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Chapter 3

Air damping

For a conventional machine, the damping effects caused by the surrounding
air can in general be ignored. This is because the energy dissipation rate caused
by the air damping is much smaller than the energy supplied to the system if the
moving speed of the mechanical parts is not excessively high. However, in the
development of micro mechanical devices, estimating the damping effects of the
system is one of the most important steps in the design process, since they
determine the dynamic performance of the devices.

As air damping is related to the surface area of the moving parts, air damping
may become very important for micro-mechanical devices and systems in
determining their dynamic performance due to the large surface area to volume
ratio of the moving parts. For some micromechanical devices, the energy
consumed by air damping must be minimized so that the motion of mechanical
parts can be maximized with a limited energy supply. For other situations, air
damping has to be controlled so that the system energy is consumed by the air
damping at a proper rate to ensure that the system has an optimum dynamic
performance.

In this chapter, the basic concept of air damping is introduced and different air
damping mechanisms as well as the damping effects for some typical micro
structures will be discussed.

§3.1. Viscous flow of a fluid
§3.1.1. Viscosity of a fluid

(1) The coefficient of viscosity of a fluid

Although a fluid at rest cannot permanently resist the attempt of a shear stress
to change its shape, viscous force appears to oppose the relative motion between
different layers of the fluid. Viscosity is thus an internal friction between
adjacent layers moving with different velocities.
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The internal shear force in a steady flow of a viscous fluid is proportional to
the velocity gradient. If the flow is in the x-direction and the speed of the flow is
distributed in the y-direction, i.e., the flow velocity in the x-direction, u, is a
function of y, the shear force Ty ISt

du

T, = u% 3.1)
where W is the coefficient of viscosity of the fluid. For a gas, the coefficient of
viscosity is a constant for a steady flow. For many pure liquids, the coefficient of
viscosity is also a constant. These liquids are called Newtonian liquids.

According to Eq. (3.1), the coefficient of viscosity has a unit of Pa-sec or Pa-s.
At room temperature (20°C), air has a coefficient of viscosity of 1.8x10° Pa-s
and the coefficient of viscosity of water is 1.0x10” Pa:s.

(2) The mechanism of viscosity

Though both liquid and gas show viscosity, they have different properties due
to different mechanisms.

For a steady liquid, the relative positions of adjacent molecules in the same
layer are basically stable, but the relative positions of molecules in adjacent
layers of a laminar flow change due to the flow. Fig. 3.1 shows the change of the
relative position between molecules A and B in adjacent layers with different
flow velocities, where the molecule A has a higher velocity than molecule B.
The approach of A and B is accompanied by a decrease of intermolecular
potential energy and an increase in molecular Kinetic energy. While the
molecular kinetic energy becomes disordered, a temporary bond is formed. The
external force must do work if the molecules are later to be separated. The work
done by the external force becomes random energy.
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Fig. 3.1. Mechanism of viscosity in liquid

According to the mechanism described for a liquid, a temperature increase
means that the molecules have a greater thermal speed, which in turn allows a
smaller time in which the molecular energy can be disordered (i.e., less energy
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is needed to de-bond the molecular pair later). Therefore, the viscosity of
most liquids decreases with temperature.

For gases, the thermal motion of a molecule is much larger than its drift
motion related to the flow of the gas. In Fig. 3.2, the molecule A with a
smaller drift velocity moving up across the boundary CD (due to the thermal
motion) acquires a larger drift velocity, i.e., gains drift momentum, and
experiences a force to the right. This means that the molecule has exerted a
force to the left on the upper layer, which tends to retard the faster layer.

Similarly, the molecule B in the faster layer moving down across the
boundary CD (due to the thermal motion) exerts a force to the right on the
slower layer into which it moves.
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Fig. 3.2. Mechanism of viscosity in gas

(3) The temperature dependence of viscosity of gas

Due to the mechanism described above, a temperature increase means that
molecules have a greater thermal speed, which increases the rate at which
they cross the layers. Therefore, the viscosity of a gas increases with
temperature. A quantitative analysis by a simple model based on the kinetic
theory of gas [1] predicts that:

n= %p\‘fl (3.2)
where p is the density, ¥ is the average velocity of the molecules and A is the

mean free path of the molecules. According to the Kinetic Theory of gas,
v, Aand p are:

__ [8RT 1 M,
V= , A= > and p=n—"=
an n«/ind Nav

respectively, where R is the Universal Molar constant (R=8.31 kg-m%/sec’/°K),
M,, the molar mass, d the effective molecular diameter of the gas, T the
absolute  temperature and N, the Avogadro  constant

(N, = 6.0247x10% / mol ). Therefore, we have:
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24R
1 = M, T 3.3)

: nind>
Eq. (3.3) suggests that u is independent of pressure, P. Maxwell confirmed
experimentally that this result is true over a wide range of pressure, provided
that the pressure is not too small. Eq. (3.3) also indicates that i increases in

direct proportion to /M, and Ni Experiments have confirmed that p

m
increases with temperature but the power slightly exceeds 1/2.
The temperature and molecular dependence of u can be expressed by an
empirical relation known as Sutherland Equation [2]:

1+T5 /T, / T
=y, —=>—2 |— 34
H=Ho 1+T, /T \T, G4
where T,=273.16K, L, is the coefficient of viscosity at T, and T is a constant.

M, and T are dependent on the specific gas considered.
U, and T for some gases are listed in Table 3.1.

Table 3. 1. u, and T for some gases

gas air N, H, CO,
W /10° (Pa-S) 172 166 840 138
Ts/°K 124 104 71 254

Usually, the coefficient of viscosity of liquid is much more sensitive to
temperature than that of gas. The data for the coefficient of viscosity of water
under one atmosphere are listed in Table 3.2. For comparison, the data for air
are also listed.

Table 3.2. Temperature dependence of coefficient of viscosity for water and air
(in 10 Pa-S for water and in 10°® Pa-S for air)

t/°C_ 0 10 20 30 40 50 60 70 80 90 100

HO 179 130 102 080 065 055 047 041 036 032 028
air 172 178 181 187 192 196 201 204 210 216 218

§3.1.2. Viscous flow

(1) Equations for viscous flow

Consider a cubic element in a fluid as shown in Fig. 3.3. There are six
shearing force components on its surface caused by the velocity gradient of
the flow: ’cxy(xo), ‘cxy(xo + dx),’cyz(yo),‘ryz(yo +dy),T,(2,),T, (2, +dz).
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There are also six normal force components on its surface caused by pressure:
P(x)dydz, P(x+dx)dydz, P(y)dxdz, P(y+dy)dxdz, P(z)dxdy, and
P(z+ dz)dxdy .

(x+dx,y+dy,z+dz)
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Fig. 3.3. Shearing stresses on the surfaces of an element cube

For a steady flow, assuming the weight of the fluid is negligible, the force
balance for the cube in the z-direction is:

[P(z) - P(z+ dz)ldxdy +[T,,(x + dx)—T,,(x)ldydz
+T,, (y+dy) =T, (¥)]dxdz =0
Therefore, we have:

aP___&_*_aTyz

dz dx 9y
ow ow
As T =hae TR
oP *w  Pw
oy Zs 2 3.5
ar Mt o2 -2

where w is the velocity component in z-direction. For the same reason, we
have:

oP 9%y 3%

oy g 3.6

3 n 32 + azz) (3.6)
and

oP ’u 9*

—=pu( u “) 3.7

ox a—y'fJ’F
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where u and v are velocity components in the x- and y-directions, respectively.
Egs. (3.5), (3.6) and (3.7) are equations for viscous flow of a fluid caused by a
pressure, P.

(2) Flow in a pipe

Let the length of the pipe be L and the radius of the circular cross section
equal to a, and L>>a, as shown in Fig. 3.4. If z-axis is taken along the
centroid of the pipe, Eq. (3.5) is the only equation to be used to decide the
flow.
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Fig. 3.4. Fluid flow in a Jong pipe

1.

