;b'---b") gives a significant contribution
only if

Y IXbe)=—q—-K, |qI<qo, (3.14)

i=1

for a proper vector K of the reciprocal lattice. In the special case 4 =0, we have
q=0 due to (3.11).
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From (3.14) we see that the function A(/;---/,;b'..-b") is very sensitive to
changes in the variable 3 7_, 1*. However, for constant 3 7_, 1*, it will only vary

essentially over a region of order 1/4,or 1/4,.. Thus, for weak inhomogeneities, that
18, go~ 1/ig <€ 1/Ap, 1/4, (see {1.2)), we have in good approximation

Ay 4q o b )= A, (5 b ) (3.15)

if all |q, <go and 3;_, ¢ =0.

The separation of the variables I, ---1, in slowly and strongly varying ones is best
expressed by introducing the so-called Wigner or phase space transformation AP
of the function 4. These new quantities are defined in the variables

. . - 1 .
4= - Y 1Xe)+K T=l+-qv) (3.16)

i=1

which are only well defined if |q] ~ g, is very small compared to the radius of the
first Brioullin zone (1.BZ). However, this is equivalent to 4, > a, which corresponds
to our condition (1.2) for weak inhomogeneities. Thus, for nearly all variables 1, in
the 1.BZ (up to a negligible region of order g,), the new variables T, will also lie in
the 1.BZ.

The generalized phase space transformation is now defined by

AR (@ T b D) =Y S k Aay (oL BT (317)
K

which, for the special case r =2, reduces to

AR (G T T 0'6%) = b1, gy 0 Ay — 30 (87), T, — £ q*(87); 6'87). (3.18)

222

The conventional Wigner transformation [22] corresponds to b'6% = cc”,

AP (T ect) =0 34,0+ 1, T, — g ech). (3.19)

x %2

Equations (3.14), (3.15), and (3.17) imply the following properties for the Wigner
function AP,

LA ('H) PR IRY LRIV 10 EN) I Jgoe (3.20)
K

A (g1 Tsb' b)) 20 i gl > g0 (3:21)

and

AP (@1 4q, T+ b )= AR (T T ) (322)

if |q;/~go and 37_, q*(b')=0.



330 H. SCHOELLER

Furthermore, we will define the lattice Fourier transformation of 4™ by

A% (a T Tt by =Y emart (g Topteb). (323)
q

According to (3.21) the spatial variation of the function A;’f‘___zr(a,,; ..} 1s given by
1/go~ 49> a . Thus it does not vary essentially over the lattice constant and the
discret variable a, can be replaced by the continuum variable x.

All quantum numbers in our general transport equation (2.24) (except the two
external ones) are contracted according to the generalized matrix multiplication
(2.12). Therefore, in order to study the Wigner transformation of (2.24), we first
have to consider the phase space transformation of the general operator product

(AB)Uy -1, 6" - b")
= z Z Al - LT LB b b

Il BB

xB( - L0, Db bbb (3.24)
From (3.17) we immediately obtain

(ABPr (g1, ---T,50" - 0"
= Z 6q,¢l|+q2 Z 72» _Z_ Ag:‘_ua,il“_@
-l P3N )

q92 oy ds

~ 1 1 + 1
A, ——q*(b )+ *(bY), . 1L — =g (b)) + x(b),
><(q,,h nq(b) ; sql( | nq( ) ; sql( )

] R R ST
I *b'), .1 (b ;b‘---b’b”---bs*)
1+r+sq1( ) “‘+r+sql( )
% BPh q: 1+ ! qr¥"), .., I+ : q} (%)
8 Gy Ap 211 s+n_r 2 g eeey B S+n—r 2 ]
T, - lq* )+ ——qr 6™
a1 n s+n__r 2 s 1eny
< 1 SO
e $(B"); 8 BT, 3.25
L= Q7"+ ——— a3 (t") ) (325)

Transforming the summation variables I, - - -1, according to

_ _ 1 . .
LT +-qF(6) —— q*(b'), (3.26)
R} Sn
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using q, + q, =q, (3.22), and (3.23), we obtain in lowest order approximation
(AB)E ., (T T500 07
=35 D R LS 53 FEPRY 8 FEYY Y SRR AR A
B

A A S U
XBY sy T LTy B BB (327)

or in operator form,
(AB)™ (x) = 4°"(x) B*"(x), (3.28)

where all quantities
[AP(X) Ty (0T by =42 (T, bt b)) (329)

are homogeneous operators in the sense that
Y 1X) =K, (3.30)

according to (3.19).

