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Chapter  3 

Air damping 

For a conventional machine, the damping effects caused by the surrounding 
air can in general be ignored. This is because the energy dissipation rate caused 
by the air damping is much smaller than the energy supplied to the system if the 
moving speed of the mechanical parts is not excessively high. However, in the 
development of micro mechanical devices, estimating the damping effects of the 
system is one of the most important steps in the design process, since they 
determine the dynamic performance of the devices. 

As air damping is related to the surface area of the moving parts, air damping 
may become very important for micro-mechanical devices and systems in 
determining their dynamic performance due to the large surface area to volume 
ratio of the moving parts. For some micromechanical devices, the energy 
consumed by air damping must be minimized so that the motion of mechanical 
parts can be maximized with a limited energy supply. For other situations, air 
damping has to be controlled so that the system energy is consumed by the air 
damping at a proper rate to ensure that the system has an optimum dynamic 
performance. 

In this chapter, the basic concept of air damping is introduced and different air 
damping mechanisms as well as the damping effects for some typical micro 
structures will be discussed. 

w Viscous flow of a fluid 

w Viscosity of  a fluid 

(1) The coefficient of  viscosity of  a fluid 
Although a fluid at rest cannot permanently resist the attempt of a shear stress 

to change its shape, viscous force appears to oppose the relative motion between 
different layers of the fluid. Viscosity is thus an internal friction between 
adjacent layers moving with different velocities. 
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The internal shear force in a steady flow of a viscous fluid is proportional to 
the velocity gradient. If the flow is in the x-direction and the speed of the flow is 
distributed in the y-direction, i.e., the flow velocity in the x-direction, u, is a 
function of y, the shear force Zyx is: 

du(y)  
Z y x = ~t dy (3.1) 

where la is the coefficient of viscosity of the fluid. For a gas, the coefficient of 
viscosity is a constant for a steady flow. For many pure liquids, the coefficient of 
viscosity is also a constant. These liquids are called Newtonian liquids. 

According to Eq. (3.1), the coefficient of viscosity has a unit of Pa.sec or Pa.s. 
At room temperature (20~ air has a coefficient of viscosity of 1.8x10 -5 Pa.s 
and the coefficient of viscosity of water is 1.0x 10 .3 Pa.s. 

(2) The mechanism o f  viscosity 

Though both liquid and gas show viscosity, they have different properties due 
to different mechanisms. 

For a steady liquid, the relative positions of adjacent molecules in the same 
layer are basically stable, but the relative positions of molecules in adjacent 
layers of a laminar flow change due to the flow. Fig. 3.1 shows the change of the 
relative position between molecules A and B in adjacent layers with different 
flow velocities, where the molecule A has a higher velocity than molecule B. 
The approach of A and B is accompanied by a decrease of intermolecular 
potential energy and an increase in molecular kinetic energy. While the 
molecular kinetic energy becomes disordered, a temporary bond is formed. The 
external force must do work if the molecules are later to be separated. The work 
done by the external force becomes random energy. 
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Fig. 3.1. Mechanism of viscosity in liquid 

According to the mechanism described for a liquid, a temperature increase 
means that the molecules have a greater thermal speed, which in turn allows a 
smaller time in which the molecular energy can be disordered (i.e., less energy 
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is needed to de-bond the molecular pair later). Therefore, the viscosity of 
most liquids decreases with temperature. 

For gases, the thermal motion of a molecule is much larger than its drift 
motion related to the flow of the gas. In Fig. 3.2, the molecule A with a 
smaller drift velocity moving up across the boundary CD (due to the thermal 
motion) acquires a larger drift velocity, i.e., gains drift momentum, and 
experiences a force to the fight. This means that the molecule has exerted a 
force to the left on the upper layer, which tends to retard the faster layer. 

Similarly, the molecule B in the faster layer moving down across the 
boundary CD (due to the thermal motion) exerts a force to the fight on the 
slower layer into which it moves. 
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Fig. 3.2. Mechanism of viscosity in gas 

(3) The temperature dependence of  viscosity of gas 
Due to the mechanism described above, a temperature increase means that 

molecules have a greater thermal speed, which increases the rate at which 
they cross the layers. Therefore, the viscosity of a gas increases with 
temperature. A quantitative analysis by a simple model based on the kinetic 
theory of gas [ 1 ] predicts that: 

IX = lp~z, (3.2) 
..5 

where P is the density, V is the average velocity of the molecules and ~, is the 
mean free path of the molecules. According to the Kinetic Theory of gas, 
9-, ~. and P are" 

8RT 1 M m 
V= ~ , - ~  and P - n ~  

~ M  m ' ff,~f~nd 2 Nav 

respectively, where R is the Universal Molar constant (R=8.31 kg.m2/sec2/~ 
Mm the molar mass, d the effective molecular diameter of the gas, T the 
absolute temperature and Nav the Avogadro constant 

(Nav - 6.0247 x 1023 ] mol ). Therefore, we have: 
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2.~/-R ~/ M m T (3.3) 
g = ~nd 2 . , 

Eq. (3.3) suggests that la is independent of pressure, P. Maxwell confirmed 
experimentally that this result is true over a wide range of pressure, provided 

that the pressure is not too small. Eq. (3.3) also indicates that Ix increases in 

direct proportion to 4 M m  and ,~fT. Experiments have confirmed that 

increases with temperature but the power slightly exceeds 1/2. 

The temperature and molecular dependence of l.t can be expressed by an 
empirical relation known as Sutherland Equation [2]: 

1 + T s / T O . f - T  (3.4) 
?ro 

where To=273.16K, ~o is the coefficient of viscosity at To and Ts is a constant. 

l.to and Ts are dependent on the specific gas considered. 

kto and Ts for some gases are listed in Table 3.1. 

Table 3.1. lXo and Ts for some gases 

gas air N2 H2 CO2 
~o/10 6 (Pa-S) 17.2 16.6 8.40 13.8 

Ts/~ 124 104 71 254 

Usually, the coefficient of viscosity of liquid is much more sensitive to 
temperature than that of gas. The data for the coefficient of viscosity of water 
under one atmosphere are listed in Table 3.2. For comparison, the data for air 
are also listed. 

Table 3.2. Temperature dependence of coefficient of viscosity for water and air 
(in 10 -3 Pa.S for water and in 10 -6 Pa.S for air) 

t/~ 0 10 20 30 40 50 60 70 80 90 100 
H20 1 .79  1 . 3 0  1 .02  0.80 0 . 6 5  0 . 5 5  0 . 4 7  0 . 4 1  0.36 0.32 0.28 
air 17.2 17.8 18.1 18.7 1 9 . 2  19 .6  20 .1  2 0 . 4  21.0 21.6 21.8 

w Viscous f low 

(1) Equations for  viscous f low 
Consider a cubic element in a fluid as shown in Fig. 3.3. There are six 

shearing force components on its surface caused by the velocity gradient of 

the flow: "Cxy(Xo), Xxy(X o + dx),'Cyz(Yo),'Cyz(y o + dy),'Czx(Zo),'Czx(Z o + dz) .  
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There are also six normal force components on its surface caused by pressure: 
P(x)dydz ,  e ( x  + dx)dydz ,  e ( y ) d x d z ,  P(y  + dy)dxdz ,  e ( z ) d x d y ,  and 

P( z + dz )dxdy . 

(x+dx, y+dy, z+dz) 

zb, o x ., t 

~'7 VdY 
(x,y,z) dx 

Fig. 3.3. Sheafing stresses on the surfaces of an clement cube 

For a steady flow, assuming the weight of the fluid is negligible, the force 
balance for the cube in the z-direction is: 

[ e ( z ) -  e ( z  + dz)]dxdy + [Zxz(X + d x ) -  Xxz(x)]dydz 

+['r, yz ( y + dy ) - "r, yz ( y ) ]dxdz  = 0 

Therefore, we have: 

OP ~T, xz ~T" yz 

Oz Ox by 

Ow Ow 
As X xz = ~t-q--, T, yz = 

by' O3(, 

i)P ,, ()2 w O2 w .  
~z = ~t~-~+ ~-7) (3.5) 

where w is the velocity component in z-direction. For the same reason, we 
have: 

/)P ,()2V ()2V. 
~)Y = ~tto- ~ + O-~) (3.6) 

and 

~P .~2u ~2u. 
~)x = gtO-~ + O--~) (3.7) 
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where u and v are velocity components in the x- and y-directions, respectively. 
Eqs. (3.5), (3.6) and (3.7) are equations for viscous flow of a fluid caused by a 
pressure, P. 