As the length of pipe, L, is much larger than its radius, a, the flow in the
pipe is in the z-direction and the velocity distribution is symmetric against the
z-axis. By using polar coordinates in the x-y plane and putting the origin at the
center of the cross section of the pipe, Eq. (3.5) can be written as:

2 L3200
Jz p‘rar

By integration:
) 1 oP

2
Zwiry=—2"1 4 ¢
P

As aiw(r) =0 at =0 due to the symmetric distribution, C,=0. By a second
r

integration:

1 9P ,
=——r"+C
w(r) m azr >

According to the boundary condition of w(a) =0, we find:

w(r)=—-ma—z(a ro) (3.8)



§3.1. Viscous flow of a fluid 95

The negative sign indicates that the velocity is in the opposite direction of the
pressure gradient. If the pressure difference between the two ends of the pipe

P
isP, ie. a—P =—, we have:
z L

__ 1P 5 5
w(r)= 4ML(a ro)

The flow rate, i.e., the volume of fluid passing through the pipe per unit time,
is:

Q0= ]flw(r)|21trdr
0

By simple calculation:

4
ma” P
- z 39
Q 8 L (3.9
and the average velocity of the flow is:
2

W= '_Q? _a P (3.10)

na® 8SuL

(3) Reynolds’ Number

The flow pattern described in the above is an orderly flow that is called
streamline flow or laminar flow. Streamline flow occurs only when the speed
of the flow is small. The flow will become turbulent if the speed of the flow
exceeds a certain limit. The criterion for turbulence is usually given by the
value of the Reynolds’ number, Re. Reynolds’ number, Re, is a dimensionless
number that, for a tube, takes the form of:

_vpd
U

where p is the specific mass of the fluid, ¥ the velocity of the fluid and d the
diameter of the tube.

Re is a convenient parameter for measuring the stability of flow. However,
the critical value of Re that causes instability of fluid flow depends strongly
on the shape of the tube and can only be determined by experiments. For
tubes with circular cross-section, we have:

(a) Re< 2200, the flow is laminar

(b) Re~ 2200, the flow is unstable

(c) Re= 2200, the flow is turbulent

Re
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The Reynolds’ number is also useful in measuring the stability of fluid
flowing through a solid object inside the fluid (or, the moving of a solid
object through a fluid at rest). In this case, the general form of the Reynolds’
number is:

vel
M

where p is the specific mass, U the coefficient of viscosity of the fluid, v the
relative speed between the object and the fluid at rest and [ is a characteristic
dimension of the object. For example, [ is the diameter of a sphere and, for a
column with a circular cross section moving through the fluid laterally,  is the
diameter of the cross section, etc. The critical value of the Reynolds’ number
that causes instability depends on the shape of the object and can only be
determined by experiments.

Re=

§3.1.3. Drag force on a moving object

Drag force will be applied on a body if the body is held steadily in a flow of
fluid (or the body is dragged through a steady fluid) because there exists a
velocity gradient between the boundary layer and the more distant points in
the viscous fluid. As the analysis for the drag force is quite complicated, the
drag forces for some simple body structures moving with small speeds
through an infinitive viscous fluid are given here [3].

(1) Sphere with a radius r:

F = 6nury 3.11)
(2) Circular dish with a radius of r, moving in its normal direction:
F=16urv 3.12)
(3) Circular dish with a radius of r moving in its plane direction:

F= % wrv (3.13)

where v is the speed of the circular dish relative to the distant fluid.

When Egs. (3.11), (3.12) and (3.13) are compared, we can find that the
dependence of drag forces on different cross sections or on the moving
direction are not significant. All three drag forces for low speed motion can be
written in the same form as:

F = 6mogury (3.14)
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where the value of o for a sphere, a dish moving in its normal direction and a
dish moving in its plane direction are 0=1.0, 0.85 and 0.567, respectively.
Note that drag forces are independent of the specific mass of the fluid, p
(Stokes’ law).

However, this conclusion is not true for higher moving speeds. The force
working on a sphere with a radius, r, oscillating in a fluid is given by [3]:

F=—Blv-(32% (3.15)
with

B, = 6mur + 3nr2m
and

B, = Z7rpr3 + 371:r21 ’2‘)—”
3 0]

where v is the relative moving velocity and ® the radial frequency of the
motion. Note that both B; and B, are dependent on the specific mass of the
fluid.

For even higher speeds, the flow may become turbulent. In a turbulent flow
the drag force is proportional to the momentum change of the fluid, which, in
turn, is proportional to the mass of fluid whose velocity is changed in a unit
time and to the velocity change of the mass. Therefore, we have:

F ~ (mprv)(v)
or
F ~ 71:pr2v2

It is now dependent on p and v but not on Q.
§3.1.4. The effects of air damping on micro-dynamics

As seen in §3.1.3, the drag force applied to a sphere moving in a viscous
fluid at a speed of v is:

F =6nmury

where p is the coefficient of viscosity of the fluid and r the radius of the
sphere. The ratio between the drag force F and the mass of the body, M, is:
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F o 6nurv _ 45uy

M4 o pr?
3

where p is the specific density of the body. It is obvious that for the same
conditions, the smaller the dimension of the body the larger the effect of the
drag force on the body. For example, for a silicon ball of radius r=1cm
moving in air with a velocity of 1 cm/sec, F/ M is 3.5x10° m/sec?, while, for
a silicon ball of radius 10 microns, F/ M is 3.5 m/sec’, one million times
larger. Therefore, the drag force caused by the viscosity of the surrounding air
(or other media) is usually negligible for conventional mechanical structure
but it may play an important role for the motion of micro machines.

Now let us look at a practical example. The differential equation for a
beam-mass (spring-mass) accelerometer is:

(3.16)

mi=—kx—cx
where £ is the spring constant of the beam and c is the coefficient of damping
force caused by the surrounding medium such as air. A very important
dynamic parameter of the accelerometer is the damping ratio of the system, C.
The definition of ( is:

C C

- 2mw, 2vmk

where @, is the free vibration frequency of the system. The damping ratio, { ,
for an accelerometer is usually required to be around 0.7 so that the system
shows the best frequency response to an input signal (not shown in the
equation). Quite often, the quality factor, Q, is used to characterize the
mechanical system. For small damping, the relation between the quality factor

and the damping ratio is: Q = —212

According to Eq. (3.14), the coefficient of damping force, c, is proportional
to the dimensions of the mechanical structure and the coefficient of viscosity
of the surrounding fluid. As m is quite large for an accelerometer made of
conventional mechanical structures, { is usually very small in air. It is quite
difficult to raise the damping ratio, , to around 0.7 even if the structure is
filled with oil of high viscosity. But for an accelerometer formed using a
micromechanical structure, the damping ratio, {, can be easily raised to
around 0.7 in air by using some mechanical structure to increase the damping
force in a controlled way. The advantages of air damping as opposed oil
damping include a much lower temperature coefficient and ease of packaging
the device. The basic mechanisms of air damping for micromechanical
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structures are squeeze-film air damping and slide-film air damping. The basic
principles and relations for these mechanisms will be described in §3.2 and
§3.3.

Air damping is expected to be reduced to a minimum for a high Q factor in
many micromechanical systems, such as in resonant sensors or gyroscopes
(see Chapter 9). In these cases, air should be evacuated from a hermetically
sealed package where the micromechanical structures are housed. The
damping of microstructures in rare air will be discussed in §3.4.

§3.2. Squeeze-film air damping
§3.2.1. Basic equations for squeeze-film air damping

(1) Squeeze-film air damping

When a plate is placed in parallel to a wall and moving towards the wall,
the air film between the plate and the wall is squeezed so that some of the air
flows out of the gap. Therefore, an additional pressure Ap develops in the gap
due to the viscous flow of the air, as shown in Fig. 3.5.

plate moving
direction
1 plate |
air flow —<—— ——__ air flow
S
A AD

T~ x

(o]

Fig. 3.5. Pressure built up by squeeze-film motion

On the contrary, when the plate is moving away from the wall, the pressure
in the gap is reduced to keep the air flowing into the gap.

In both cases, the forces on the plate caused by the built-up pressure are
always against the movement of the plate. The work done by the plate is
consumed by the viscous flow of the air and transformed into heat. In other
words, the air film acts as a damper and the damping is called squeeze-film air
damping.

Obviously, the damping force of squeeze-film air damping is dependent on
the gap distance; the smaller the gap, the larger the damping force. When the



100 Chapter 3. Air damping

plate is very far away from the wall, the pressure build-up is negligible and
the damping force will be reduced to the drag force discussed in §3.1.

Squeeze-film air damping is quite often used to increase the effect of air
damping to an expected level for micro structures and the damping force can
be controlled by the distance of the air gap.