Iterating this procedure for the r.hs. of Eq. (2.24), we see that the whole phase
space transformed collision integral can be written as if the whole system obeys an
exact quasimomentum conservation (up to a vector of the reciprocal lattice) at each
line, vertex, and correlation bubble. On the other hand, the inhomogeneity is
simply expressed by a single parameter x and we obtain

i,
— FEPPOG I 568"y + i[E,(1), FE(0)132P" (x5 bb')

at
i had , @) (¢ fiy fig 1
=Y XY RO d[dy | a,
n=1 m=0 Gam (i), . in) "~ 10 0 fo
(n,m)#(1,0)
x Y26 ] c®@ohx) 5, [] g (x)| (3.31)
{gn} i=1 Jj=1 =1
where due to (3.18)

%)+ 1'*(b')=0 (3.32)

and 3 {"), means that all wave vectors have to be chosen like in the homogeneous

case. ¢{*'P*(x) and g{?’P"(x) are given by (see (2.17), (2.21), and (2.13))

cm= T 6o 11 67 T1 6,7m-(+ o -)f

R 5 $

f=t,=1 L=t < =T<T (333)
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and
giPe(x)= Z Z [T wen (x; 11 t,00; 66'7)
A1 i=1
xgil___&'(x;i,---i,;B‘---E’), (3.34)
where
GEP(x; )= WPP(x; 11<) FEPR(x; 1<) WPh(x; 1<) (3.35)

corresponds to the generalized Kadanoff-Baym ansatz of G*P"(x; 1, ¢').

For the evaluation of the driving term on the Lhs. of Eq. (3.31) we will
go beyond the approximation (3.27). This is necessary since the leading terms
can cancel each other if [&,(7), Fif(¢:)]"), given by (2.23), is identical to the
commutator.

For this purpose, let us first eliminate one of the variables T, and T, in (3.18) by
defining

AL(q, L bb"y = ARL(q, —1*(b), I*(b'); bb'). (3.36)
Using this function in (3.25) we obtain exactly
(4B)5 (q,1; b)
=2 F0qre L ZAL@ 1+ 343 00Y) B 1= 300 50) - (337)

%R

or
(AB)2E. (g, L; bb')
= Z 5q - Z Ze(l/Z)(qz(ﬁ‘/PH qn(ﬁ"/ﬁll)Aph(q I: bb )Bph (qz,l bb' ) (3.38)

2192

where 97/01 acts on 4°® and 8%/01 on BP". The Fourier transformation of (3.38)
gives
(AB)Ph‘ (X, I; bbl)=zZe(l/b)((l’n/i‘x]((“/.?l) a4y @xi(ﬂB/Dl))Aph(x I bb )Bph(x l bb ’
x b

(3.39)

and the driving term up to first order can be written as

+ph (»%)
A1), FE(1)] P = i[E7°(0), FEP(1)]" 4 = [aal (0, L (z)]

1[ogsh  @FFe e
_5[6; (t),Tll—(t)] , (3.40)
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where [--- ] is defined in the same way as [--- ]’ if one interchanges
commutators with anticommutators. The generalized matrix multiplication in (3.40)
is defined by

(AP"BP"). (x, L;bb') = ¥ AP°(x, }; bb') BPR(x, I; bb). (3.41)
a b

Equation (3.31), together with (3.40), is the final result of this section. It
constitutes a set of nonlinear transport equations for all single-time Green’s
functions in an arbitrary weakly inhomogeneous quantum many-body system.
Except for a correction to the driving term it has locally exactly the same structure
as the original transport equation (2.24). One simply has to replace all quantities
by their corresponding generalized phase space transformation (3.23) with fixed
parameter x and relations for the wave vectors like in a homogeneous system.
Moreover, for given x, the whole equation is independent of the representation for
the remaining variables. Especially in Section 4 we will see that the conventional
transport equations of solid state theory are obtained if one evaluates (3.31) with
local and instantenous eigenfunctions of the unperturbed Hamiltonian £¢2"(x, ¢) in
Wigner space including the external fields. Finally, let us mention that our
transport equation (3.31) does not involve any gradient expansion in ¢ and is
therefore valid for arbitrarily time dependent external fields.

4. QUANTUM SOLIDS

In this section we will apply our general transport equation (3.31) to a weakly
inhomogeneous quantum solid in high electromagnetic fields. Thereby all possible
interactions between Bloch electrons, phonons, and impurities are taken into
account. Thus, if the external fields are described by the electromagnetic potentials
A(x, 1) and ¢(x, 1), the Hamiltonian is given by

H=Hy+V+ H,(t) (4.1)
with
Hy=H,+ Hf (4.2)
VeVt Vet Va+ Vip+ Vi (4.3)
Ne 1 e 2
Hﬂ(t)=,-=1 2—n;|:(|‘)j—zA(ﬁj, 1)) ]+erp(ij, t). (4.4)

Here the super- or subscripts e, p, and i refer to the electrons, phonons, and
impurities, respectively. Thus H§ is the unperturbed Hamiltonian of the electrons,
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V. describes the electron-electron interaction, etc. The space and momentum
operators of the jth electron are given by %X; and p,.
For the unperturbed Hamiltonians we can write

Hy=Y elcley (4.5)
P
Hy=Y o,

q

(4.6)

‘1‘1’

where k =k, a =k, /, 6 characterizes the quasimomentum, band index, and spin of
the Bloch electron, and g =q, s describes the quasimomentum and polarisation of
the phonon. Using this basis, the external Hamiltonian and the interaction terms
read