(2) Flow in a pipe 
Let the length of the pipe be L and the radius of the circular cross section 

equal to a, and L>>a, as shown in Fig. 3.4. If z-axis is taken along the 
centroid of the pipe, Eq. (3.5) is the only equation to be used to decide the 
flow. 
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Fig. 3.4. Fluid flow in a long pipe 

As the length of pipe, L, is much larger than its radius, a, the flow in the 
pipe is in the z-direction and the velocity distribution is symmetric against the 
z-axis. By using polar coordinates in the x-y plane and putting the origin at the 
center of the cross section of the pipe, Eq. (3.5) can be written as: 

> / 0---~ = ~t- 0--;rr r -fir w(r 

By integration: 

0 1 ()Pr2+C 1 
r-~r w(r) = 2---~ O---z 

0 
As -~rW(r)- 0 at r=O due to the symmetric distribution, C1=0. By a second 

integration: 

w(r) = ~~10Pr2 + C2 
4~t Oz 

According to the boundary condition of w(a) = 0, we find: 

_ j_ l  0__ff_P(a 2 _ r2) (3.8) 
w(r) = 4~t Oz 
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The negative sign indicates that the velocity is in the opposite direction of the 
pressure gradient. If the pressure difference between the two ends of the pipe 

~)P P 
is P, i.e. ~ = - - ,  we have" 

~)z L 

1 P ( a  2 _ r2 ) 
w(r )=  4~tL 

The flow rate, i.e., the volume of fluid passing through the pipe per unit time, 
is: 

Q -  ] lw( r)12rcrdr 
o 

By simple calculation: 

7-t~4p 
a ~ ~ ~  

8g L 

and the average velocity of the flow is: 

Q a 2 P  

rca 2 8~ L 

(3.9) 

(3.10) 

(3) Reynolds'Number 
The flow pattem described in the above is an orderly flow that is called 

streamline flow or laminar flow. Streamline flow occurs only when the speed 
of the flow is small. The flow will become turbulent if the speed of the flow 
exceeds a certain limit. The criterion for turbulence is usually given by the 
value of the Reynolds' number, Re. Reynolds' number, Re, is a dimensionless 
number that, for a tube, takes the form of: 

Re = Vpd 
~t 

where p is the specific mass of the fluid, V the velocity of the fluid and d the 
diameter of the tube. 

Re is a convenient parameter for measuring the stability of flow. However, 
the critical value of Re that causes instability of fluid flow depends strongly 
on the shape of the tube and can only be determined by experiments. For 
tubes with circular cross-section, we have: 

(a) Re< 2200, the flow is laminar 
(b) Re-- 2200, the flow is unstable 
(c) Re> 2200, the flow is turbulent 
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The Reynolds' number is also useful in measuring the stability of fluid 
flowing through a solid object inside the fluid (or, the moving of a solid 
object through a fluid at rest). In this case, the general form of the Reynolds' 
numberis: �9 

Re = vpl 
Ix 

where p is the specific mass, Ix the coefficient of viscosity of the fluid, v the 
relative speed between the object and the fluid at rest and I is a characteristic 
dimension of the object. For example, I is the diameter of a sphere and, for a 
column with a circular cross section moving through the fluid laterally, I is the 
diameter of the cross section, etc. The critical value of the Reynolds' number 
that causes instability depends on the shape of the object and can only be 
determined by experiments. 

w Drag force on a moving object 

Drag force will be applied on a body if the body is held steadily in a flow of 
fluid (or the body is dragged through a steady fluid) because there exists a 
velocity gradient between the boundary layer and the more distant points in 
the viscous fluid. As the analysis for the drag force is quite complicated, the 
drag forces for some simple body structures moving with small speeds 
through an infinitive viscous fluid are given here [3]. 

(1) Sphere with a radius r: 

F = 6~larv (3.11 ) 

(2) Circular dish with a radius of r, moving in its normal direction: 

F = 16~trv (3.12) 

(3) Circular dish with a radius of r moving in its plane direction: 

32 
F = ~ k t r v  (3.13) 

3 

where v is the speed of the circular dish relative to the distant fluid. 
When Eqs. (3.11), (3.12) and (3.13) are compared, we can find that the 

dependence of drag forces on different cross sections or on the moving 
direction are not significant. All three drag forces for low speed motion can be 
written in the same form as: 

F = 6rmqarv (3.14) 
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where the value of ~ for a sphere, a dish moving in its normal direction and a 
dish moving in its plane direction are c~=l.0, 0.85 and 0.567, respectively. 
Note that drag forces are independent of the specific mass of the fluid, P 
(Stokes' law). 

However, this conclusion is not true for higher moving speeds. The force 
working on a sphere with a radius, r, oscillating in a fluid is given by [3]: 

F = -f31v -f32 dv (3.15) 
dt 

with 

~x = 6nlar + 3~;r 2 ~/2p~tm 

and 

[3 2 = -~ gpr  3 + 3gr 

where v is the relative moving velocity and m the radial frequency of the 

motion. Note that both [31 and 132 are dependent on the specific mass of the 

fluid. 
For even higher speeds, the flow may become turbulent. In a turbulent flow 

the drag force is proportional to the momentum change of the fluid, which, in 
turn, is proportional to the mass of fluid whose velocity is changed in a unit 
time and to the velocity change of the mass. Therefore, we have: 

F - (~prZv) (v )  

o r  

F -- rtpr2v 2 

It is now dependent on P and v but not on It. 

w The effects of  air damping on micro-dynamics 

As seen in w the drag force applied to a sphere moving in a viscous 

fluid at a speed of v is: 

F - 6rc~trv 

where ~t is the coefficient of,,viscosity of the fluid and r the radius of the 
sphere. The ratio between the d~ag force F and the mass of the body, M, is" 
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F 6ngrv 4.5gv 
M- = 4/1;r3p p r  2 (3.16) 

3 

where 9 is the specific density of the body. It is obvious that for the same 
conditions, the smaller the dimension of the body the larger the effect of the 
drag force on the body. For example, for a silicon ball of radius r = l c m  

moving in air with a velocity of 1 cm/sec, F / M is 3.5xl 0 .6 m/sec 2, while, for 
a silicon ball of radius 10 microns, F / M  is 3.5 m/sec 2, one million times 
larger. Therefore, the drag force caused by the viscosity of the surrounding air 
(or other media) is usually negligible for conventional mechanical structure 
but it may play an important role for the motion of micro machines. 

Now let us look at a practical example. The differential equation for a 
beam-mass (spring-mass) accelerometer is: 

m f  = - k x  - c k  

where k is the spring constant of the beam and c is the coefficient of damping 
force caused by the surrounding medium such as air. A very important 
dynamic parameter of the accelerometer is the damping ratio of the system, ~. 
The definition of ~ is: 

~ =  C _ C 

2moo  o 2.~-m-k 

where 0~o is the free vibration frequency of the system. The damping ratio, ~,  
for an accelerometer is usually required to be around 0.7 so that the system 
shows the best frequency response to an input signal (not shown in the 
equation). Quite often, the quality factor, Q, is used to characterize the 
mechanical system. For small damping, the relation between the quality factor 

1 
and the damping ratio is: Q = - ~ .  

According to Eq. (3.14), the coefficient of damping force, c, is proportional 
to the dimensions of the mechanical structure and the coefficient of viscosity 
of the surrounding fluid. As m is quite large for an accelerometer made of 
conventional mechanical structures, ~ is usually very small in air. It is quite 
difficult to raise the damping ratio, ~, to around 0.7 even if the structure is 
filled with oil of high viscosity. But for an accelerometer formed using a 
micromechanical structure, the damping ratio, ~, can be easily raised to 
around 0.7 in air by using some mechanical structure to increase the damping 
force in a controlled way. The advantages of air damping as opposed oil 
damping include a much lower temperature coefficient and ease of packaging 
the device. The basic mechanisms of air damping for micromechanical 
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structures are squeeze-film air damping and slide-film air damping. The basic 
principles and relations for these mechanisms will be described in w and 
w 

Air damping is expected to be reduced to a minimum for a high Q factor in 
many micromechanical systems, such as in resonant sensors or gyroscopes 
(see Chapter 9). In these cases, air should be evacuated from a hermetically 
sealed package where the micromechanical structures are housed. The 
damping of microstructures in rare air will be discussed in w 

w Squeeze-film air damping 

w Basic equations for squeeze-film air damping 

(1) Squeeze-film air damping 
When a plate is placed in parallel to a wall and moving towards the wall, 

the air film between the plate and the wall is squeezed so that some of the air 
flows out of the gap. Therefore, an additional pressure Ap develops in the gap 
due to the viscous flow of the air, as shown in Fig. 3.5. 

plate moving 
direction 

I I pl ,e I 
/ 

air flow .- v = air flow 

x 
P 

Fig. 3.5. Pressure bui l t  up by squeeze-f i lm mot ion 

On the contrary, when the plate is moving away from the wall, the pressure 
in the gap is reduced to keep the air flowing into the gap. 

In both cases, the forces on the plate caused by the built-up pressure are 
always against the movement of the plate. The work done by the plate is 
consumed by the viscous flow of the air and transformed into heat. In other 
words, the air film acts as a damper and the damping is called squeeze-film air 
damping. 

Obviously, the damping force of squeeze-film air damping is dependent on 
the gap distance; the smaller the gap, the larger the damping force. When the 
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plate is very far away from the wall, the pressure build-up is negligible and 
the damping force will be reduced to the drag force discussed in w 

Squeeze-film air damping is quite often used to increase the effect of air 
damping to an expected level for micro structures and the damping force can 
be controlled by the distance of the air gap. 

(2) Basic equations 
Suppose we have a pair of plates in parallel with the x-y plane of the 

Cartesian coordinates as shown in Fig. 3.6 and the dimensions of the plates 
are much larger than the distance between them so that the gas flow between 
the plates caused by the relative motion of the plates is lateral (in the x-and y- 
direction but not in the z-direction). 

Let us consider a column element, hdxdy (where h = h 2 - h  l ), as shown in 

Fig. 3.6, where qx is the flow rate in the x-direction per unit width of the y- 
direction and qy is the flow rate in the y-direction per unit width of the x- 
direction. 

z 
. . . .  

IT 
........ 