(2) Basic equations

Suppose we have a pair of plates in parallel with the x-y plane of the
Cartesian coordinates as shown in Fig. 3.6 and the dimensions of the plates
are much larger than the distance between them so that the gas flow between
the plates caused by the relative motion of the plates is lateral (in the x-and y-
direction but not in the z-direction).

Let us consider a column element, hdxdy (where h=h, — I ), as shown in
Fig. 3.6, where g, is the flow rate in the x-direction per unit width of the y-
direction and g, is the flow rate in the y-direction per unit width of the x-
direction.

4z 4z
hyf---- (g (y+dy)
A= —
h T q% > g (x+0x)
AR ,
h, h 9, 2y
LN dx
y
X
c >
(@) ®)

Fig. 3.6. Mass flow into and out of an elemental unit
(a) A column element between two plates, (b) the definitions of flow rates

The balance of mass flow for the column element requires:

_(3ph, _dph
(Pa,) dy—(Pqy),, 43y + (pqy)yd" - (pqy)ymydx B ( a 7)‘1’“@

pq,)
ox

By making use of the relations (pq,) ., =(pq,), + dx,

(ea,)

(qu)y+dy = (pqy)y +Tdy and h=h,—h,, we have:

pgs) g, ) Lol _ (3.17)

ox dy ot
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To find g, and g, for the equation, we first have to find the speed
distribution in the z-direction. To do this we cut a section element from the
column element between z and z+dz, as shown in Fig. 3.7. The force balance
in the x-direction requires:

P(x)dydz + T, (z + dz)dxdy = P(x + dx)dydz + T,,(z)dxdy
Therefore, we have:
aT, 3P
dz Jdx
According to §3.1, we have:
du
T, =p—
a=H 0z

where u is the component of velocity in the x-direction. Therefore we have:

ar_a (0
dx dz “az

Ar Z
T, {z+02)
PX P(x+dX)
y X
0 > X

Fig. 3.7. Force balance on a section element

For a small gap, P(x,y) is not a function of z. By integrating the equation twice
we have:
1 0P , 1
wz2)=——z2"+C—z+C 3.18
(2) o 9 ” 2 (3.18)
If the plates do not move laterally and we put the origin of the coordinates
on the bottom plate, the boundary conditions for Eq. (3.18) are:

u()=0, u(h)=0
Therefore:

u(Z) = Li’i

R z(z—h) (3.19)
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The flow rate in the x-direction for a unit width in the y-direction is:
h B (oP
go = [udz = __(_) (3.20)

The negative sign in the equation indicates that the flow is in the direction
with decreasing pressure.

Similarly:
r (9P

= = 321

o 12M(a)’) G2
By substituting Eqs. (3.20) and (3.21) into (3.17), we find:

o KoP) o K opP d(hp)
—| p——|+—| p——|=12—+ 3.22
ax[p u ax] ay(p v ay] dt (322)

Eq. (3.22) is referred to as Reynolds’ equation. In the process of the
derivation of Eq. (3.22) it has been assumed that the fluid behavior is
governed by viscous forces which are large relative to momentum changes.
Alternatively, Eq. (3.22) can also be derived from the much more complicated
Navier-Stokes equation under the condition that the Modified Reynolds’
Number for a squeeze film, R, is much smaller than unity [4, 5], i.e., the
condition of:

2
Rg = oi’p <<1
u
where ® is the radial frequency of the oscillating plate. This condition is
satisfied for typical silicon microstructures. For example, an air-filled
accelerometer with an air film thickness of 25 microns, oscillating at a
frequency of 1 kHz, would have a modified Reynolds’ number of Rg = 0.26.

As h is assumed to be uniform in both the x- and y-directions, we have:

a( ap)+ a( aP]zm_pd(hp)

x\Paxr) Tyl Py K ar

EANES
For an isothermal film, the air density, p, is proportional to pressure P, i.e.,

p= f—po. The above equation can also be written as:
[4
2 2
d(hP
8_2 P2+ 8_2 PZ= 24_3“M
ox dy K dr

or

(3.23)
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y2pr = 24nd (rP)
n o od
Eq. (3.23)canbe developed into:
92
(aP —-——P+ _E?_(p@+hﬁ{€] (3.24)
ox h dt dt

Assuming that A=h+Ah and P=P,+AP, for small motion distance of the plate,
we have Ah<<h, and AP<<P,. Under these conditions, Eq. (3.24) can be
approximated as:

2 2
P(a AP 2 AP):IZLLPO o(igf_x_inr__l_dAP]

Loax?t = h, dt P, dt
If AP << éﬁ , we have:
0 (2]

024P . 9*AP _12u dak
ox*  r B dr
or,

P °P_12ndh
ox?  9y? B odr

In Eq. (3.26), P is equivalent to AP and A is equivalent to Ah. For
convenience, the P in Eq. (3.26) is sometimes read as AP, the variation of
pressure. However, attention must be given to the difference in the boundary
conditions for P and AP: P= P, and AP =0 at the periphery of the plate.
Before ending this section, let us discuss once more the condition for Eq.
(3.26). Suppose that the typical dimension of the plate is [ (e.g. the radius of a
disk or the half width of a rectangle) and the motion of the plate is a
sinusoidal vibration with an amplitude 9§, i.e., h=h, +dsinws. From Eg.

(3.25)

(3.26)

3. 26), we can make a rough and ready estimation of AP:

= 12 S(x)cosmt
h3

0

12
or

AP 12ulw dcoswt _ o dcosar

P, PR h,  h

o (4]
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12u%w
2

oo

same order of magnitude as Ak = dsinwz, we obtain:

AP AR
Pk

(4

where o= is referred to as “squeeze number”. As 8coswt has the

Therefore, the condition for the validity of Eq. (3.26), i.e. %’i<<[—2—}£, is

o (4

equivalent to 6<<1, or
l P
<

o

12pum

h

(4

As an example, let us assume the conditions that u)=21tx103/sec, P,,=105 Pa
(i.e., 1 atm.) and u=1.SXIO'5 Pa-sec (for air at 20°C ). The requirement for [ for
the validity of Eq. (3.26) is [<<854 h, (e.g., I<<17mm for h,=20um). For the
same conditions but with higher oscillating frequency such as w=2mx10*/sec,
the condition becomes I<<84.5h, (e.g. I<<1.7mm for hy=20um).

§3.2.2. Long rectangular plate

(1) Damping force for parallel motion

Consider a pair of rectangular plates with length, L, much larger than
width, B. The origin of the Cartesian coordinates is at the center of the lower
plate and the x-axis is along the width direction, as shown in Fig. 3.8. The
problem is virtually one dimensional. As mentioned in §3.2.1, P in Eq. (3.26)
is read as AP(x). Therefore, the boundary conditions are:

1 —_
P(iE B) =0 @227

V4

'y

N

1 1 X
-0.58B 0 0.58

Fig. 3.8. Squeeze-film air damping of a long rectangular plate

As the problem is one dimensional, Eq. (3.26) is written as:
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d’P 12udh

- e 3.28

d* B dt G:28)
where h is the distance between the two plates. By integrating Eq. (3.28)
twice, we obtain:

6u dh
P(X) = ?Exz + Clx + C2
By using the boundary conditions, we obtain:
6u( B> ,\dh
P(x)=—+| —— — 3.29
= ( 4 (3:29)

P(x) is positive when the air film is squeezed (% <0), and vice versa. The
maximum pressure build-up is at the center of the plate (x=0) where

2
- 3;‘«; % The distribution of the pressure build-up is shown in Fig.

3.9. The damping force F on the plate is:

wB’Ldh_ pB’L;

P(0)=

Fi = 2 Px) e = -
2
According to the definition of F = —cx, the coefficient of damping force for a
long rectangular plate is:
Cir = quL
h
Note that Eq. (3.30) is only valid for rectangular plates whose length, L, is

much larger than their width, B. For a rectangular plate with a comparable L
and B, the squeeze-film air damping will be discussed in §3.2.4.

(3.30)

P (1)‘)
%<0
il N
058 o 0.5B

Fig. 3.9. Pressure distribution under a long rectangular plate
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(2) Example

Suppose that the width of a pair of plates is B=2mm, the length of the plates
is 10 mm, the gap between the two plates is #,=20um and the motion of the
upper plate can be described by h=h,+3sinat, where d=1um and w=2mx10",
The environment is air with a pressure of one atmosphere.