H,.(1) Za () clck 4.7)
with
e ()= k=] (p=4 Ax, 1) | teolx 0 k> (4.8
e\ = m p . > p ep(x, 8)
and
! . + ot
Vee=:2'*2’ ) Vkiky, kyky ki Ciey €y kg (4.9)
ST kykykiky
V=Y. 8% pc}cilag+a' ) (4.10)
kk'g
Vei= ) '.ka'Ck (411)
pre
1 q19293 +
Vpp=3-' Yy oo N{(a,“+a_ql)(aqz+a_q2)(aq,+a_q3)} 4.12)
T 419293
_ 1 qlqu
—-2—. W {lag+a'  Na,+a" )}
q192
2’ Z;‘ wi'“N{(a, — _ql)(aq2 atqz)} (4.13)
q192

Explicit expressions for all matrix elements can be found in standard textbooks on
solid state theory [9, 10, 24]. The second term of (4.13) accounts for the correction
to the kinetic energy due to the presence of impurities [23]. The dependence of the
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matrix elements o, , and w?'* (i=1, 2) on the impurity positions R; (j=1, .., N,)
is given by

Nl

5k',k:Z Z e Wi (q) (4.14)
q j=1
Ni

Wi =2 X i), (4.15)
q j=1

where &, ,(q) and W} “(q) fulfil the quasimomentum conservation

T @~ 0 iy gk (4.16)
K

WG~ Oy ai—ar k (4.17)
K

which is also valid for all the other matrix elements 0. 4 (. U 4, and 9949,
according to (3.11).

If we average the perturbation expansion (2.16) over the positions of the
impurities, the exponential factors in (4.14) and (4.15) will lead to certain
relationships between the vectors q. For example, if we pick the same summation
index out of s different matrix elements (4.14) or (4.15), we obtain

1\ Ne o .
<7V_) Z Z MR -e"“Rf=N.-25ql+ b4k (4.18)
K

z Ri---Ry, j=1

where N, is the number of unit cells. Such a contribution is represented by a
connection of s dashed lines at a cross (see Fig. 4.2), whereas #,. ,(q) and W/ “(q)
are associated with the vertices of Fig. 4.1. Adding these graphical elements to the
general Feynman rules and using the same renormalization methods as in I, we will
obtain the transport equation (2.24) in the same way for the impurity-averaged
Green’s functions.

Furthermore, due to the form of the interaction terms, we will use here a more
compact notation for the phonon lines. For a vertex from §,. . (q) or 7':% they are
defined by i

X X
1 ]
Aq Aq
! i
t )
—_y s AN
k k' q, i 9

FiG. 4.1. Representation of the matrix elements o, ,(q) (a) and ¥¥'%(q) (b).
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i
I
yvad: -
)
oI
- qs? Qg4 >
1
1

\(\11

FiG. 4.2. Impurity averaging. The cross represents the contribution Nibday  sank

and for a vertex from W “(q) by

q — _l)i+1 —q + q

[V ( g Lt aaaad
i i i

according to the form (4.13).

Now let us check if the conditions (3.13) and (1.2) for the Fourier components
H3 (t) are valid. Otherwise we are not allowed to use the transport equation (3.31).
Obviously, (3.13) and (1.2) are correct if the electromagnetic potentials are of the

form
o(x, 1) = @, e~ A(x, 1) A, e D (4.19)

with 1/|q] > A, 4,, a. However, they can as well be proportional to the coordinate
x itsself as it is, e.g., the case for homogeneous fields

A(x)=3iB A x
(4.20)
o(x)= —xE.

These functions are certainly not slowly varying and we have to consider the
Fourier components HJ_ in more detail. From (3.6), (3.7), (4.7), and (4.8) we have

H, =,§v O nsqlk+a o) ﬁ[(p —% B A i)2 —pz] —exE |ka) cf.c,. (4.21)
Using
Ck'a’| plkad ~ 6, (4.22)
and
<k +q, 0 % [ka)~1/]q], (4.23)

we see that H? can be neglected if

eB 1 1
— &Lk p~— eF —
clgl "

, <Lep 424)
7 al <°F (
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which are exactly the conditions (1.3) and (1.4) for |q| ~ A, 4., or a. Consequently,
(3.13) and (1.2) are also valid for electromagnetic potentials of the form (4.20).

In the next step we consider Eq. (3.31) for the electrons (b’ =cc') and the
phonons (bb’ = aa') separately,

o (oL afi.)
XX X0 — X 4‘ S
6t+(6t)D(6tC (4.25)
ont. /ont ont
55 55 = 35 4-26
az+<az)n (61)C’ (4.26)
where (see (3.36))
Sk )=FEM(x k, 1; cch) 4.27)
ni(x,q,t)y=FxP(x,q,t;aa") (4.28)

and the symbols D and C denote the driving term and the collision integral of
(3.31). Depending on the various interaction terms, we can further write

e\ (s o E. AL
( ot )C_( ot )“+( ot >=P+( ot >ci (4.29)

* ont + t
(%) =(%2) (%) +(%). (430)
ot /¢ ot Jop 0t /e ot )i

For the retarded or advanced Green’s functions of the electrons and phonons we
use the notation