,,~y dx 
~x 

(a) (b) 
Fig. 3.6. Mass flow into and out of an elemental unit 

(a) A column element between two plates, (b) the definitions of flow rates 

The balance of mass flow for the column element requires: 

( 9qx )x dy -(Pqx )x+ dx dy + ( pq y ) y dx --(pqy ) y+ dy dx - ( oph2ot 

By making use 

(Oqy) y+dy -- (Oqy) y 

Ot dxdy 

of the relations (Pqx)x+dx = (Pqx)x + 0(pqx ) dx 
0x ' 

O ( 9qy) dy and h=h2-hl, we have: 
0 y  

~(Pqy) ~(O h) 0(Pqx) + + = 0 
0x 0y 0t 

(3.17) 
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To find qx and qy for the equation, we first have to find the speed 
distribution in the z-direction. To do this we cut a section element from the 
column element between z and z+dz, as shown in Fig. 3.7. The force balance 
in the x-direction requires: 

P(x)dydz + Tzx( Z + dz)dxdy = P(x + dx)dydz + Tzx( z)dxdy 

Therefore, we have: 

_aP 
8z ~x 

According to w we have" 

0u 

where u is the component of velocity in the x-direction. Therefore we have: 

8x 8z 

7" 
o 

Tzx(Z+dz) 

d• 

P(x+ax) 

i, X 

Fig. 3.7. Force balance on a section element 

For a small gap, P(x,y) is not a function of z. By integrating the equation twice 
we have: 

1 /)P z2 + C1 1 
u(z) = 2~t 8x ~ z + C 2 (3.18) 

If the plates do not move laterally and we put the origin of the coordinates 
on the bottom plate, the boundary conditions for Eq. (3.18) are: 

u(O) = O, u(h) = 0 

Therefore: 

1 ~ P z ( z -  h) (3.19) 
u(z) = 2bt Ox 
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The flow rate in the x-direction for a unit width in the y-direction is: 

h _h3(OP"  
qx = So udz = 12~t ~, Oxj (3.20) 

The negative sign in the equation indicates that the flow is in the direction 
with decreasing pressure. 

Similarly: 

qY = 12g (3.21) 

By substituting Eqs. (3.20)and (3.21)into (3.17), we find: 

~ ( h30_~x I ~ ( h3 OP~ d( hg) 

Eq. (3.22) is referred to as Reynolds' equation. In the process of the 
derivation of Eq. (3.22) it has been assumed that the fluid behavior is 
governed by viscous forces which are large relative to momentum changes. 
Alternatively, Eq. (3.22) can also be derived from the much more complicated 
Navier-Stokes equation under the condition that the Modified Reynolds' 
Number for a squeeze film, Rs, is much smaller than unity [4, 5], i.e., the 
condition of: 

o~h29 
R s = ~ < < 1  

~t 

where co is the radial frequency of the oscillating plate. This condition is 
satisfied for typical silicon microstructures. For example, an air-filled 
accelerometer with an air film thickness of 25 microns, oscillating at a 
frequency of 1 kHz, would have a modified Reynolds' number of Rs = 0.26. 

As h is assumed to be uniform in both the x- and y-directions, we have: 

~)(9~9.~_x / ~9( ~P" 12~ d(hp) 
+Vyy ~ = h a e, 

For an isothermal film, the air density, 9, is proportional to pressure P, i.e., 
P P---~o9O �9 The above equation can also be written as: 

~2 d(ht') ~2 p2  + ~ p2  _ 24~t 
~x 2 ~y2 - h 3 dt (3.23) 

or  
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V2p2 = 24kt d(hP) 
h 3 dt 

Eq. (3.23) can be developed into: 

T x ;  + + - +h ~)y2 ---~- ~, ~ d t '  
(3.24) 

Assuming that h=ho+dh and P=Po+AP, for small motion distance of the plate, 
we have Ah<<ho and AP<<Po. Under these conditions, Eq. (3.24) can be 
approximated as: 

(~)2Ap ~)2AP~ 12kt + . ---~- ( l d A h  
Po i)x 2 ~)y2 = ,, Poho ho dt 

AP Ah 
If ~ << ~ ,  we have: 

Po ho 

02ZIaP ~2AP 12~t ddh 

~)X 2 ~)y2 h 3 dt 
(3.25) 

or, 

~)2p ~92p 121a dh ~ + ~  = ~ ~  (3.26) 
Ox 2 Oy2 h 3 dt 

In Eq. (3.26), P is equivalent to AP and h is equivalent to Ah. For 
convenience, the P in Eq. (3.26) is sometimes read as AP, the variation of 
pressure. However, attention must be given to the difference in the boundary 
conditions for P and AP" P -  Po and AP = 0 at the periphery of the plate. 

Before ending this section, let us discuss once more the condition for Eq. 
(3.26). Suppose that the typical dimension of the plate is l (e.g. the radius of a 
disk or the half width of a rectangle) and the motion of the plate is a 
sinusoidal vibration with an amplitude 8, i.e., h - h  o +Ssin66t. From Eq. 

(3.26), we can make a rough and ready estimation of AP: 

AP = 12kt 866 cos cot 
12 ho 3 

or 

AP 121al266 8cos66t 

Po ho 

8 cos cot 

ho 
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where cr - 
eoho 

same order of magnitude as Ah = 8 sin rot, we obtain: 

AP Ah ZI~ m 
eo ho 

12~t/2~ is referred to as "squeeze number". As 8cosr has the 

Therefore, the condition for the validity of Eq. (3.26), i.e. 

equivalent to a<<l ,  or 

ll,o 
h o 121ao~ 

ziP Ah 
~ < < ~ ,  is 
t"o ho 

As an example, let us assume the conditions that m=2rcx103/sec, Po=105 Pa 
(i.e., 1 atm.) and g=l.8x105 Pa-sec (for air at 20~ ). The requirement for I for 
the validity of Eq. (3.26) is l<<854 ho (e.g., l<<17mm for ho=20~tm). For the 
same conditions but with higher oscillating frequency such as m=2rcxl04/sec, 
the condition becomes 1<<84.5ho (e.g./<<l.7mm for h0=20~m). 

w Long rectangular plate 

(1) Damping force for parallel motion 
Consider a pair of rectangular plates with length, L, much larger than 

width, B. The origin of the Cartesian coordinates is at the center of the lower 
plate and the x-axis is along the width direction, as shown in Fig. 3.8. The 
problem is virtually one dimensional. As mentioned in {}3.2.1, P in Eq. (3.26) 
is read as ZkP(x). Therefore, the boundary conditions are: 

P ( + I B / =  0 - 2  (2.27) 

z 

I j / o 
I I 

-0.5B 0 0.5B 
~ X  

Fig. 3.8. Squeeze-film air damping of a long rectangular plate 

As the problem is one dimensional, Eq. (3.26) is written as: 
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d2p  _ 12/,t dh (3.28) 
dx 2 h 3 dt 

where h is the distance between the two plates. By integrating Eq. (3.28) 
twice, we obtain: 

P(x) - 6~t dh x2 
h 3 ~ + ClX + C2 

By using the boundary conditions, we obtain: 

6~t (B2 / 
_ - -X  2 dh 

P ( x ) -  ~ 4 -~- (3.29) 

dh 
P(x) is positive when the air film is squeezed (-d-t < 0), and vice versa. The 

maximum pressure build-up is at the center of the plate (x=0) where 

P(0) = 3~tB 2 dh The distribution of the pressure build-up is shown in Fig. 
2h 3 dt" 

3.9. The damping force F on the plate is: 

f-~ ( _ ~tB 3 L dh _ ~tB 3 L h 
FIr-j--B- P ' x ' I - z t x -  h 3 d t -  h 3 

2 

According to the definition of F = -c~,  the coefficient of damping force for a 
long rectangular plate is: 

~tB3L (3.30) 
Clr -- h3 

Note that Eq. (3.30) is only valid for rectangular plates whose length, L, is 
much larger than their width, B. For a rectangular plate with a comparable L 
and B, the squeeze-film air damping will be discussed in w 

P(i ) dh <0 

~ 5  ~ X 
-0. B 

Fig. 3.9. Pressure distribution under a long rectangular plate 
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(2) Example 
Suppose that the width of a pair of plates is B=2mm, the length of the plates 

is 10 mm, the gap between the two plates is ho=20btm and the motion of the 
upper plate can be described by h=ho+Ssingot, where 8=lbtm and c0=2rtxl03. 
The environment is air with a pressure of one atmosphere. 

According to the condition described above, we have: 

dh 
= 8.60 cos cot 

dt 

and 

61a( B2 ) 3btB2 [ ( -~ )2  1 
-- --  X2 8 "  60 COS 60t = 1 - 86o cos 60t P(x ) -  ~ 4 2h 3 

As the coefficient of viscosity of air is Ix= 1.8xl 0 -s Pa.s (at 20~ the pressure 
build-up at x=0 is: 

P(0)  = - 8 5  cos  oat (ea) 

Therefore, the maximum pressure built up by the squeeze film motion is 

8.5X10 -4 atm. As 8 0.05, the result verifies that ZkP 8 - =  ~ << ~ .  The pressure is 
h Po ho 

not easily to build up due to of the low viscosity nature of gas. This 
phenomenon is often described as "gas is incompressible". 