According to the condition described above, we have:

dh
—— =3 -Wcoswt
dt
and
2 2 2
P(x):—-6—L3L— —B——x2 éS-(x)cosu)t=—3p'B3 1—(2) Bw cos wr
B\ 4 2h B

As the coefficient of viscosity of air is p=1.8x10"° Pa-s (at 20°C), the pressure
build-up at x=0 is:

P(O) =-85coswt (Pa)
Therefore, the maximum pressure built up by the squeeze film motion is

8.5x10™ arm. As %= 0.05, the result verifies that AP << i The pressure is
o (4
not easily to build up due to of the low viscosity nature of gas. This
phenomenon is often described as “gas is incompressible”.
According to Eq. (3.30) the coefficient of damping force is:

¢, =0182N /(m/ sec)
§3.2.3. Circular and annular plates
(1) Circular plate

For a circular plate moving against a wall, the equation for air damping can
be written in a polar coordinate system as:

1d( 0 12u dh
2 r =P | =22 3.31
rar[rar (r)} K oat (3.31)
and the boundary conditions are:
dapP
Pla)=0,—(0)=0 3.32
(@) =0, () 6.3

where a is the radius of the plate. By integrating Eq. (3.31) and using the
boundary conditions in Eq. (3.32), we find:
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_ 3ur o 2\dh
P(r)= ;;-(a °) (3.33)
The damping force on the circular plate is:
_qa _ 3n 4 dh
E, = jo P(r)2nrdr = EEYSL b
or
2 2
O o B A (3.34)
2n B’ dt R’ dt

where A=ma” is the area of the plates. The coefficient of damping force is:

3n
Coip = W;m“ (3.35)

(2) Annular plate

For an annular plate moving against a wall, the equation for air damping is
the same as Eq. (3.31), but the boundary conditions are different. The
boundary conditions are:

P(a)=0, P(b)=0
where a and b are the outer and inner radii of the annular plates as shown in

Fig. 3.10. By solving Eq. (3.31) with the boundary conditions, the built-up
pressure is:

.
In—
3u of . ) 3w o, BT, ldn
P(r)=| -Zadl1-—= |+ Ed1-= |—& | = 3.36
) h3a( azj O w2 |a (3-30)
a

Y

Fig. 3.10. Annular plate

If the ratio of b/a is denoted as 3, we have the damping force for the annular
plate:
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2

3npa’ 4 (I_Bz) ;

gt L
2h Inp

ann

F_ = J':P(r)Zﬂ: rdr = —

The force can be written as:

37tp.a4 : 3uAZ :
=- K(B)h=- K(B)h
ann 2h3 (B ) 2Rh3 (B )

where A =na? and K(B) is a function of B = 2:
a

1-p*)’
InB
The coefficient of damping force for an annular plate is:
3ua2A
Cann = 9 h3

K@PB)=1-p*+

K(B) (3.37)

§3.2.4. Rectangular plate

In this section, we will discuss the squeeze-film air damping for a
rectangular plate in a general form. If the side lengths in the x- and y-
directions of the plate are B=2a and L=2b, respectively, as shown in Fig. 3.11
(here, a and b are comparable), the differential equation for pressure in the air
film is Eq. (3.26) and the boundary conditions are:

P(ta,y)=0, P(x,tb)=0 (3.38)

.V1sb

-b
Fig. 3.11. Rectangular plate

The solution to Eq. (3.26) can be divided into two parts: P= p;+ p, where
p1 is a specific solution to Eq. (3.26), i.e., p; is a solution to equation:
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2 2
Ip, O 12, (3.39)

PYCIARP A

and p, is a general solution to the Laplace equation:

2 2
J P2 L9 P2_g (3.40)
ox dy

(1) Solution of p,
Assuming that p; takes the form of:
pi=A+Bx+ Cx?
and meets the boundary conditions of p;(+a)=0, we find:
6udh o
=———(a"-x 3.41
Pz ( ) (3.41)

(2) Boundary condition of p»

From the definition of P=p;+p, and the boundary conditions of
p(xa,y)=0, we have:

pi(Za,y)+ py(2a,y)=0

According to Eq. (3.41), the boundary conditions for p; at x=*a can be
shown to be:

pa(ta,y)=0 (3.42)

According to Eq. (3.38), the boundary conditions for P at y = b should be
P(x,tb)=0,1e.,

pi(x)+ py(x,2b)=0
Therefore, the boundary conditions for p; at y = b are:

6udh ,
?E‘ a —x ) (343)

The complete boundary conditions for p, are Eqs. (3.42) and (3.43).

P (x,2b)=—p(x)=

(3) Solution of p»
To find the solution of p,, we separate the variables by assuming that:

Py = X()Y(y) (3.44)
By substituting Eq. (3.44) into Eq. (3.40), we find:
X"()Y(»)+Y'(y)X(x)=0
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or
X'@_ Yo _,
X(x) Y(y)

Therefore, we have two independent equations:
X"(x)-AX(x)=0

and
Y'(y)+AY(y)=0
For X(x), we assume that:
X(x)=A|cosOx + A, sin Ox
As X(a)=0, we have A,=0 and o = 2’% for n=1,3,5, etc., i.e.,

2nmx

X(x)= A cos( )

a

For Y(y), we assume:

Y(y) = C cosh(y y) + C, sinh(y y)

(3.45)

where y = 2nm and n=1,3,5, etc.. By using the boundary conditions for Y(y),

a
ie., Y(b)=Y(-b), we find C,=0. Therefore, we have:

¥(y) = C,cosh(Z™™y
a

By Eqgs. (3.44), (3.45) and (3.46), we can write:

- X
pa(x,y)= Y a,cosh MY cos X
n=1’3,5' 2a 2a

To satisfy the boundary conditions shown in Eq. (3.43), we have:

Y a, cosh@cosﬂx = %fz(az —x%)
n=135, 2a 22 h

The constant a,’s are found to be:

(3.46)

347

(3.48)
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T N N
| =5 h(a® —x*)cos——dx . LU
h3 20 _192uha® 3 (o135 etc)  (3.49)

a, == a =73 3,3 b
coshn—nlz J coszﬂdx wnh cosh——
2a -, 2a 2a
Therefore, we have:
2 sin nm
p(x,y)= 1923W31 h 2 5 cosh 2. cos X
h T n=135, n3 Cosh,’i 2a 2a
2a
The final solution for the pressure is:
P=p +p,
; ;2 sin nn
6uh 192uh - EY 3.50
——-—M—(az—xz)+ Hha Y, 2 cosh™™ cos I (3.50)
3 rr’ 3 b 2a  2a
n=135, n” cosh —
2a
(4) Damping force

The damping force exerted on the rectangular plate is:
b
F.=[* dx[ " P(x,y)dy

3 o« 3
- L6abuy 1—1—9-53(—‘5) ) istanh(ﬂb) B hﬁ(é
h T b n=135,1 2a h L

) (3.51)

B). . . .
where the factor ﬁ(zj is a function of the aspect ratio Z, i.e.,

2 oc
{2)-[-2(2) 5, b2
L T L n=135,1 2B
B B -
The dependence of 7 on 1 is shown by the curve in Fig. 3.12. For a very

long plate, B=1, and for a square plate (i.e., a=b), 8=0.42. The coefficient of
the damping force is:

uLB’ ﬁ( B)
= - 3.52
rec h3 L ( )

C
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. B

0.8

0.6 \

04

0.2

0 B/L
0 01 02 03 04 05 06 07 08 09 1

Fig. 3.12. The dependence of factor B(E) on the aspect ratio B
L L

§3.2.5. Perforated plate

Moving plates in microstructures are sometimes perforated to reduce the
damping effect to a certain level for certain applications such as in
accelerometers, microphones and so on. Therefore, estimation of the air
damping force for a perforated plate is important in designing the devices.

Suppose that a plate is perforated with circular holes of radius b and the
holes are uniformly distributed in a hexagon close-packed pattern as shown in
Fig. 3.13, to allow highest hole density and uniformity. If the distance
between the centers of two adjacent holes is 2a, the area for a hexagonal cell

including the hole is A; = 2+/3a”. If the area of the whole plate, A, is much

larger than A, the damping force for the whole plate can be approximated as
the sum of the damping force for all cells.