G (xk, 1,y =GE™(x, k, ¢, '; cc) (4.31)
GP.(x,q, 1, 1')=G2™(x, q, 1, t'; aa"). (4.32)

a b

FiG. 4.3. Born approximation of the collision integral.
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The lowest order diagrams of the collision integral in Born approximation are
illustrated in Figs. 4.3a, b, c for the electrons and in Figs. 4.3d, e, f for the phonons.
All higher orders in the interaction strength will be disregarded. Among them are
also all contributions from the correlation parts and from phonon Green’s functions
with bb’ = aa or bb' =a'a’. This can explicitly be seen if the initial density matrix
p(to) is given by the grand canonical ensemble in equilibrium

e*ﬁK:q
Pl0) = peq =TTk (4.33)
with #=1/kT and K., = Hy+ V — uN. As a consequence we have
FZ(t;aa), Fi(t; ata’)y~O(V) (4.34)
since H, and H,, conserve the phonon particle number, and
gty l - 15b"---b")y~ O(V) (4.35)

due to the factorization property 1(2.41).
Using our general Feynman rules and the hermitian property for all potential
matrix elements, we obtain the following expressions for the graphs of Fig. 4.3:

ort,
(7)“ (k)

=Rej dr'[(ka) TEO,GE(x, 1, 1) f 1 (X, 1)

o

xGS(xX, 6, ) f7 (X, )0, f7(x, ) Gi(x, 1, 1)
xfH(x, 'YG5(x, 1, 1) [ka' > — (+ & —)] (4.36)

of L
(%), e

= 2Re [ @'Y ¥ [(kal 57¥GS(x, 1, 0) f1 (%, 1) Y
L

q ss°

xfx, )YG(x, ', 1) [ka') - ({gs'| n ]} (x, ') GY(x, ', 1) |qs )
+ (—qs| GRx, t, Y (%, ') | —qs' ) — (+ « —)] (4.37)

of <.
(%), o

= —2Re [ d'N, ¥ T by squ [ Chal 51(a))

qq K
XxGix, 6, 1') f1(x, 1) 0,(Q2) f(x, 1)
XGi(x, t, ) ko' ) —(+ & —)] (4.38)
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ont
(%) oan
pp
!
- —Rej dr Z Z OS5I 9252, @353 5~ @, —q35), —q35)
fo 4293 515253

5353

x {[<as, | nf (x, 1) GR(x, t', 1) [qs >(2 {qzs52 n ] (%, ') GR(x, 1, 1) Q255
+ {4283 GR(x, £, ) n (X, ') [ —q253))

X (=385 GRx, 1, ) n (X, 1) | = 3530 — (+ = —)]

+ [<gs, | n (%, 1) GRU(x, 1, 1) 198" > < Q255 1 (%, 1) GR(X, 1, 1) [q252)

X Q83| nf(x, 1) GV(x, 1, 1) |qu3sy) — (+ & —)]} (4.39)

ént
<7>pe (x,q,1t)

~2Re j dr' Y [TrO6 ;%G (x, 1, ) f1 (%, )

x 0¥ (x, 1) GS(X, 1, 1)qs; | ny" (x, 1)
xGi(x, 1, 1)]gs") — (+ < —)] (4.40)

ont,
<7> (x,q, 1)

=—2Rej d'N;Y Y ouiaky 3

qiqs K Qi 55357
X (LT a5 =R a1 DR i)~ g vg,)]
x [<qs;| nf (x, ¢ )G‘f(x, 1) gs")
X5 | GYx 0, ) n (x, 1) 1q82) — (+ > —)]
o A U T R e (N Y S (M B e (Y
x [{qsy[nf(x, 1) GRx, 1, 1) 98"
x{—q;83| 0 (%, ) GYx, 1, 1) | —q;5,) — (+ < )]} (4.41)
To achieve a compact form, we have used an operator notation in k- and g¢-space.
All operators G5, G%, ¥, and n{f are diagonal in k and q but nondiagonal in
« and 5. The appearance of distribution functions £, and n* with different band-
or polarisation indices cannot be found in standard textbooks on solid state theory.
For small tunneling rates this effect has first been investigated in [11] for electron-

impurity and electron-phonon interaction in homogeneous electric fields. Especially
for high electric fields it becomes very important and will be considered in the
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following in analogy to [11] but for more general fields and interactions. For the
phonons, however, we have

nt~0o) for s#s' (4.42)

since H, and H,,(?) are diagonal in the polarisation indices. Therefore, the distribu-
tion functions n,, with s#s' are neither important for the collision integral nor for
the driving term.

The momentum transfer is described by the potential matrix elements which
can also create Umklapp-processes or band- and polarisation transitions due to
scattering. All the equations (4.36)-(4.41) are of non-Markovian character. They
depend on the retarded or advanced Green’s functions G5 and G} which contain
itself the external fields and account for intracollisional field effects and collisional
broadening.