According to Eq. (3.30) the coefficient of damping force is: 

C l r  - "  0.182N / (m / sec) 

w Circular and annular plates 

(1) Circular plate 
For a circular plate moving against a wall, the equation for air damping can 

be written in a polar coordinate system as: 

r P(r - (3.31) 
r Or h 3 dt 

and the boundary conditions are: 

dP 
P(a) = 0, -d-Tr (0)= 0 (3.32) 

where a is the radius of the plate. By integrating Eq. (3.31) and using the 
boundary conditions in Eq. (3.32), we find: 
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31a dh 
P ( r ) - - - ~  (a2 - r 2 ) d t  (3.33) 

The damping force on the circular plate is: 

Fci r - IoP(r)2rtrdr - 
3rt 4 dh ga 
2h 3 dt 

o r  

~iA 2 dh 
Fcir = 3 ~xA 2 dh__-0.4775 h3 

2re h 3 dt dt 
(3.34) 

where A= ~a 2 is the area of the plates. The coefficient of damping force is: 

3re 4 
= ~ta (3.35) Ccir 2h 3 

(2) Annular plate 
For an annular plate moving against a wall, the equation for air damping is 

the same as Eq. (3.31), but the boundary conditions are different. The 
boundary conditions are: 

P(a)=0, P(b)=0 

where a and b are the outer and inner radii of the annular plates as shown in 
Fig. 3.10. By solving Eq. (3.31) with the boundary conditions, the built-up 
pressure is:  )lna  

3g a2 3g a2 dh 
P ( r ) - - ~ - 5 -  1-  +-h-5- 1 -  lnb~--dt (3.36) 

r 

Fig. 3.10. Annular plate 

If the ratio of b/a is denoted as 13, we have the damping force for the annular 
plate: 
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Fan n = ~;P(r)2rc rdr = - ~  

The force can be written as: 

V = 3~xa4 K ( ~ ) h = - ~  
ann 2h 3 

3~la  4 

2h 3 
1 - ~  4 + h 

ln[3 

31/,4 2 

2~h 3 
K(13 )/~ 

where A = rca 2 and K(~) is a function of [3 = _b. 
a 

(1-~2)  2 
K(~)= 1 - ~  4 + - -  

ln[3 

The coefficient of damping force for an annular plate is: 

3~ta2A 
= ~ K ( ~ 3 )  Cann 2h 3 (3.37) 

w Rectangular plate 

In this section, we will discuss the squeeze-film air damping for a 
rectangular plate in a general form. If the side lengths in the x- and y- 
directions of the plate are B=2a and L=2b, respectively, as shown in Fig. 3.11 
(here, a and b are comparable), the differential equation for pressure in the air 
film is Eq. (3.26) and the boundary conditions are: 

P(+a, y) = O, P(x,+b) = 0 (3.38) 

Y 19 

- a  

Fig. 3.11. Rectangular plate 

+a  X 

The solution to Eq. (3.26) can be divided into two parts" P= p~+ P2, where 
pl is a specific solution to Eq. (3.26), i.e., Pl is a solution to equation: 
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~)2 Pl + ~)2 P_...__~I = 1 21a 
OX 2 ~)y2 h 3 /~ 

and P2 is a general solution to the Laplace equation: 

b2p2 I- bzp2 = 0 
/)x 2 /)y2 

(1) Solution of  p 1 
Assuming that Pl takes the form of: 

Pl - A + Bx + Cx 2 

and meets the boundary conditions of pl(+a)=0, we find: 

6g - ~ d_~h (a2 --X 2 ) 
Pl = h 3 at  

109 

(3.39) 

(3.40) 

(3.41) 

(2) Boundary condition of  p2 
From the definition of P=pl+P2 and the boundary conditions of 

p(__a, y)  = 0 ,  we have: 

pl(+-a, y)+ pE(+-a, y )=O 

According to Eq. (3.41), the boundary conditions for P2 at x -  _+a can be 
shown to be: 

pE(__a, y) = 0 (3.42) 

According to Eq. (3.38), the boundary conditions for P at y = _+b should be 

P(x,+_b) = 0 ,  i.e., 

Pl(X) + PE(X,+b) = 0 

Therefore, the boundary conditions for P2 at y = +b are: 

6g dh 
P2 (x,+b) = -Pl  (x) - -~-3--dT (a 2 - x 2 ) (3.43) 

The complete boundary conditions for P2 are Eqs. (3.42) and (3.43). 

(3) Solution of  p2 
To find the solution of P2, we separate the variables by assuming that: 

P2 = X ( x ) Y ( y )  (3.44) 

By substituting Eq. (3.44) into Eq. (3.40), we find: 

X " ( x ) Y ( y )  + Y " ( y ) X ( x )  = 0 
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or 

X"(x____~) = Y"(y) = A 
X(x)  Y(y)  

Therefore, we have two independent equations" 

X " ( x ) - ~ X ( x ) = O  

and 

Y"(y)+3~Y(y)=O 

For X(x), we assume that: 

X(x)  = A 1 cosctx + A 2 sin txx 

As X(+a)=0, we have A2=0 and tx = 
2nrr 

for n= 1,3,5, etc., i.e., 

2n~ ,x  
X ( x ) = A 1 cos( ) (3.45 ) 

a 

For Y(y),  we assume: 

Y(y) = C 1 cosh(y y) + C 2 sinh(~, y) 

2nrr 
where ~, = ~ and n=1,3,5, etc.. By using the boundary conditions for Y(y),  

a 

i.e., Y(b)= Y( -b ) ,  we find (72=0. Therefore, we have: 

Y(y) = C1 cosh( 2nrry ) (3.46) 
a 

By Eqs. (3.44), (3.45) and (3.46), we can write: 

o c  

P2 (x, y) ~ a n cosh nrry nxx = c o s ~  (3.47) 
n=1,3,5, 2a 2a 

To satisfy the boundary conditions shown in Eq. (3.43), we have: 

o c  

an cosh mrb nrr 6~t E c o s ~ x  - h(a 2 x 2 2a 2a -~- - ) (3.48) 
n =1,3,5, 

The constant an'S are found to be" 
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i6~t ]~(a 2 X2 nXx dx )cos 
_ - a  h~ 2a 

a n -- ~nb af nTzx 
COS 2 - d x  cosh 2a J 2a -a  

Therefore, we have: 
n ~  

sin -~  
192t'ta2/~ Z 2 

Pz(X' Y)= h3~ 3 n=1,3,5, n 3 c o s h ~  

nTg 
192ktha 2 s i n ~  2 (n=1,3,5, etc.) 
n371:3h 3 nrcb cosh 

The final solution for the pressure is: 

P -  Pl + P2 

2a 

cosh nny nrtx 
�9 C O S  

nrtb 2a 2a 
2a 

n l t  

6kth _ X2 192kt/:ta 2 = sin ~ nn'y nrt, x 
h3 ( a2 ) + h3/1;3 Z 3 2 b  cosh 2a c o S ~ 2 a  

n=1,3,5, n cosh n r c  
2a 

111 

(3.49) 

(3.50) 

(4) Damping force 
The damping force exerted on the rectangular plate is" 

Ere c = ~ a a d x ~ b b P ( X , y ) d y  

- _ ~  { 192 a ~ 1 } - 16a3bkt/~h 3 1---~(b)n=l~,3,5,~-gtanh(-~ab) - ktLB3h 3 h ~ L )  

where the factor ~(B)  is a function of the aspect ra tiOB " - - ,  1.e., 
L 

~ ( B / =  {1- 192(B~ -~-- ~,-L) n =~,3,5, ~ -  1 t a n h / ~ / }  

(3.51) 

The dependence of on -- is shown by the curve in Fig. 3.12. For a very 
L 

long plate, 13=1, and for a square plate (i.e., a=b), 13=0.42. The coefficient of 
the damping force is: 

Cre c - 
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0.8 
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~ ~ i ~ i i i i i 
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B/L 

Fig. 3.12. The dependence of factor ~B)on the aspect ratio B 
'kLJ L 

w Perforated plate 

Moving plates in microstructures are sometimes perforated to reduce the 
damping effect to a certain level for certain applications such as in 
accelerometers, microphones and so on. Therefore, estimation of the air 
damping force for a perforated plate is important in designing the devices. 

Suppose that a plate is perforated with circular holes of radius b and the 
holes are uniformly distributed in a hexagon close-packed pattern as shown in 
Fig. 3.13, to allow highest hole density and uniformity. If the distance 
between the centers of two adjacent holes is 2a, the area for a hexagonal cell 

including the hole is A 1 = 2~/-3a 2 . If the area of the whole plate, A, is much 

larger than A1, the damping force for the whole plate can be approximated as 
the sum of the damping force for all cells. 

Fig. 3.13. Plate with hexagon close-packed perforation 
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To find the damping force on a hexagonal cell, the cell is approximated as 

an annulus with an outer radius of a 1 = a = 1.05a and an inner radius of 

b. The equation for the pressure build-up caused by the parallel motion of the 
plate is the same as the isolated annulus discussed in w 

1 O ~ 12~th (3.31) 
r O r r -~r P ( r ) - --~ - 

As air does not flow between the cells, the boundary conditions are: 

bP 
P(b) = 0, -~-r (al) = 0 (3.53) 

By solving Eqs. (3.31) and (3.53), we find: 

P(r ) -  3ga12~ r r 2 - b  I 
h3 21n--b al 2 

The damping force for a cell is: 

7 3~ta12 ~ r r2-b21  
E l  - "  b - -  h3 2 In b a 12 2~rdr 

g(rtal2) 2 3 [  al ( b2/2 2 (  b v / ]  
- -  ~ h 21n--b--1-al2)-  1- 

b 
By using the notation of 13 = m ,  we have: 

al 

3gA12 h(4~ 2 -  [34-4 In ~ -  3) 
2gh 3 

or 

31 x /;t(4~2 _ [34 _ 41n ~_ 3) 
F 1 = - 2rch3n 2 

(3.54) 

where n is the hole density of the plate (i.e. the hole number per unit area of 
N 

the plate, n =-A'  where A is the total area of the plate and N is the total 

number of holes in the plate). The total damping force on the perforated plate 
is approximately: 
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A 31xA hk(~) -  3pA2 /zk(~) (3.55) 
Fp - ~ F 1= 2~nh 3 - 2gh3 N 

where k(I]) is: 

k(I]) - 4[32 - ~ 4  _ 4 In [3 - 3 (3.56) 

the definition of al, we have [3 = ~=b / 7z b _- 0.952-.b The According to 
a 1 ~ 2--~/3 a a 

dependence of k on b/a is shown by the curve in Fig. 3.14. 
For a finite plate area A, the damping force found from Eq. (3.55) should be 

larger than its real value (especially for small holes), as the boundary 
conditions on the edges of the plate have not been considered. An empirical 
approach for a better approximation is that the resistive force given by Eq. 
(3.55) and the resistive force for a non-perforated plate of the same shape and 
size are considered to act in parallel. Suppose that the plate is a rectangular 
one. The squeeze-film damping force, Frec, of a non-perforated rectangular 
plate with the same shape and area can be found using Eq. (3.51) in w 
Then the resultant damping force for the perforated plate, FT, is given by the 
following relation: 