Fig. 3.13. Plate with hexagon close-packed perforation
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To find the damping force on a hexagonal cell, the cell is approximated as

. . /2 3 . .
an annulus with an outer radius of a; = ia =105a and an inner radius of
V4

b. The equation for the pressure build-up caused by the parallel motion of the
plate is the same as the isolated annulus discussed in §3.2.3:

10 0 12u -
——r—P(ry=—nh 331

ror or r) n (3-31)
As air does not flow between the cells, the boundary conditions are:

P(b)=0, éf—)(al) =0 (3.53)
or

By solving Eqs. (3.31) and (3.53), we find:

The damping force for a cell is:

ay 2 2_ 32
ﬁ:j—:ﬁ"l—;{zln—’-—’ b Jandr

Y h3 b (112
uw(na®)? ;3 a Y 1. v
=B il o a1 -2 1=
h by b a, 2 a,
. . b
By using the notation of 3 = —, we have:
q
_ A% a0 oa
Fl———mh(% B 41n[3—3)
or
_ 30 ir02 a4 :
R=-5 h(4B B* —4Inp 3) (3.54)

where n is the hole density of the plate (i.e. the hole number per unit area of
the plate, n =%, where A is the total area of the plate and N is the total

number of holes in the plate). The total damping force on the perforated plate
is approximately:
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A 3uA 3uA?
F,=—F=- hk(B)=- hk 3.55
T == on P (353)
where k(B) is:
k(B)=4p>-B* -4np-3 (3.56)
. .. b n b b
According to the definition of a;, we have B=—=_|—=—=0952—. The
a 23 a a

dependence of & on b/a is shown by the curve in Fig. 3.14.

For a finite plate area A, the damping force found from Eq. (3.55) should be
larger than its real value (especially for small holes), as the boundary
conditions on the edges of the plate have not been considered. An empirical
approach for a better approximation is that the resistive force given by Eq.
(3.55) and the resistive force for a non-perforated plate of the same shape and
size are considered to act in parallel. Suppose that the plate is a rectangular
one. The squeeze-film damping force, F,., of a non-perforated rectangular
plate with the same shape and area can be found using Eq. (3.51) in §3.2.4.
Then the resultant damping force for the perforated plate, Fr, is given by the
following relation:
= F_PF”_C_ (3.57)

F,+F,

rec

Fr

k{(b/a)

14 4
12

b/a

] 0.2 0.4 0.6 0.8 1

o N O ®

Fig. 3.14. The dependence of factor k on b/a
§3.2.6. Oscillating beams

Micro beams are widely used as resonators in micro mechanical sensors
and actuators, especially in resonant type devices. Therefore, knowledge of
air damping effects on oscillating micro beams is important. As the motion of
the oscillating beam structure is not uniform, there is no closed form solution
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for beam vibration problems involving damping force or damping ratio.
Though numerical analysis is possible, it is not convenient as a design tool.
Therefore, some simplified analyses are introduced in this section to obtain
approximate solutions in the closed form. In the discussion in this section,
two working models will be considered: the squeeze film-damping [5] and the
drag force damping [3].

(1) Squeeze-film damping

Suppose a beam is placed parallel to a wall and is clamped at one end or
both ends and oscillates in its normal direction in air. Assume the length of
the beam, L, is much larger than its width, B, and its width is much larger than
its thickness, h. If the gap between the beam and the substrate, d,, is small
when compared to the beam width, the main mechanism of damping is
squeeze-film damping. As the moving speed of the oscillating beam is not
uniform and its distribution is dependent on the vibration mode, the air
damping force can hardly be simplified by a lumped model. As the length of
the beam is much larger than its width, the air flow caused by the vibration is
mainly in a lateral direction. According to Eq. (3.30), the squeeze-film air
damping force on a unit length (L=1) of beam is:

3

:‘%W(x,t) (3.58)

o

F,

s

where W the coefficient of viscosity of air and w(x,t) is the moving speed of

the beam sector considered. With reference to Eq. (2.104) in §2.4.1, the

equation for a forced vibration of the beam with squeeze-film air damping is:
d* :

PBRW(x, 1)+ C,W(x, 1)+ EI—%Z’—Q = F(x)sinox (3.59)
where p is the specific mass of the beam material, E is the Young modulus of
the beam material, I is the moment of inertia of the beam, F is the amplitude
of the external driven force and c; is the coefficient of squeeze-film air
damping force per unit length of the beam. According to Eq. (3.58), we have:

B3
s = %"3— (3.60)
w(x,?) in Eq. (3.59) can be developed into the series:
w(x,1)= Y 0,(OW,(x) (3.61)

n=1



116 Chapter 3. Air damping

where the W,(x)’s are the shape-functions of the free vibration of the beam
structure, i.e., they are solutions of the following equations:

d*w, (x)

EI % = pBhw,*W, (x) (3.62)

Substituting Eq. (3.61) into Eq. (3.59), multiplying a specific W, (x), taking
integration from 0 to L and making use of Eq. (3.62) and the orthogonal
L

characteristics of the W,’(x)s (i.e., f W,,(x)W,(x)dx = 0 for m+# n), we obtain:
0

m,$, (1) + @, (1) + m,0 %0, (1) = F, sinot (3.63)

where

L L m MBZ
m, = pBR[W,2(x)dx, F, = [ F()W,(x)dx, ¢,, = ¢, = B2,
0 0 PBh  phd,

Eq. (3.63) can also be written as:

G, (1) + 21,9, (1) + 0,20, (1) = f, sinwt (3.64)
where
= csn - cS
o = am, 208
and
F,
fn ="
m

When the beam is oscillating at one of its natural vibration frequencies, w,,
the corresponding damping ratio can be obtained directly from Egs. (3.60)
and (3.64) based on the discussion in §2.5:

c uBz
= s = 3.65
Con 2pBhw,  2phw,d,> (62
The Q factor for this vibration mode is:
_ phd ‘o
an - # (3-66)

This is a simple but a very useful result indicating that the Q factor of a
beam resonator is related to the geometries of the beam and the frequency of
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the vibration mode. It is especially interesting that the higher the vibration
mode (corresponding to a higher frequency), the higher the Q factor.
According to Egs. (3.63) and (3.64), the effectiveness of an external driving

L
force for a specific vibration mode is determined by f, = —l—_f F(x)W, (x)dx .
m,

(2) Drag force damping

If the beam is far away from a surrounding object (as in the case where a
beam is driven into vibration by a piezoelectric method), the main damping
mechanism is the drag force of air flow. As there is no closed form solution to
the damping force for most mechanical structures including beams, a
simplified dish-model is suggested in this section. Similar to the bead model
[6], the model replaces the beam with a string of dishes as shown in Fig. 3.15.
The diameter of the dishes is equal to the beam width, B, and the interference
in air flow between neighboring dishes is negligible. According to Eq. (3.12),
the air damping force on the i’th dish is:

Fai - 8}LBW, (3.67)
where w; is the displacement of the i’th dish. Since the number of dishes per

unit length of the beam is 1/B, the damping force per unit length of the beam
is:

F, = 8uw (3.68)
The equation for a forced vibration of the beam with drag force damping is:
4
PbRW(x, 1) + € (X, 1) + Eliiff”—) = F(x,1) (3.69)

where c,; is the coefficient of air-flow damping force. According to Eq.
(3.68), we have:

c, = 8u (3.70)

Following similar argumentation as made for squeeze film damping, the
damping ratio for the n’th vibration mode is:

L=t = 2 3.71)
2pBhw, pBhw,

where @, is the radial frequency of the n’th vibration mode. The Q factor for
the vibration mode is:

_ pBhow,,

an - 8].1. (372)
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SONNNN

CZXZL:CXD I8

Fig. 3.15. Dish-string model for air damping of beam (top view)

In the above discussion on damping force, the dishes are considered as
being isolated from one another and the dishes do not fill the beam area
completely. As a matter of fact, no air flow is allowed between two
neighboring dishes. Therefore, the damping force given by Eq. (3.68) is
under-estimated. As a rough modification, the Q factor given by Eq. (3.72) is
reduced by a factor that is found by comparing the squeeze-film damping
force for a long rectangular plate with that for a circular plate. Using Egs.

(3.30) and (3.34), the factor is found to be % Therefore, the modified
T

. 3npBhw,,

estimation for the Q factoris Q,, = 5 pBhw,,
u

=0.037 .
u

§3.2.7. Effects caused by finite squeeze number
In §3.2.1, the basic equation for squeeze-film air damping was derived. For
convenience, the equation is given again here:
9’p? 9°P? _ 24p o(hP)
ox* oy’ B ot

(3.23)

Under the condition that the squeeze number o is negligible, (i.e.,

12ul%0
2

0o
radius of a disk or the half width of a strip or rectangle plate), Eq. (3.23) can
be simplified to:
2 2

Pp 0P _1pdh 626)

ox“  dy K dt
Based on Eq. (3.26), discussions on squeeze-film air damping for some
typical structures were carried out in §3.2.3 to §3.2.6.