Now let us turn to the driving terms given by the general expression (3.40). The
energy functions £(¢) can be calculated from (2.25) and (2.26),

Eerlts e’y =0y e + e (D) + 0L (15 cc) (4.43)
Epg(tiaa’) =06, o + 010 (1; aa) (4.44)

with

HAIAED) 6k'ki,kkl<cli(t)l~l e (D2 o)
kiky

+ 208 4@ (D + @ (Du) iy + Nidy o 0in0) (445)
q

SHF (. s-q +
u?q(t,aa*):Zu qqql<aq|(t)Ha—q,(’)H)p(lol
91

+ N, 8 g W7 YU0) = N, 5, W5 79(0). (4.46)

Using the notation
g (x, k, 1)=2""(x, k, ; cc') (4.47)
(%, q, 1)=E%)(x, q, t; aa’) (4.48)

for the phase-space transforms of the electron and phonon energy functions, we
obtain from (3.27) and (4.8)

£ (%, k, 1) = 8., 60(K) + ~ [(p“(k) A 1) — (pm(k)) ]+e<p<x, )
2m c

=Y Y B ks b by o (6 K5 D)+ Ny 1, (0) (4.49)

ky oo

£0,(q) =0, 7(q) + N# 79 %(0) — Ny ¢ #(0), (4.50)
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where p,. (k)= (ka'| p [ka). The terms containing {a,+a" ,» have been omitted
here since they lead to phonons of zero momentum and are of higher order
according to

a,(Du pirgys <a;(t)H>p(r0)~0( V). (4.51)
Furthermore we have used (see Appendix A)

AP (x, k, 1) 25, A(x, 1)

PN K, 1) 26,0 (x, 1) (432
and
Ck'a’] plkad =64y Paalk) (4.53)
In operator form, Eq. (4.49) reads
EN(x, 1) =¢5(x, 1)+ eHF(x, 1) (4.54)
with
1/, e 2 .
ef(x, t)=2—m(pI —;A(x, t)) + V(X)) + ep(x, 1) (4.55)
and
eMF(x, )= ~Tr\® &,, £ (x, 1)+ N,5,(0), (4.56)

where V, denotes the periodic Bloch potential. Thus, &€ has the form of a local
Hamiltonian renormalized by Hartree-Fock contributions.

Let us consider the driving term for the electrons first. Using (3.40), together with
(2.23), the Lh.s. of (4.25) can be written as

Ji o
P (x,t)+( 6!) (x, 1)
f;

(x, )+ i[e5(x, 1) fE(x, 1)~ fE(x, 1) E5(x, 1)]

1 [‘35‘ )f‘ (x, )= 21y, r)—f‘—(x r)]

ok ox
1roff g o
+2[a X, 1) K (x, 1 K ] (4.57)
where
a
<k'a' ket =8y 4o 7S K, 1), (4.58)
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This operator equation will now be evaluated for a certain basis set of complete

and orthonormal one-particle wave functions. We choose here local and
instantaneous eigenfunctions of &5(x, ¢) defined by

]kcxxt) — ei(e/r) A(x, 1} X

k—SA(x, t),a> (4.59)

for fixed parameters x and ¢ Some straightforward properties are

Ck'o'xt | kaxt) ~ 0y, 0, (4.60)
Ck'a'xt | ka) ~ 0y (4.61)
£5(x, 1) |kaxt) = Iiagf” (k — g A(x, 1) + ep(x, t)>:| [koxs ). (4.62)

The distribution functions and energies in this new basis are

FE(xk, )= Ckaxt| fE(x, 1) ka'xt) (4.63)
g (x, k, 1) = Ckaxt] £5(x, t) |kaxt ). (4.64)

Explicitly, we have for the energy function
£ (%, k, 1) =0, 85x, k, )+ &S (x, k, 1) (4.65)

with
g£x, k, 1)=¢? (k ——; A(x, 1)+ ep(Xx, t)) (4.66)

EMFx, k) ==Y ) <k——A X, 1), a';kl—EA(x, 1), o) | 743

ki o

X k—EA(x; 1), a;kl_EA(x’ 1), a1>f“1’1(x k]’ 1)

+N,»<k—§A(x,t), o 51(0)’k—‘—;A(x, t),a>. (4.67)

The time derivative of f is transformed according to

7+

a-/‘11 ’ a xx’
(kaxt| Y (x, t) |ka'xt) =5 (x, k, t)

—-Ax t) Z[umx k,0)f (xk,1)

lea

f£(xk, t) U, (XK, 1)] (4.68)

o)
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with

: N :
u (X, k, 1) = J‘ dx'uf (erer Ax. . a(X') Kk Yk tercrAcn, «(X"). (4.69)

Thus, in the new basis, the transport equation (4.25) takes the form (we omit the
arguments X, k, and 7)

ot (T 57,3) _ (T

where (---)p, corresponds to the third and fourth term on the r.h.s. of (4.57) and
(- )p, is defined by

(af ) =iy (&L fr. —fi el (4.71)
D) 2y
with

xa' Gy

T =0,,8 +ge”F+:§Au“. (4.72)