F Frec 
F~r = (3.57) 

Fp +Frec 

k (b/a) 
16 

b/a 
I J ' 

0 0.2 0.4 0.6 0.8 1 

Fig. 3.14. The dependence of factor k on b/a 

w Oscillating beams 

Micro beams are widely used as resonators in micro mechanical sensors 
and actuators, especially in resonant type devices. Therefore, knowledge of 
air damping effects on oscillating micro beams is important. As the motion of 
the oscillating beam structure is not uniform, there is no closed form solution 
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for beam vibration problems involving damping force or damping ratio. 
Though numerical analysis is possible, it is not convenient as a design tool. 
Therefore, some simplified analyses are introduced in this section to obtain 
approximate solutions in the closed form. In the discussion in this section, 
two working models will be considered: the squeeze film-damping [5] and the 
drag force damping [3 ]. 

(1) Squeeze-f i lm damping 
Suppose a beam is placed parallel to a wall and is clamped at one end or 

both ends and oscillates in its normal direction in air. Assume the length of 
the beam, L, is much larger than its width, B, and its width is much larger than 
its thickness, h. If the gap between the beam and the substrate, do, is small 
when compared to the beam width, the main mechanism of damping is 
squeeze-film damping. As the moving speed of the oscillating beam is not 
uniform and its distribution is dependent on the vibration mode, the air 
damping force can hardly be simplified by a lumped model. As the length of 
the beam is much larger than its width, the air flow caused by the vibration is 
mainly in a lateral direction. According to Eq. (3.30), the squeeze-film air 
damping force on a unit length (L= 1) of beam is: 

F s = ktB3 fv(x t) 
do 3 ' 

(3.58) 

where ~t the coefficient of viscosity of air and w(x,t) is the moving speed of 
the beam sector considered. With reference to Eq. (2.104) in w the 
equation for a forced vibration of the beam with squeeze-film air damping is: 

9 B h ~ ( x , t )  + CsfV(x,t ) + E1 
d4w(x,t) 

dx 4 
= F(x)sin cot (3.59) 

where 9 is the specific mass of the beam material, E is the Young modulus of 
the beam material, I is the moment of inertia of the beam, F is the amplitude 
of the external driven force and cs is the coefficient of squeeze-film air 
damping force per unit length of the beam. According to Eq. (3.58), we have: 

ktB3 (3.60) 
c s = do 3 

w(x,t) in Eq. (3.59) can be developed into the series: 

o o  

w ( x , t ) =  ~.~(Pn(t)Wn(x) (3.61) 
n=l  
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where the W,(x)'s are the shape-functions of the free vibration of the beam 
structure, i.e., they are solutions of the following equations: 

E l  d4Wn (X) 
dx 4 = 9Bhco,2W, (x) (3.62) 

Substituting Eq. (3.61) into Eq. (3.59), multiplying a specific W n (x) ,  taking 

integration from 0 to L and making use of Eq. (3.62) and the orthogonal 
L 

characteristics of the W,'(x)s (i.e., ~ W m ( x ) W  n ( x ) d x  - 0 for m e n), we obtain: 
0 

mn(Pn(t)+Csn(Pn(t)+ mnO~ n2(pn ( t )  = Fn sin 0~t (3.63) 

where 
L L 

m n - o B h f W n 2 ( x ) d x ,  F n = f F ( X ) W n ( x ) d x ,  Csn=C, mn = ~tn____~ 2 
o o oBh 9hdo 3 mn 

Eq. (3.63) can also be written as: 

(Pn ( t )+  2nsn(Pn(t)+~n2(Dn(t)  = fn sin c0t (3.64) 

where 

Csn _ Cs 
nsn = ~ _ 

2m n 29Bh 

and 

fn =Fn 
mn 

When the beam is oscillating at one of its natural vibration frequencies, COn, 
the corresponding damping ratio can be obtained directly from Eqs. (3.60) 
and (3.64) based on the discussion in w 

~sn = Cs - ~tB2 
29Bhco-------~ - 29h0~ ndo 3 (3.65) 

The Q factor for this vibration mode is: 

a s n =  9hd~176 n 
~tB2 (3.66) 

This is a simple but a very useful result indicating that the Q factor of a 
beam resonator is related to the geometries of the beam and the frequency of 
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the vibration mode. It is especially interesting that the higher the vibration 
mode (corresponding to a higher frequency), the higher the Q factor. 

According to Eqs. (3.63) and (3.64), the effectiveness of an external driving 
1 L 

= [ F(x)W, (x)dx. force for a specific vibration mode is determined by f ,  mn 

(2) Drag force damping 
If the beam is far away from a surrounding object (as in the case where a 

beam is driven into vibration by a piezoelectric method), the main damping 
mechanism is the drag force of air flow. As there is no closed form solution to 
the damping force for most mechanical structures including beams, a 
simplified dish-model is suggested in this section. Similar to the bead model 
[6], the model replaces the beam with a string of dishes as shown in Fig. 3.15. 
The diameter of the dishes is equal to the beam width, B, and the interference 
in air flow between neighboring dishes is negligible. According to Eq. (3.12), 
the air damping force on the i'th dish is: 

Fa i - 8ktBfv i (3.67) 

where w/is the displacement of the i'th dish. Since the number of dishes per 
unit length of the beam is l/B, the damping force per unit length of the beam 

is: 

�9 Fa I = 8ktw (3.68) 

The equation for a forced vibration of the beam with drag force damping is: 

9bhfb(x t) + Cal fV(x , t )  + E1 d n w ( x ' t )  = F(x,t)  (3.69) 
' d x  4 

where Cal is the coefficient of air-flow damping force. According to Eq. 
(3.68), we have: 

Cal- 8kt (3.70) 

Following similar argumentation as made for squeeze film damping, the 
damping ratio for the n'th vibration mode is: 

~an- -  Cal = 4kt (3.71) 
29Bhf.O n 9Bh~ n 

where co, is the radial frequency of the n'th vibration mode. The Q factor for 

the vibration mode is" 

pBho3,, (3.72) 
a s h  - - ~  8~t 
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XX) 
L ,, 

(XX)  
" I~ 

Fig. 3.15. Dish-string model for air damping of beam (top view) 

In the above discussion on damping force, the dishes are considered as 
being isolated from one another and the dishes do not fill the beam area 
completely. As a matter of fact, no air flow is allowed between two 
neighboring dishes. Therefore, the damping force given by Eq. (3.68) is 
under-estimated. As a rough modification, the Q factor given by Eq. (3.72) is 
reduced by a factor that is found by comparing the squeeze-film damping 
force for a long rectangular plate with that for a circular plate. Using Eqs. 

32 
(3.30) and (3.34), the factor is found to be ~ .  Therefore, the modified 

3re 

estimation for the Q factor is a s n  - 31r'oBhO~n = 0.037 9BhCOn . 
256~t ~t 

w Effects caused by finite squeeze number 

In w the basic equation for squeeze-film air damping was derived. For 
convenience, the equation is given again here: 

~2p2 ~2p2 24~ ~9(hP) 
i = (3.23) 

~x 2 ~y2 h 3 ~t 

Under the condition that the squeeze number a is negligible, (i.e., 

12~t/260 
C y ~ ~  Poh2 << 1, where I is the characteristic dimension of the plate, e.g., the 

radius of a disk or the half width of a strip or rectangle plate), Eq. (3.23) can 
be simplified to: 

~)2p ~92p 121a dh 
+ ~ = ~ ~  (3.26) 

~x 2 ~y 2 h 3 dt 

Based on Eq. (3.26), discussions on squeeze-film air damping for some 
typical structures were carried out in w to w 

However, if a is small but not negligible, Eq. (3.23) instead of Eq. (3.26) 
must be used for squeeze-film air damping problems. We will discuss some of 
the effects caused by the finite value of a in this section. 
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For simplicity of discussion, the following transformations are made to 

make the variables dimensionless" ~ = x ~ y ~ h P -{' Y=--{Y' h - K - o '  P=-~-o and 

t = cot. With these dimensionless variables, Eq. (3.23) is written as: 

~ + ~  = 2or ~3 ~" 0X 2 0Y 2 (3.73) 

~ 

h is the varying dimensionless film thickness due to the oscillation of the 
damper plate, and it can be expressed as: 

= 1 + e sin}" (3.74) 
~ 

For small or, the pressure P can be expressed as: 

= 1 + pl ~ + p2 ~2 + O(~ 3) (3.75) 

Terms related to a 3 and up will be neglected in this analysis. 
Substituting Eq. (3.75) into Eq. (3.73) gives the following equations: 

32pl 3 2 p l _  
3X 2 I bY 2 -- ~_/----~ (3.76) 

and 

c)2p2 + ~  T/3 0~ 0.~ 2 0y 2 3X 2 bY 2 -- - -  (3.77) 

The boundary conditions for Pl and P2 are derived from the criteria that 
~ 

the pressure P be unity on all outside boundaries and the pressure 
distribution has a zero slope at the symmetric points of the plate. It should be 
pointed out that the first order equation, i.e., Eq. (3.76) for Pl, is, in fact, the 

equation for "incompressible condition" related to very small compression 
numbers (a<<l) .  The effects caused by the finite value of a are represented 
by P2" To demonstrate the effects caused by a finite P2, only the resistive 

force on a long rectangular plate damper is considered. For plates with other 
shapes, readers are referred to reference [7]. 