However, if ¢ is small but not negligible, Eq. (3.23) instead of Eq. (3.26)
must be used for squeeze-film air damping problems. We will discuss some of
the effects caused by the finite value of G in this section.

<< 1, where [ is the characteristic dimension of the plate, e.g., the
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For simplicity of discussion, the following transformations are made to

. . - - ~ ~ P
make the variables dimensionless: X =§, y =—;}— y, h= hi’ P=— and
(44 o
f = wr . With these dimensionless variables, Eq. (3.23) is written as:
252 3232 AnP
ap2 apz =2°~% (~) (3.73)
ox dy h° ot

k is the varying dimensionless film thickness due to the oscillation of the
damper plate, and it can be expressed as:

h =1+¢sin? (3.74)
For small g, the pressure P canbe expressed as:
P =1+ p,c + p,6* + O(c?) (3.75)

Terms related to 6 > and up will be neglected in this analysis.
Substituting Eq. (3.75) into Eq. (3.73) gives the following equations:

o’p,  9*p K
a:_i 21 + —ayz = ? (376)
and

prealie 3.77)

82p2+82p2 —_Li(i;pl) 1[a2pl2+32plz)

The boundary conditions for p; and p, are derived from the criteria that

the pressure P be unity on all outside boundaries and the pressure
distribution has a zero slope at the symmetric points of the plate. It should be
pointed out that the first order equation, i.e., Eq. (3.76) for p,, is, in fact, the
equation for “incompressible condition” related to very small compression
numbers (0<<1). The effects caused by the finite value of ¢ are represented
by p,. To demonstrate the effects caused by a finite p,, only the resistive
force on a long rectangular plate damper is considered. For plates with other
shapes, readers are referred to reference [7].

For a long rectangular plate with a length L much larger than its width B,
the problem can be treated as one-dimensional. According to the coordinates
shown in Fig. 3.16, Eq. (3.76) can be simplified to:

h_ (3.78)
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where I = B/2. The boundary conditions for p, are:
~ opy (- ~
*1,7)=0, —2(0,7)=0
n(n)=0, 2(0.7)

The solution of p; is:

pl(z,?)=5%(552—1)

N

-4
2

Fig. 3.16. A long rectangular plate and its coordinates

By substituting Eq. (3.80) into Eq. (3.77), we have:

azpz i; ~2 il‘z ~2
=—z (X" -1)-—=(5%x" -3
oF> 2k 2h® )
The boundary conditions for p, are:
~ 9 ~
Po(£17)=0, Z2(0.7)=0
The solution to p, is:

~ ~

(7% -6%7 +5)- 22‘;6

Pa%7) == (5% -18% +13)

From the solution to p; and p,, we have:

I3=1+2—;§(Ez—l)a+

2453 0476

The force on the plate is:

3.79

(3.80)

(3.81)

(324—6562+5) ik’ (5554—18562+13) o

(3.82)
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~ .2.2
F = P,LB[ (P - 1)d% = P,LB| - 1hc+3~i502—1’1—6c2
3R° 15k 3h

Vh*h 2 KR, 1R ,
=PLB{_§h3wG+Eh5(;)20 —ghgmzc (3.83)

Based on Eq. (3.83), two conditions are considered:

(1) Small amplitude
By using the small amplitude condition of £<<1 so that & = h, and using the
relations:

h = h g0 cos o, h= —hom)2 sin ¢
Eq. (3.83) can be approximated as:
F= E,LB[—lcs cosf — %028 sinwt — %0282 cos? (otjl

= POLB{—lce cost — -2—0'28 sin ¢ — lc5282 - l('521-:2 cosZu)t} (3.84)
3 15 6 6

=F,+F, +Fx+F,

The meaning of the four terms are explained as follows:

(a) Damping Effect
The first term in Eq. (3.84) is:
3 3
Fp = —lPoLBO'ECOS(!)t __WB h,ewcoswt = — p.Lf h
3

This is exactly the same result as given in Eq. (3.30), i.e., it is the result of the
first order approximation.
The energy loss of the system due to this damping force in one cycle is:

AE = J.T uL
(2]
3
fzn BLB’® h2e? cos® otdwt = _HLBO
o TR 2h,

Therefore, we have:
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1 2
mE, 2T )T o
AE  ulB’w .2 uLB’w
2h

(4

Q:

where E; is the total energy of the system and £ is the elastic constant of the
mechanical spring supporting the plate.

(b) Elastic Effect
The second term in Eq. (3.84) is:
2 2 p4
F, =-2 P LBo%sinor = - P,LB2- 2B j e inr
15 15 h,

2.2 nd

=S pe By,
5 F,h;

Obviously, F, has the same nature as the elastic recovery force of a spring.
F, is significant at high squeeze numbers when the air flow into and out of
the gap fails to keep up with the motion of plate. Therefore, this effect is
referred to as the “elastic effect” of the air film. Since the trapped air acts as a
spring it does not cause energy losses.

(c) Rectification Effect

The third term Fy in Eq. (3.84) is a constant force stemmed from the
quadratic term of p, in Eq. (3.81). Therefore, it is referred to as the
rectification force due to the nonlinear relationship between the pressure and
the displacement.

(d) The force of higher harmonics

The last term in Eq. (3.84), F,, represents a force component whose
frequency is twice as large as that of the oscillating plate. This component is
also caused by the quadratic term of p,.

(2)Large amplitude condition
If the amplitude of the oscillating plate is not negligible, then the value of
h=h,(1+ esinax), instead of h~h,, has to be used in Eq. (3.83). In this case,

Eq. (3.83) can be developed into the form of;
F=A, + A coswt+ B sinwt + A, cos2wt + B, sin 20t + - (3.85)
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where A, is the rectification force, and A; and B, are the amplitudes of the
damping and elastic forces, respectively. They can be found using the
following expressions:

2 2} .2
e“(4+3e" o
= (f" F- dot= P,,LB—(———g,z— (3.86)
n 24(1—82)
A1=l jg" Fcos(;)tdo)t=—PoLB——&3E (3.87)
n 3(1—82)
and
o (§€4+682+2)028
B =—[" Fsinordot=~P,LB (3.88)

9/2
n 15(1-¢?)
Eqs. (3.86) to (3.88) show that the rectification force, the damping force and
the elastic forces increase with an increase in the amplitude indicated by €.

From Eq. (3.87) the damping force is:

3
Fp = Ajcoswt =— HU? ——IW (3.89)
ho (1 - 82)
The coefficient of damping force is:
_uLB® 1 (3.90)

Obviously, for small amplitudes, the coefficient is the same as that given by
Eq. (3.30).

§3.3. Slide-film air damping
§3.3.1. Basic equations for slide-film air damping
(1) Model of slide-film air damping
Micromechanical devices fabricated by surface micromachining technology

feature thin layer movable plates (about 2 um thick) suspended over a
substrate by flexures placed a small distance apart. This basic structure
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facilitates the lateral motion of the plates for such applications as resonators,
actuators, accelerometers, etc. As the dimensions of the moving plates are
usually much larger than their thickness and their distance from the substrate,
the viscous damping by the ambient air plays a major role in energy
dissipation of the dynamic system; the air film behaves as a slide-film damper
to the moving structure. To investigate the basic features of slide-film
damping, a simplified mechanical model is considered: an infinitive plate,
immersed in an incompressible viscous fluid, moving in a lateral direction at a
constant distance from the substrate [8]. The model is schematically
illustrated in Fig. 3.17.

moving direction

M
moving direction

(b)

Fig. 3.17. Schematic model for a slide-film air damping
(a) schematic structure (b) a lumped damping model

(2) Basic equations
The general equation for the steady flow of an incompressible fluid is the
well-known Navier-Stokes equation [3]:

p[%+(\7-V)\7}= F-Vp+uv? (3.91)

where p is the density of the fluid, ¥ is the velocity of the fluid, F is the
external force, p is the pressure of the fluid, p is the coefficient of viscosity of
the fluid, and V and V* denote gradient and Laplace operators, respectively.
Suppose that the plate is in the x-y plane of a coordinate system and the
movement is in x-direction. In this case, there is no external force or pressure
gradient and v, =u>>v, and v, Eq. (3.91) becomes:

du, ,ou_pdu

3.92
o "ox poz (3:92)
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For an infinite plate, the second term on the left side of Eq. (3.92) vanishes,
resulting in:

ou uaz

393
a p 972 ( )