For a=a’, Eq. (4.71) gives
ot -
<—f—> —2Re {i y gj,f;fa}, (4.73)
at Jp, "
a'#Ea

whereas, for o # a’, we have

Ta\ _us .
(%) —wm-amaFailin -7

+i Y (EuSh - hEL). (4.74)
FEX NS

Neglecting the higher order contributions coming from the terms (---),, and
(---)¢ in (4.70) for a#a', we can determine the time evolution off oA al)
approximately by

oL [N
= +< 5 )Dl_o. (4.75)

Note that such a procedure is not true for the case o =o' since the largest terms
£X f % cancel each other in (4.71). Thus, (---)p, (+--)p, and (--- )¢ can be of the
same order of magnitude for o = a’. Now, since

BT T for a#a (4.76)

595:229.2-9
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due to (4.72) and our condition (1.4), we can use a perturbation expansion in £}
(x#a’) to solve (4.75). In lowest order we obtain

FL00) =Tl e St 1750~

i [ AR (T A T Er) e St 01 (477
fo

and (4.73) becomes

of & ~ s o T
(f”> =2Re ) {igfa'(f)ffa(fo)e’f'od’ ()= 5]
ot Jp,

o
@ # o

— 80 [ (TR =T ()] "f[fffﬂ'”**“”} (4.78)

which, except for the first term, is identical to the result obtained in [ll].f;*;,(to)
can be calculated from the initial density matrix (4.33) and is proportional to the
interaction strength,

FE(t)=fZ(ts) ~O(V) for a#a'. (4.79)

Furthermore, from (4.76), (4.77), and (4.79), we see that
Fr<fe,ft,  for a#d, (4.80)

xor

a property which is not valid in the representation |ko ).

Using (4.76) and (4.80), we can now neglect all distribution functions ]i
and energies £, with a#a occurring in the collision integral (aff,/é’t)c or
in the second part (8731/&)02 of the driving term. In this approximation, the
transformation laws for d4P"/@x and (8A4P"/0k) (4=/7*, %) become

ph 4 ph
{kaxt| oA (x, t) [kaxt> ga—/—i—”ﬁ (x,k, 1)
ax ox

(4.81)

ph 4 ph

(x, 1) x> =22 (x, K, 1)

0A
(kaxt| 7K

where we have used (4.58)-(4.61). Thus we obtain from (4.57)
(afsa) Ofs, f s 0, %
D2

ot ), " 3k ox ox ok (482)

and the Lh.s. of our transport equation (4.70) is complete. However, (4.82) has not
yet the desired form, since it still contains an explicit dependence on the vector
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potential A instead of the electric and magnetic fields. Thus, in the last step, we use

the transformation
¢a¢ia‘(xs pa f) =f£‘ <x9 p + -(e_‘ A(xv 1)9 t)

021'(x, |8 f) = Eia' (X, p +€ A(X, t)’ t)
c

(4.83)

(4.84)

and obtain after some manipulations the following final result from (4.70), (4.78),

and (4.82),

E (Y () _(%:
W+( @I )D]+( at >Dz_< 6t >('

(a—g’%) =2Re Y {iaza,(x, P, 1) ¢ (p(xtty), to)

o #ax

with ¢,=¢,, and

xeo~! j"o dl‘[n:(x. p(xte), ') — az(x, pixi), 1]

—al, f drol (x, p(xtt’), t')

x [¢5(x, p(xtt'), ') — ¢ F (x, p(xtr'), 1')]

X e 71‘]':‘ dr[a}(x. p(xr1), 1) — nI(x. p(xr1), r)]}

ooy T o
( a’ )[)z(x, p’ f)—Va(X, pa t) ax (x’ pa t)
.
+e [ET(x, P, 1) +%ﬁ(x, P. 1) A B(x, t);] a_g;_ (x, p, 1),

where 6 =0,, and

p(xtt')=p+ ; A, 1) -;A(x, )

0T (% P )= 0%, (%, B 1) 41 = AX, 1), (p)

oL A%, P 1) =0, [e2(p)+ep(x, )]+ T (x, p, 1)

Q

HE(x, p, 1) = — Z T . prma: per's oo P (X P1s 1)+ NT L, 0, (0)

P

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)
(491)
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N é
() = [ ¥ ut,(x) 55 o) (4.92)
do®
v,(x,p1)= P * )
@8‘0’ i é
( )—Z U B (X, P 1)+ N,-'é—pﬁp.,,(()) (493)
A HF
ET(x,p, ) =E(x, 1) —— =*—(x, p, 1)
e 0x
1 3t
=E(x, z)—zguppl,,,,, = (x, p', 1). (4.94)

For the evaluation of the collision integrals (4.36), (4.37), and (4.38), we use the
basis states (4.59) at different times 7 or ' and define

Ge(x, k, 1, t')= (kaxt| GS(x, 1, t') [ka'xt’ ). (4.95)

Neglecting the collisional broadening by using the lowest order result (see
Appendix B)

G:i(u('))(x’ k,1,0)=0,, e ‘fraihixin (4.96)
GPO(x, q, 1, 1) =3, e FH@U -1 (4.97)
and performing the transformations (4.83) and (4.84), we obtain in a straigtforward
manner
¥ + £ Py
(%)~ (o) + (o), + (5, 98)
with

op, _ _ ,
(7) (x,p, 1) = — Re f At Y 0y i e XIT)