For a long rectangular plate with a length L much larger than its width B, 
the problem can be treated as one-dimensional. According to the coordinates 
shown in Fig. 3.16, Eq. (3.76) can be simplified to" 

b2 Pl 
b~----T = ~'--3- (3.78) 
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where l = B /2 .  The boundary conditions for Pl are: 

B 
m ~  

2 

ap,  = o p, (+1, t') = O, --~-- 

The solution of Pl is" 

h 
pl(~, r)  = 2--~-(~2 - 1 ) 

y J './_ 
2 

_t. 
2 

3~ 

Fig. 3.16. A long rectangular plate and its coordinates 

(3.79) 

(3 .80)  

By substituting Eq. (3.80) into Eq. (3.77), we have: 

~2 .. 
~2p2 _ h (.~2 _ 1 ) -  2 

- 2~ 5 2 -~ (5x  - 3) ~22 

The boundary conditions for P2 are: 

(o ,7)  = o p2 (+1, t') = 0, --~- 

The solution to P2 is: 

P2('~' t ' )= 24h" (.~4 - 6 ~  + - 24~6 -182 2 + 1 

From the solution to Pl and P2, we have: 

" h -.2 1)or [ h 5) h]~2 (5~ "4 18~ 
P = l + 2 - - ~ ( x  - + 24~5 ( "~4-6"~2+ - 24~6 - 

The force on the plate is: 

(3.81) 

+13)] 2 
(3.82) 
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[ l h  
F - PoLBf~(fi -1)d37 - PoLB - 3 - ~ a  + - -  

LL 

2 hey  2 
15 -~--g 

l hEh  2 hoah a2 l h 4 h  2 2j  
= PoLB - 5 ~  a ~ 15 h5to 2 3 h6to 2 O 

Based on Eq. (3.83), two conditions are considered: 

3 ~  6 CY2 

(3.83) 

(1) Small amplitude 
By using the small amplitude condition of e<<l so that h -- ho and using the 

relations: 

h - hoeto costot, h - -hoeto 2 sin tot 

Eq. (3.83) can be approximated as: 

I 3 2 0 2  lCy2E2 ] F - PoLB - ae cos tot - ~ e sin tot - - cos2 tot 
15 3 

I 3 2 1cy2e 2 1 cy2E2 cos2tot 1 - PoLB - ae cos tot - ~ (72E sin tot . . . .  
15 6 6 

= Fo + Fk + F,  + F2,o 

(3.84) 

The meaning of the four terms are explained as follows: 

(a) Damping Effect 
The first term in Eq. (3.84) is: 

1 ktLB 3 ktLB 3 
Fo = --~ Po LBcre cos tot - - ~ h oeto tot - ~t h3 cos - h 3 

This is exactly the same result as given in Eq. (3.30), i.e., it is the result of the 
first order approximation. 

The energy loss of the system due to this damping force in one cycle is: 

~tLB 3 
AE = f r  h3 h oeo~ cos o~thdt 

_ f2rc_ ktLB3to ktLB3to E2 
h~ 3 ho2E 2 cos  2 cotdcot-- 2ho Jo 

Therefore, we have: 
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Q = 2rcEr = 2re 12 k(h~ = 2r~kh3o 

AlE ~tLB 3Co 2 ~ tLB3 
g 

2ho 

where E r is the total energy of the system and k is the elastic constant of the 

mechanical spring supporting the plate. 

(b) Elastic Effect 
The second term in Eq. (3.84) is: 

2 PoLBCr2e sin c o t  = - ~  F k = - ~  
2 9~t2co2B 4 

PoLB hoe sin o3t 
15 ho 5 

~2o)2B4 
= _ 6 L B ~  Ah 

5 eoh o 

Obviously, F k has the same nature as the elastic recovery force of a spring. 

F k is significant at high squeeze numbers when the air flow into and out of 

the gap fails to keep up with the motion of plate. Therefore, this effect is 
referred to as the "elastic effect" of the air film. Since the trapped air acts as a 
spring it does not cause energy losses. 

(c) Rectification Effect 
The third term FR in Eq. (3.84) is a constant force stemmed from the 

quadratic term of P2 in Eq. (3.81). Therefore, it is referred to as the 
rectification force due to the nonlinear relationship between the pressure and 
the displacement. 

(d) The force o f  higher harmonics 
The last term in Eq. (3.84), F20,, represents a force component whose 

frequency is twice as large as that of the oscillating plate. This component is 
also caused by the quadratic term of P2. 

(2)Large amplitude condition 
If the amplitude of the oscillating plate is not negligible, then the value of 

h = ho(1 + esin cot), instead of h=ho, has to be used in Eq. (3.83). In this case, 

Eq. (3.83) can be developed into the form of: 

F = A o + A l cos0~t + B 1 sin cot + A 2 cos 2e0t + B 2 sin 2c0t + ... (3.85) 
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where Ao is the rectification force, and A~ and B~ are the amplitudes of the 
damping and elastic forces, respectively. They can be found using the 
following expressions: 

1 2~ (3.86) 
ao - ~ I0 F. d~t = eoL8 24(1- ~ 

1 So z F cos o3tdo3t PoLB Al = r~ 

and 

ECY 
3(1-E2) 3/2 

(3.87) 

3 E4 + 6e2 + 2/132 E 
1 

~2~ F sin o3tdo~t - -PoLB 1 (1_ 
(3.88) 

Eqs. (3.86) to (3.88) show that the rectification force, the damping force and 
the elastic forces increase with an increase in the amplitude indicated by ~. 

From Eq. (3.87) the damping force is: 

gLB 3 1 
F o - A 1 c o s m t -  h (3.89) 

ho 3 (l_ E2) 3/2 

The coefficient of damping force is: 

~tLB 3 1 
c - ~ (3.90) 

ho 3 (1_ E2) 3/2 

Obviously, for small amplitudes, the coefficient is the same as that given by 
Eq. (3.30). 

w Slide-film air damping 

w Basic equations for  slide-film air damping 

(1) Model o f  slide-film air damping 
Micromechanical devices fabricated by surface micromachining technology 

feature thin layer movable plates (about 2 ~tm thick) suspended over a 
substrate by flexures placed a small distance apart. This basic structure 
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facilitates the lateral motion of the plates for such applications as resonators, 
actuators, accelerometers, etc. As the dimensions of the moving plates are 
usually much larger than their thickness and their distance from the substrate, 
the viscous damping by the ambient air plays a major role in energy 
dissipation of the dynamic system; the air film behaves as a slide-film damper 
to the moving structure. To investigate the basic features of slide-film 
damping, a simplified mechanical model is considered: an infinitive plate, 
immersed in an incompressible viscous fluid, moving in a lateral direction at a 
constant distance from the substrate [8]. The model is schematically 
illustrated in Fig. 3.17. 

moving direction 
k/2 "- = k/2 

~~'~ '~ '~~'~ '~ '~ '~ '~ '~ '~ '~i~I~ x 

(a) ~ Y 

M 
moving direction 

(b) 

Fig. 3.17. Schematic model for a slide-film air damping 
(a) schematic structure (b) a lumped damping model 

(2) Basic equations 

The general equation for the steady flow of an incompressible fluid is the 
well-known Navier, Stokes equation [3]: 

p -0-~+(~.V)~ = F - V p + ~ V 2 ~  (3.91) 

where p is the density of the fluid, ~ is the velocity of the fluid, F is the 
external force, p is the pressure of the fluid, Ix is the coefficient of viscosity of 
the fluid, and v and v 2 denote gradient and Laplace operators, respectively. 
Suppose that the plate is in the x-y plane of a coordinate system and the 
movement is in x-direction. In this case, there is no external force or pressure 
gradient and v x - u >> Vy and vz, Eq. (3.91) becomes" 

~u 0u ~t ~2u 
+ u ~  = - ~  (3.92) 

~t Ox p ~z 2 
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For an infinite plate, the second term on the left side of Eq. (3.92) vanishes, 
resulting in: 

OU ~ ~2U 
~--t = [3 ~Z 2 (3.93) 

The boundary conditions for Eq. (3.93) are that u equals zero at the substrate 
surface and u equals the velocity of the moving plate near the surface of the 
plate. 

For a plate with a finite area, the second term in Eq. (3.92) will not be zero. 
Now let us discuss the conditions for the approximation of Eq. (3.93). 