The boundary conditions for Eq. (3.93) are that u equals zero at the substrate
surface and u equals the velocity of the moving plate near the surface of the
plate.
For a plate with a finite area, the second term in Eq. (3.92) will not be zero.
Now let us discuss the conditions for the approximation of Eq. (3.93).
Suppose that the motion of a finite plate with reference to its balanced
position is a simple harmonic oscillation:

x(t)=a,sinwt
where a, is the amplitude of the simple harmonic oscillation. Therefore, we
have:

u(t) = a,w cosmt = u, Coswt

and:
% = —u,Msinwt (3.94)
where u, = a, . If the typical dimension of the plate is /, we have:
ou u? a0’
2 3.95
Tl l (3.93)
and
0%u a,m
LR (3.96)
poz® pd

where d is the distance between the substrate and the plate.
Therefore, the approximation conditions for Eq. (3.93) are:
a) |24 du
ot
u %u _ ou
—>> ué— Using Egs. (3.95) and (3.96), this condition becomes
Z

>> This requires small amplitude, i.e., a,<<I,

“5

b)

2
-p‘”"—od 28 the condition

pw

I>> . By defining a characteristic distance &=

can be further simplified to:
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2

[>> Z—Zao (3.97)

We will find in §3.3.3 that the effective distance, 8, corresponds to the
distance that the velocity decays away from the plate by a factor of e
(=2.718...) in the z-direction. The curve in Fig. 3.18 shows the dependence of

d on the frequency in air at 1 atm. at 20°C.

(3) Two flow models

2
Under the condition that 8>>d (i.e., ® <<n/pd?), %g——zu— >>%L:-. In this
Z

case, Eq. (3.93) can be further simplified to:

0%u
Z
S
100
90 i
80 3
70 +
60
50
40
30
20
10
0 . f/kHz
[¢] 2 4 6 8 10

Fig. 3.18. The effective distance, 8, as a function of frequency

In the following sections, two different damping models will be considered:
a Couette-flow model governed by Eq. (3.98) when J is much larger than d
and a Stokes-flow model governed by Eq. (3.93) for more general conditions

[8].
§3.3.2. Couette-flow model

Suppose that a large plate over a static substrate oscillates laterally as
shown in Fig. 3.19. If the oscillating frequency is so low so that §>>d, the
flow pattern of the air around the plate is called Couette-flow. We will
consider the damping effect caused by the viscous fluid between the plate and
the substrate by the Couette-flow model with the boundary conditions:

u(0)=u,coswt, u(d)=0 (3.99)
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According to Egs. (3.98) and (3.99), the velocity distribution of the fluid is:
z

u(y)=u(0)(1- E) (3.100)

where u(0) is the velocity of the moving plate. The shearing force applied to
the plate to oppose its motion is:

w0) ,
d

where A is the area of the plate. According to the Couette-flow model, the
velocity gradient on the open (top) side of the plate is zero. Therefore, there is
no damping force on the top side of the plate and the @ factor of the lateral
vibration system is determined only by the damping force described in Eq.
(3.101). (As a matter of fact, if d on the top side is large, the condition for
Couette-flow, 6>>d, is no longer valid, but we will just assume that the
damping force on the top side of the plate is negligible.)

F=-u (3.101)

moving direction

Fig. 3.19. Laterally oscillating plate over a substrate

The energy dissipated by the damping force in one cycle is:

T
AEq, =| Au@u(ow
o d
As u(0) = u, coswt, we have:
T 2l
=—u‘"=A
Cd ® U, d

According to the second definition of the Q factor in Chapter 2:

71:mu02 _ mod

= =—— 3.102
Qca AE.,  pA ( )

If the specific mass of the material is p and the thickness of the plate is h, Eq.
(3.102) can be written as:

Note that Q¢ is not dependent on the area of the plate, A.
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§3.3.3. Stokes-flow model

In the Couette-flow model, the velocity profile in the fluid between the
plate and the substrate is linear. The model becomes invalid when the distance
between the plate and the substrate is large enough. For a very large distance,
the velocity profile of the fluid is governed by the differential equation Eq.
(3.93). If the effective distance, §, is not much larger than d, then Eq. (3.99)
applies.

By solving Eq. (3.93) with the boundary conditions given in Eq. (3.99), the
velocity profile of the fluid is:

_e~d+E cos(wt+Z —d —8)+e‘?'Z cos(wt—Z +d ~6)

\[ez‘} + e'z‘7 - 2008(23)

u=1u,

(3.103)

where d = %, 7= and@isa phase lag angle against the oscillation of the

)

plate (u(0) = u,, coswt ). The expression for 6 is:

F N
6 = arctan (1€ d. (3.104)
(e —e “)cosd

The force applied on the plate (on one side) is:

d
Fsa = "‘“a‘j
z=0

- Am (—e“7 cos(wt—d —0) (3.105)

8\/ &4+ e_z,i —2cos2d

+e_‘7 sin(®t — d- 6)— e‘; cos(or + d- 0)+ e‘; sin(wrf + d- 6))

With the damping force on the plate shown by Eq. (3.105), the energy
dissipation in one cycle of oscillation is found to be:

T 2 . TP
AEg, = [ Fyquydt = S’ Sh(2d) +5in(2d ) (3.106)
0 ®d cosh(2d)-cos(2d)
and the O factor is:
mwd cosh(2d )— cos(2d
Qs = : (2d) (24) (3.107)

A sinh(2d) +sin(2d)
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.. 71:
For the extreme condition of d<<&, we have GZZ’ Fog=Fcy =

—A%u(O), AEs;= AEc,; and Qg,; = Q¢y, i-e., the results of Stokes-flow model

coincide with those of Couette-flow model.
For another extreme condition of d >> 8, from Eq. (3.103), we have:

u= uoe'2 cos(wt +d —0)
This shows that the fluid around the plate oscillates with the same frequency

as the plate but the oscillation amplitude in the fluid decays exponentially

away from the plate. § is the distance over which the amplitude decreases by
a factor of e (=2.718).
Under this condition, the energy dissipation in one cycle is:

nTo2M
=—u’lA
Soo 0) uO 8
and
mwd  phmd
QSoc ==
nA n

If Q. is compared with Qc; in Eq. (3.102), we can conclude that the
damping force now is:

F,= #Au(0) (3.108)
)

As the condition of d >>8 means that the effect of the neighboring
substrate is negligible for the oscillating plate, the plate can be considered as
an isolated object in the fluid. Now let us compare the result here with the
drag force on an isolated object given in §3.1.3.

According to §3.1.3, the drag force exerted by the viscous fluid on a
circular dish moving in its plane direction is:

32, RpAy
3 3t r
where v is the velocity of the plate, equivalent to the u(0) in Eq. (3.108), and
r is the radius of the dish, i.e., its characteristic dimension. When Eq. (3.109)

is compared with Eq. (3.108), we can make the following conclusions:

a) if w is small (8§ >>r), the damping force should be estimated by Eq.
(3.109);

Fy (3.109)
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b) if w is large (& << r), the damping force should be estimated by Eq.
(3.108).

§3.3.4. Air damping of a comb resonator

Silicon micro resonators are typical micro mechanical structures and have
very useful applications in sensors and actuators. Many types of silicon
micro-resonators have been so far developed. Among them, the lateral driving
comb micro resonators, formed by surface micromachining technology, have
wide applications.

Fig. 3.20 shows schematically the basic structure of the lateral driving
comb resonator. The shaded areas are fixed fingers (or, fixed electrodes) and
act as anchors for the movable parts. The movable parts include the flexures
(narrow beams), supporting plate (with etching holes) and fingers (movable
electrodes). The moving parts of the structure can be driven into lateral
oscillation by applying alternating voltage (often with a dc bias, see Chapter
5) between the movable and the fixed electrodes. Quite often, the frequency
of the driving force coincides with the resonant frequency of the structure so
that the structure is driven into a resonant state. Thus, the structure is often
referred to as a comb resonator.