PapiP;
x @ i el (X BT, T+ oL (6 BH(x1T). T) - a(x P(xaT), 1) — (X, PxrT). 1]
x [§ (%, PUXIE), ') $ 2 (%, p(xtr'), 1)
X @, (X, p(xt1'), 1') ¢, (x, poAxtt’), 1) — (+ & —}] (4.99)
(6?5)cp (x,p, t)=2Re Jo dr Z 08 0, (xet')

x e —lsrdr[al(x p(xt) t)— a,(x,p(xlt)wil]

{[e'%( Q- "n (x, —q, ,')+e*iéflq)(r—rln:(x’ q.)]

X@L(x, p'(xtt'), 'Y P (X, p(xtt'), t')— (+ & —)} (4.100)
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5¢3 r
=) e zRej drN, Y, 25q1+q2x2

4192
dt{ Iv(x. (xf7). 1) - aL(x, pIXIT), T)
X p.p,(ql)vp,quz,x”)e ’I: o P L% P ]

x [@,)(x, p'(xtt’), ') — ¢, (x, p(xtt'), t')], (4.101)
where & =P, and
ﬁ,,i,,» o (XU) = (pU(xtt’) oy, pa(xet’) os | By IP(X2E') @, Po(xtt’) 23>
XU =00 ey o ey 2 (4.102)
(qz, XU') =Ty irey o, poxery «(42)-

Finally, for the expectation value of the local current operator

N,
i =30 3 | B=S AR 00080 | (4103)
we obtain (see Appendix C)
- 65'“’
G, 0= — Z Z (x, p, t), (4.104)

where the bar on ( --- > denotes an average over the unit cell around x.

The transport equation for the phonons can easily be obtained from (4.26),
(4.30), (4.39)-(4.41), (3.40), and (4.50). Thereby we will neglect all contributions
from nt with s#s (see (4.42)) and from Green’s functions with bb' = aa or a'a’
(sce (4.34)). For G” we will use the lowest order result (4.97). Thus, with n*=nZ,
we obtain the final result for the phonons

on* on* ont ont ont
5 5 — K 5 Ky 4
at +( P )D ( a1 )pp+< 3t )pf( P )Di’ (4.105)
where
on* n*
( 5,) (X, q,1)=v] (q) (x q. 1) (4.106)
D
6w‘°’
vi(@) = (q)+N [w 9(0)— w5 %9(0)] (4.107)
and

s —_ e ! E quzq; 2 4 Lp(qhs",l\ Ve —1)
(x7 q’ t) R J‘ d I I € ! 2 )
PP

ot fo @
x {n; (X, q.0)nS(x, =q;, (') [ 26"V (x, q5, 1)
+6’4"EE3(“"”("")";(X, —qs, )= (+ o —)} (4.108)
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ont 1
( ’: ) (x, q, t)=2Ref dry od 6, 4(xtr’)
At ) e o e
xXe :_H zlr[a}i(x, p(xtt), T) a;[(x. p(xt), 7)] eif,f(q)lr t')
x [@o (x, p'(xtt'), 1) 7 (x, p(xtt’), t')
xnl(x,q,1)—(+ < —)] (4.109)
n* ‘o
( (’3 ) (X,p,t}=2Re.[ dINiZ 2501+q2‘l(
t pi o qq: K

~y - ~ g’ iTeP(a) - P(a’ _
X[RY(qy) + Y A(gy)|? e T )

x[nf(x,q,1)y—n}(xq,1)] (4.110)

The second terms of (4.39) and (4.41) have been omitted here since they do not
fulfil the energy conservation if we take the Markov limit of (4.108) and (4.110).
This limit is given by

7 r o o
Ref di’ e~ gy = Rej i’ e R(1— 1)
0

0

~Re r di' e HTh(1) = nd(de) (1) (4111)
0

and leads to the golden rule in (4.99)-(4.101) and (4.108)-(4.110) if we neglect the
influence of external fields and Hartree-Fock potentials on the collision integrals.

5. CONCLUSIONS

The main issue of this paper was to set up a general theory for single-time
Green's functions in an arbitrary weakly inhomogeneous quantum system. As an
application we have studied a quantum solid in moderately high electric and
magnetic fields (see the condition (1.4a), (1.4b)). The final transport equations are
given by (3.31), (4.85), and (4.105), and the electric current can be calculated from
(4.104). No restrictions with respect to the time dependence of the external fields,
the band structure, the statistics, and the kind of interaction have been made during
the calculation. Furthermore, the fields and the initial density matrix can be
inhomogeneous if they do not vary on a microscopic scale (see the condition (1.2)).

Other treatments of the same topic do not have such a general range of validity
[2-5, 11-21]. First, they are all restricted to homogeneous fields and to initial
states given by the unperturbed equilibrium density matrix. Furthermore, within
the Keldysh formalism of double-time or single-time Green’s functions, one often
applies a gradient expansion in time [2, 3, 18-20] or one treats the case of free
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electrons in homogeneous electric fields [ 16, 17, 21]. Methods based on other non-
equilibrium transport theories are restricted to Boltzmann statistics or to certain
kinds of interactions [11-14].