Suppose that the motion of a finite plate with reference to its balanced 
position is a simple harmonic oscillation: 

x ( t )  - a o sintot 

where ao is the amplitude of the simple harmonic oscillation. Therefore, we 
have: 

u( t )  = aoto cos tot = u o cos tot 

and: 

Ou 
Ot Uoto sin to t 

where u o = aoto.  If the typical dimension of the plate is l, we have: 

2 Uo a o2 to 2 
m 

l l 

~u 
u m ~  

bx 

and 

~t ()2U 

(3.94) 

(3.95) 

- - ~  = ~ a~ (3.96) 
P ~z 2 9 d 2 

where d is the distance between the substrate and the plate. 
Therefore, the approximation conditions for Eq. (3.93) are: 

i0ul t 0ul a) - ~  >> U-~x x . This requires small amplitude, i.e., ao<<l, 

b) ~--- 02u 0U 
~72>> U~x. Using Eqs. (3.95) and (3.96), this condition becomes 

P 

9toao d2 1 2 ~  t l >> ~ .  By defining a characteristic distance 8 = , the condition 
2~t pm 

can be further simplified to: 
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d 2 
l >> ~5-ao (3.97) 

We will find in w that the effective distance, 8, corresponds to the 
distance that the velocity decays away from the plate by a factor of e 
(=2.718...) in the z-direction. The curve in Fig. 3.18 shows the dependence of 
8 on the frequency in air at 1 atm. at 20~ 

(3) Two f low models 

E b2u bu Under the condition that 8>>d (i.e., co << ~t / pd 2), 19 ~ >> -~-" In this 

case, Eq. (3.93) can be further simplified to: 

b2u 

bz 2 
~ = 0  (3.98) 
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Fig. 3.18. The effective distance, 8, as a function of frequency 

In the following sections, two different damping models will be considered: 
a Couette-flow model governed by Eq. (3.98) when 8 is much larger than d 
and a Stokes-flow model governed by Eq. (3.93) for more general conditions 
[8]. 

w Couette-flow model 

Suppose that a large plate over a static substrate oscillates laterally as 
shown in Fig. 3.19. If the oscillating frequency is so low so that 8>>d, the 
flow pattern of the air around the plate is called Couette-flow. We will 
consider the damping effect caused by the viscous fluid between the plate and 
the substrate by the Couette-flow model with the boundary conditions: 

u(O) = u o coso~t, u(d)= 0 (3.99) 
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According to Eqs. (3.98) and (3.99), the velocity distribution of the fluid is: 

Z 
u(y) = u(0)(1- ~ )  (3.100) 

where u(0) is the velocity of the moving plate. The shearing force applied to 
the plate to oppose its motion is: 

u(0) 
F = -kt A (3.101) 

d 

where A is the area of the plate. According to the Couette-flow model, the 
velocity gradient on the open (top) side of the plate is zero. Therefore, there is 
no damping force on the top side of the plate and the Q factor of the lateral 
vibration system is determined only by the damping force described in Eq. 
(3.101). (As a matter of fact, if d on the top side is large, the condition for 
Couette-flow, 5>>d, is no longer valid, but we will just assume that the 
damping force on the top side of the plate is negligible.) 

k moving direction 
I ?~1  _ 

I . . . . .  

iiiiiiii!i!i~i~i~i~i~iiiiiii~iiiiiiiiiiiiiii~iiiiiiii!i~!!~i~!i~l ]r d 

Fig. 3.19. Laterally oscillating plate over a substrate 

The energy dissipated by the damping force in one cycle is: 

AEcd - i A~t U(~~)u(O)dt 
0 

As u(0)= u o cosO3t, we have: 

2~1, 
=--u  o - -A  AEca O3 d 

According to the second definition of the Q factor in Chapter 2: 

Qcd - gmu~ = mO3d 
Z~ca Wt 

(3.102) 

If the specific mass of the material is p and the thickness of the plate is h, Eq. 
(3.102) can be written as: 

pho3d 
Qcd = ~t 

Note that Qca is not dependent on the area of the plate, A. 
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w S tokes - f l ow  m o d e l  

In the Couette-flow model, the velocity profile in the fluid between the 
plate and thesubstrate is linear. The model becomes invalid when the distance 
between the plate and the substrate is large enough. For a very large distance, 
the velocity profile of the fluid is governed by the differential equation Eq. 
(3.93). If the effective distance, 8, is not much larger than d, then Eq. (3.99) 
applies. 

By solving Eq. (3.93) with the boundary conditions given in Eq. (3.99), the 
velocity profile of the fluid is: 

- e  -2+~ cos(tot + ~ ' -  d - 0 )  + e '7-~ cos(t0t- ~" + a t - 0 )  
(3.103) 

u - u o fie 2a + e -23 - 2 cos(2ar ) 

-- d z 
where d = ~ ,  ~" - ~  and 0 is a phase lag angle against the oscillation of the 

plate (u(0) = u o costot ). The expression for 0 is: 

(e  d + e -d  )sin 
0 - arctan ~ _ (3.104) 

(e  d - e -d  )cosd  

The force applied on the plate (on one side) is: 

FSd = A ~t OO~~Z z =o 

= Alxuo 

84e 2'i + e -2'7 - 2 cos 2d 
( - e  -~ cos(tot- ~r - 0 )  (3.105) 

+e -d sin(t0t- d - 0 ) -  e d cos(tot + d - 0 ) +  e d sin(tot + d - 0 )  ) 
With the damping force on the plate shown by Eq. (3.105), the energy 

dissipation in one cycle of oscillation is found to be: 

AEsd = -i Fsd Uo dt  = nA btu~ sinh(2d~ ) + sin(2d~) (3.106) 
0 c08 cosh(2d ) -  cos(2d) 

and the Q factor is: 

m0~ cosh(2d ) - cos(2d ) 
Qsd = AIx s inh(2d)+sin(2d)  (3.107) 
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For the extreme condition of d < < 8 ,  we have 0=--,re Fs d _ F c  d =  
4 

- A  g-- u(O), AEsd= AEcd and QSd - QCd, i.e., the results of Stokes-flow model 
d 

coincide with those of Couette-flow model. 
For another extreme condition of d >> 8, from Eq. (3.103), we have: 

u -  Uo e-g cos(03t + d -  0) 

This shows that the fluid around the plate oscillates with the same frequency 
as the plate but the oscillation amplitude in the fluid decays exponentially 
away from the plate. 8 is the distance over which the amplitude decreases by 
a factor of e (=2.718). 

Under this condition, the energy dissipation in one cycle is: 

Z~s~ rc 2 g = - - u  o A 

and 

m038 ph038 
Qsoo - ~ = 

If Qs~ is compared with acd in Eq. (3.102), we can conclude that the 

damping force now is: 

gAu(0) (3.108) 
Fs~= 8 

As the condition of d >>8 means that the effect of the neighboring 
substrate is negligible for the oscillating plate, the plate can be considered as 
an isolated object in the fluid. Now let us compare the result here with the 
drag force on an isolated object given in w 

According to w the drag force exerted by the viscous fluid on a 
circular dish moving in its plane direction is" 

32 32 gay 
F d = - ~ t r v  = - - ~ 3 r c  r (3.109) 

where v is the velocity of the plate, equivalent to the u(0) in Eq. (3.108), and 

r is the radius of the dish, i.e., its characteristic dimension. When Eq. (3.109) 
is compared with Eq. (3.108), we can make the following conclusions: 

a) if 03 is small (8 >> r), the damping force should be estimated by Eq. 
(3.109); 
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b) if c0 is large (~5 << r), the damping force should be estimated by Eq. 
(3.108). 

w Air damping of a comb resonator 

Silicon micro resonators are typical micro mechanical structures and have 
very useful applications in sensors and actuators. Many types of silicon 
micro-resonators have been so far developed. Among them, the lateral driving 
comb micro resonators, formed by surface micromachining technology, have 
wide applications. 

Fig. 3.20 shows schematically the basic structure of the lateral driving 
comb resonator. The shaded areas are fixed fingers (or, fixed electrodes) and 
act as anchors for the movable parts. The movable parts include the flexures 
(narrow beams), supporting plate (with etching holes) and fingers (movable 
electrodes). The moving parts of the structure can be driven into lateral 
oscillation by applying alternating voltage (often with a dc bias, see Chapter 
5) between the movable and the fixed electrodes. Quite often, the frequency 
of the driving force coincides with the resonant frequency of the structure so 
that the structure is driven into a resonant state. Thus, the structure is often 
referred to as a comb resonator. 

One of the most important characteristics of a resonator is its mechanical 
quality factor, Q. For a comb resonator operating in an atmospheric 
environment, air damping is the dominant factor that determines the Q factor 
of the resonator. 

ZZiii!I ..... "~;~'" '  ............... " i~i~i~i] .............. , ...... , ....... 
N " ;  .......... 
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l I~ . . . . . . . . . . . . . .  " . . . . . . . . . . . . . .  ::.'-! 
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Fig. 3.20. A schematic drawing of a comb resonator 

The air damping force for a comb resonator consists of many damping 
force components related to the geometries of the structure and different 
damping mechanisms. These damping force components are: 
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(a) The slide-film damping force on the bottom 
As the distance, dp, between the moving parts and the substrate beneath the 

movable structure is much smaller than 8, the damping force is of Couette- 
flow type and can be expressed as: 

Ap.  
F l =~t x=gJc 

dp 

This is usually the most important force component of all the damping 
force components 

(b) The slide-film damping on top 
Suppose the structure is placed far away from any external objects above it. 

The damping force above the moving parts of the structure is of Stokes-flow 
type. The damping force component is: 

Ap 
F 2 = lx--~-k = c2k 

where 8 is the effective distance defined in {}3.3.1 as 8 = ~] 2~t and 9 is the 
V 90~ 

density of air. From Fig. 3.18, for a resonant frequency of 1 kHz, we find 8 = 
67 ~tm. Ap is the effective plate area for the damping calculation which 
includes the areas of the plates, fingers and beams. The etch hole region is 
also included in Ap as the dimension of the etch hole is usually small when 
compared with 8. 

(c) Slide-film damping of the sidewalls 
The damping force is: 

As Jc- c3Jr F3=~t dZ 

where As is the area of the sidewalls that are in parallel with the moving 
direction and ds is the distance between the sidewalls and their neighboring 
structures. Here we have assumed that: ds <<8. 

(d) Air drag force 
The air drag force on the moving plate is difficult to estimate. Referring to 

the air drag force on a circular dish moving along its plane direction (see Eq. 
(3.13) in w the force can be approximated by: 
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F 4 = 3 .~13c  = c4.~ 

where l is the characteristic dimension of the moving structure that can be 
taken as half the width of the plate. 

Therefore, the total damping force on the entire structure is: 

F =  F 1 + F  2 + F  3 + F  4 =(c  I +c  2 +s + C4)3C ---- r 

and the quality factor is" 

1 c 
m - -  2 ~ - - ~  
a mO)o 

or  

- - -  ( Ap Ap As )I 1 _ Ix ( + , + ~ + 1 0 . 7 1  
Q mo3 o dp 8 d s 

(3.110) 

Due to the finite dimension of the structure and the fringe effect at the 

where Leer is the effective length of the beams, b the width and h the thickness 
of the beam flexures. As m = Aphp, we have" 

l _ ~ t l  Leff3 ( A  p Ap 
-Q-h EpApb 3 (-~p+ 8 

+ As + lO'71) (3.111) 

For most situations, the Couette-flow slide-film damping term, the first 
term in Eq. (3.111), is the dominant factor of air damping. If only the Couette- 
flow slide-film damping is considered in estimating the quality factor of the 
structure shown in Fig. 3.20, we have" 

Q = hdp I~p ( Lef t (3.112) 

This means that, for a high quality factor, the structure should be thick and far 
away from the substrate. Also, the flexures should have as large a flexure 
rigidity as possible in their moving direction. 

CO o - I Ehb3 
mLeff 3 

edges and comers, Eq. (3.110) is only a semi-quantitative approximation to 
the exact value. However, it does provide useful information in designing a 
comb resonator. 

The resonant frequency COo in Eq. (3.110) can be written as: 
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w Damping in rare air 

w Free molecule model for rare air damping 

In a wide band of pressure range around and above atmospheric pressure, 
the viscosity of gas is independent of pressure. Therefore, the damping effect 
of gas is independent of pressure in this range. This phenomenon can be 
explained by the kinetic theory of gas. The viscosity coefficient of a gas found 
by the simple kinetic model is: 

1 

where p is the density, )~ the mean free path and V the average velocity of the 
gas molecules. As V and the product of p and )~ are independent of pressure, 
the viscosity coefficient, ~t, is not a function of pressure. 

However, experiments show that the air damping force on a microstructure 
reduces significantly in rare air where the air pressure is below several 
hundreds Pa. It is believed that the gas molecules are so far apart in low 
pressure that the interaction between gas molecules can be neglected. 
Therefore, a model called the free molecule model is used for rare air [9]. 

Now let us consider the air damping force acting on a plate oscillating in its 
normal direction (x-direction). If the interaction between gas molecules can be 
neglected, the damping force on the plate resonator is caused by momentum 
transfer during its collisions with individual gas molecules. If the speed of the 
plate is ~c, the pressure caused by the collisions on the front side of the plate 
is: 

o o  

Pf = 2mn ~ (v x + ~)2 f (Vx )dvx (3.113) 
- k  

where m is the mass of a molecule, n the molecule density, Vx the x-component 
of velocity of the colliding molecule moving against the plate and f(Vx) the 
normalized distribution function of the molecules. For the distribution 
function, the Maxwellian function is usually used: 

2 
m v  x 

m 
f(Vx)- :Z~kre~ 2kr (3.114) 

Similarly, the pressure caused by the collisions on the back side of the plate 
is" 
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o o  

P6 = 2mn~ (v x - .t) 2 f (v x )dv x (3.115) 
2 

According to Eqs. (3.113), (3.114) and (3.115), the pure damping force 
caused by collision is: 

Fr = A(Pf - P b) 

where A is the area of the plate. If the velocity of the plate, :t, is much smaller 
than that of the majority of the gas molecules, we have: 

F r =8mnAIvx .2F(vx )dv  x =8tuna kT ~ (3.116) 
o 2rcm 

For the gas in the standard condition (Po=l atm., To=273 K), the molecule 
density of gas is: 

no = N A  
Vo 

where NA=6.023x1023 and Vo=2.24x10Em 3. The molecule density at pressure 
P and temperature T is: 

PT o NAP 
n = n~ ~o T = RT 

where R=8.31 kg.m2/sec2/~ and is referred to as the universal molar gas 
constant. Therefore: 

F r = 4 ~ ~  MPA2RT (3.117) 

where M is Molar mass of the gas. The coefficient of damping force in rare air 
by the free molecule model is: 

Cr= 4 ~ ~ - ~ T P A  (3.118) 

Eq. (3.118) shows that the damping effect in rare air decreases in a linear way 
with decreasing pressure. Therefore, if the pressure is in the range where the 
rare air damping is the dominant damping factor, the Q factor of the system is: 

Q= MPf-~ 

C r 

where Me is the mass of the plate and ~o the natural frequency of the system. 
As Mp=Ahp, we have: 
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hOC~ ~ ~RT1 
Q= 4 " " M P (3.119) 

where h is the thickness of the plate and 9 is the specific mass of the plate. 
Eq. (3.119) has been compared with experimental data. The results agree to 

within an order of magnitude. Though the air damping is indeed inversely 
proportional to pressure P, the value of the Q factor is overestimated 
quantitatively, i.e., the damping force in rare air is underestimated by the free 
molecular model. 

Disregarding the quantitative difference, Eq. (3.117) is now used to 
estimate the pressure where the transition from viscous flow model to free 
molecule model occurs. Suppose the plate is a square of l mm by l mm and it 
is 20~tm away from the neighboring substrate, the squeeze-film damping force 
in the normal direction is: 

~LB 3 0-8 
Fs=0.42 h3 : t = 9 . 5 x l  -:t (3.120) 

The damping force by Eq. (3.117) is: 

Fr= 4a /2a /M ' Pa:t = 1.148 x 10 -10 P~ 

r - - , - - - -  - -  

(3.121) 

By equating Fs and Fr in Eqs. (3.120) and (3.121), we find the transition 
pressure of Pt=828 Pa. This result means that, for the specific structure 
described, the transition from squeeze-film air damping to rare air damping 
occurs at a pressure of about 828 Pa. Obviously, the transition pressure is 
dependent on the geometries of the microstructure. 

w Damping in a vacuum 

According to the free molecule model, the damping force in rare air is 
proportional to the air pressure. Therefore, the air damping force goes down, 
or, the Q factor of the system goes up, with a decrease in the air pressure. 
However, experimental results show that the Q factor levels off when the 
vacuum is high enough, i.e., when the effects of internal friction and support 
losses become the dominant mechanisms of energy dissipation [6]. As the 
internal friction and the support losses are very hard to predict theoretically, 
they are evaluated by the quality factor in a high vacuum condition. For micro 
structures made of silicon, the quality factors at high vacuum, Qo, range from 
104-105. Once Qo is found through experimental measurements the coefficient 
of damping force caused by internal friction and support losses can be found 
using: 
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MpO-} o 
c o = ~ (3.122) 

ao 
where Mp is the mass of the oscillating plate and COo is the natural frequency of 
the system. Therefore, the differential equation for vibration in rare air can be 
modified to: 

m2 +(c r +Co)JC + kx = F (3.123) 

where cr and Co can be found from Eqs. (3.118) and (3.122), respectively. 
Assume Qo of the oscillating plate is found to be 5xl 04, the plate is made of 

silicon with a thickness of 200 ~tm and the natural frequency of the structure 
is 1 kHz. The critical pressure, Po, where the Q factor starts to level off with 
decreasing pressure can be found by equating Eq. (3.118) and Eq. (3.122), 
i.e., 

4 ~ ~ ~ T  Po A= aph~ 
Qo 

The critical pressure is thus found to be about Po-5 Pa, or, 4• .2 Torr. 
As a summary, the dependence of the Q factor on the air pressure from 

atmospheric pressure to high vacuum is schematically shown by the curve in 
Fig. 3.21. Let us start at pressures higher than atmospheric pressure. The Q 
factor at high pressure is independent of pressure as shown by sector A of the 
curve in Fig. 3.21. The Q factor in this pressure range is determined by the 
geometries and the moving directions of the structure: the damping could be 
squeeze-film damping, slide-film damping, drag force damping or a 
combination of these mechanisms. 

When the pressure is pumped down to a certain extent (102-- 103 Pa), the Q 
factor starts to rise when the mechanism of rare air damping starts to play an 
important role. The Q factor is inversely proportional to the air pressure in the 
pressure range when the rare air damping plays a major role in air damping, as 
shown by sector B of the curve in Fig. 3.21. The transition pressure, Pt, for 
sector A to sector B is usually in the range of several hundred Pa. The exact 
pressure is dependent on the geometries and vibration mode of the micro 
structure. 

At high vacuum, when the air damping is very small, the effects of internal 
friction and energy losses via the structure supports have to be considered. 
Generally, the Q factor in very low pressure must be determined by rare air 
damping, as well as the internal friction and the support losses of the 
structure. Obviously, the Q factor will be mainly determined by the internal 
friction and the support loss when the vacuum is high enough and the Q factor 
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becomes a constant as shown by sector C of the curve in Fig. 3.21. The Q 
factors of silicon microstructure in high vacuum are usually in the order of 
105 . The exact value is dependent on the geometry design of the micro 
structure. 

The pressure, Po in the figure, where the Q factor begins to level off with 
decreasing pressure is usually in the range of several Pa, the exact value is 

also dependent on the geometries of the micro structure. 
Q 

I I 
Po Pa 

v / : ,  

Fig. 3.21. The dependence of Q factor on air pressure 
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