Thus, the second part of this paper was an attempt to present a complete and
microscopic theory of Bloch electrons and phonons in moderately high, weakly
inhomogeneous, and arbitrarily time-dependent electric and magnetic fields.

APPENDIX A

In this appendix we derive Eq. (4.53). If A(X, ) is an arbitrary but weakly
inhomogeneous operator we can write

A%, 1)=Y &' A(q, 1) (A.1)

q
with |q) <a~'. For A™ we obtain, due to {3.19) and (3.23),

AP (x, k)= e ™ A(q, 1) <k+5gq o'l e [k —1g, o). (A.2)

qaq’
Using the Bloch functions
(x| ka)=e™u, (x), (A.3)
we can write (A.2) in the form
ATk )= T VAW 1) [ @ eI UE ) ()
Q'
=3 e'A(q, 1) j AXuE 2rq o X) M (1724 X)), (A.4)

q

where, in the second step, we have used the periodicity of u,,. Now, since |k| ~a ™"

and |q/ <a !, we can expand

Ui 1 (12)q %) = U, (X) + O(]q] a) (A.5)

and obtain, together with the orthogonality relation (ko' |ka)=4d,,, for the
lowest order of (A.4),

AR (X, K, 1) =) "™ A(q, 1) 8,5 =80 A(X, 1) (A.6)
q

which is equivalent to (4.53).
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APPENDIX B
In this appendix we derive Eqgs. (4.96) and (4.97). Replacing H(r) in (2.15) by

Ho(t)=13 3 &.4(1;6"0) N(b}.b)) (B.1)
e

and using I(A.6), we arrive at the following differential equation for the retarded or
advanced Green’s function in lowest order including Hartree-Fock contributions,

o -
Y GOt t'; bb')

1 for b~c

+1 for b~ (B2)

=—iy Y &i(t;607) GEOAt, 1" bb') {
75

Applying this equation to the Bloch electrons and phonons, together with a
phase-space transformation according to (3.27), (4.31), (4.32), (4.47), and (4.48), we
obtain in operator form

q _
5 GO0 1 )= it (x, 1) G (x, 1, 1) (B.3)

%G_p‘”’(x, 1, 1')= —igP(x, t) GPO(x, 1, t') (B.4)
C

From (4.50) we obtain immediately the solution of (B.4),

= ’ —isP g -
GPO(x,q, 1, ') =4, e EulOU =) (B.5)

where we have neglected all contributions coming from s # 5" since £P. <P, £
Using (4.95), (4.64), {4.72), and

o -
Ckaxt| R GOx, 1, 1') ka'xt)

=§15:‘;?’(x, K, 1, r')—EA(x, DY U (%, k, 1) GE0x, K, 1, 1) (B6)

(compare with (4.68)), we can express (B.3) in the basis functions (4.59)
J = =~
Y GO(x, k, 1, 1)=—i) (X, Kk, 1) GI0x, k, 1, 1) (B.7)

ay
with the lowest order solution (see also (4.76), (4.77))

= ! =T
GO(X, Kk, 1, 1) = 8, i e Butx o) (B.8)
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APPENDIX C

In this appendix we derive Eq. (4.104). First of all, the expectation value of
(4.103) can be written as

U 030 = S Re Y KT B= LA 0| 0@ =) k) Fitrice’) (C)
kk’

or with (4.27) and (3.19)

[p ~ A, r)]
(4

% )= —=Re ¥ T <k_g,af

k.q xa'
s-x k-3, a>f:f<q, k1) (C2)
Using (4.53), together with
Poa (k_g)=l)m(k)+0(|‘” a) (C3)
and (see (A.3) and (A.5))
q . q
<k——2,oz1 o(X—x) k+2,a>
=e'uf o (X) Uy g (X)X e uf, (X) uy,(x), (C4)

Eq. (C.2) can be transformed to

G 0= ~SRe L ¥ ¥

k ax’ x

x (ke'| p— g A(x, 1) [koy > uf, (x) uy(X) f 1A%, K, 1) (C.5)
and the average over a unit cell yields
QX Do = ———Tr | p,—= A, 1) | £ (%, 1), (C.6)
’ p(1) le 1 c 4 1 ’
where we have used the periodicity property of u, (x),
1

|
WE ) (0 = 5 Choy [ ko) == 6, o, (€

and the fact that A(x, 7) and f 7 .(x, k, t) are slowly varying functions in x.
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Equation (C.6) can as well be written in the basis (4.59) and we obtain from
(4.59), (4.63), and (4.83)

——— 1
TS 0= =5 5 T o B Ip> 61 (C8)
or with (4.80) and
e
1B P> = 8. 32 () + [7() =7 () () (C9)

(see (4.92) for the definition of ii,,) in lowest order,

(0)
e _1_ de,

T 0= =5 g £ X T (016 (x ) (C.10)
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