One of the most important characteristics of a resonator is its mechanical
quality factor, Q. For a comb resonator operating in an atmospheric
environment, air damping is the dominant factor that determines the Q factor
of the resonator.

beam (flexure)
/ fixed electrodes

aooon
EIEIIEID
Oooa)
oooao

anchor

Fig. 3.20. A schematic drawing of a comb resonator

The air damping force for a comb resonator consists of many damping
force components related to the geometries of the structure and different
damping mechanisms. These damping force components are:
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(a) The slide-film damping force on the bottom

As the distance, d,, between the moving parts and the substrate beneath the
movable structure is much smaller than 8, the damping force is of Couette-
flow type and can be expressed as:

K =H:1£x:“15‘
p

This is usually the most important force component of all the damping
force components

(b) The slide-film damping on top

Suppose the structure is placed far away from any external objects above it.
The damping force above the moving parts of the structure is of Stokes-flow
type. The damping force component is:

E, = u?”x =y

where 8 is the effective distance defined in §3.3.1 as 8= /2_}1 and p is the
pw

density of air. From Fig. 3.18, for a resonant frequency of 1 kHz, we find 8 =
67 um. Ap is the effective plate area for the damping calculation which
includes the areas of the plates, fingers and beams. The etch hole region is
also included in Ap as the dimension of the etch hole is usually small when
compared with 8.

(c) Slide-film damping of the sidewalls
The damping force is:

A
F=p—Sx=c%
3= U d, 3
where A, is the area of the sidewalls that are in parallel with the moving
direction and d; is the distance between the sidewalls and their neighboring
structures. Here we have assumed that: d, <<9.

(d) Air drag force

The air drag force on the moving plate is difficult to estimate. Referring to
the air drag force on a circular dish moving along its plane direction (see Eq.
(3.13) in §3.1.3.), the force can be approximated by:
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F:i = 3?2]41)2 = C4x

where [ is the characteristic dimension of the moving structure that can be
taken as half the width of the plate.
Therefore, the total damping force on the entire structure is:

F=F1+F2+F3+F4=(CI+C2+C3+C4)XECX

and the quality factor is:

1
—=2=
0~ %",
or
A
1. ( p p+i+10.7l) (3.110)
Q m(n d, 5 d;

Due to the finite dimension of the structure and the fringe effect at the
edges and comers, Eq. (3.110) is only a semi-quantitative approximation to
the exact value. However, it does provide useful information in designing a
comb resonator.

The resonant frequency ®, in Eq. (3.110) can be written as:

Ehb®
mLeﬁr3

where L is the effective length of the beams, b the width and & the thickness
of the beam flexures. As m= A,hp, we have:

Ly 3 A,
; : EAb3(( 4 5 ‘3S+1071)j (3.111)
V P s

For most situations, the Couette-flow slide-film damping term, the first
term in Eq. (3.111), is the dominant factor of air damping. If only the Couette-
flow slide-film damping is considered in estimating the quality factor of the
structure shown in Fig. 3.20, we have:

hd Ep b ;
Qz__li =) (3.112)
18 \’ Ap Leff

This means that, for a high quality factor, the structure should be thick and far
away from the substrate. Also, the flexures should have as large a flexure
rigidity as possible in their moving direction.
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§3.4. Damping in rare air
§3.4.1. Free molecule model for rare air damping

In a wide band of pressure range around and above atmospheric pressure,
the viscosity of gas is independent of pressure. Therefore, the damping effect
of gas is independent of pressure in this range. This phenomenon can be
explained by the kinetic theory of gas. The viscosity coefficient of a gas found
by the simple kinetic model is:

1
=—pAv
B=3PAY

where p is the density, A the mean free path and v the average velocity of the
gas molecules. As ¥ and the product of p and A are independent of pressure,
the viscosity coefficient, W, is not a function of pressure.

However, experiments show that the air damping force on a microstructure
reduces significantly in rare air where the air pressure is below several
hundreds Pa. It is believed that the gas molecules are so far apart in low
pressure that the interaction between gas molecules can be neglected.
Therefore, a model called the free molecule model is used for rare air [9].

Now let us consider the air damping force acting on a plate oscillating in its
normal direction (x-direction). If the interaction between gas molecules can be
neglected, the damping force on the plate resonator is caused by momentum
transfer during its collisions with individual gas molecules. If the speed of the
plate is X, the pressure caused by the collisions on the front side of the plate
is:

Py =2mn (v, + %) f(v,)dv, (3.113)
where m is the mass of a molecule, n the molecule density, v, the x-component
of velocity of the colliding molecule moving against the plate and f{v,) the
normalized distribution function of the molecules. For the distribution
function, the Maxwellian function is usually used:

mv 2
fv)= 51::767 %4t (3.114)

Similarly, the pressure caused by the collisions on the back side of the plate
is:
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P, = 2mn]°(vx -3 f(v,)dv, (3.115)

X

According to Egs. (3.113), (3.114) and (3.115), the pure damping force
caused by collision is:

F,= AP, - B)

where A is the area of the plate. If the velocity of the plate, X, is much smaller
than that of the majority of the gas molecules, we have:

F,=8mnA[v, -%F(v,)dv, = 8mnAJ—k—T~x (3.116)
0 2nm

For the gas in the standard condition (P,=1 atm., T,=273 K), the molecule
density of gas is:

_Ny4
v

o

n

where Nx=6.023x10 and V,=2.24x10">m’. The molecule density at pressure
P and temperature T is:

PI,_N,P
°PT RT

where R=8.31 kg-m%/sec’/°’K and is referred to as the universal molar gas
constant. Therefore:

F, = 4\/21/£PA5¢ (3.117)
T VRT

where M is Molar mass of the gas. The coefficient of damping force in rare air
by the free molecule model is:

c, =4\P L (3.118)
TVRT

Eq. (3.118) shows that the damping effect in rare air decreases in a linear way
with decreasing pressure. Therefore, if the pressure is in the range where the
rare air damping is the dominant damping factor, the Q factor of the system is:

Q= MPwo

¢

where Mp is the mass of the plate and ®, the natural frequency of the system.
As M,=Ahp, we have:
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hpw, | [RT 1
=", /_. - = 3.119
¢ 4 2 VM P ( )

where h is the thickness of the plate and p is the specific mass of the plate.

Eq. (3.119) has been compared with experimental data. The results agree to
within an order of magnitude. Though the air damping is indeed inversely
proportional to pressure P, the value of the Q factor is overestimated
quantitatively, i.e., the damping force in rare air is underestimated by the free
molecular model.

Disregarding the quantitative difference, Eq. (3.117) is now used to
estimate the pressure where the transition from viscous flow model to free
molecule model occurs. Suppose the plate is a square of Imm by Imm and it
is 20um away from the neighboring substrate, the squeeze-film damping force
in the normal direction is:

uLB
P

3
F, =042 £=95%x10"%. % (3.120)

The damping force by Eq. (3.117) is:

F = 4\P : fﬂPAx =1148x10710px (3.121)
Tt VRT

By equating F; and F, in Egs. (3.120) and (3.121), we find the transition
pressure of P=828 Pa. This result means that, for the specific structure
described, the transition from squeeze-film air damping to rare air damping
occurs at a pressure of about 828 Pa. Obviously, the transition pressure is
dependent on the geometries of the microstructure.

§3.4.2. Damping in a vacuum

According to the free molecule model, the damping force in rare air is
proportional to the air pressure. Therefore, the air damping force goes down,
or, the Q factor of the system goes up, with a decrease in the air pressure.
However, experimental results show that the Q factor levels off when the
vacuum is high enough, i.e., when the effects of internal friction and support
losses become the dominant mechanisms of energy dissipation [6]. As the
internal friction and the support losses are very hard to predict theoretically,
they are evaluated by the quality factor in a high vacuum condition. For micro
structures made of silicon, the quality factors at high vacuum, Q,, range from
10*~10°. Once Q, is found through experimental measurements the coefficient
of damping force caused by internal friction and support losses can be found
using:
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¢, =—22 (3.122)

where M, is the mass of the oscillating plate and w, is the natural frequency of
the system. Therefore, the differential equation for vibration in rare air can be
modified to:

mi+(c, tc,)x+kx=F (3.123)

where ¢, and ¢, can be found from Eqs. (3.118) and (3.122), respectively.

Assume Q, of the oscillating plate is found to be 5x10°, the plate is made of
silicon with a thickness of 200 um and the natural frequency of the structure
is 1 kHz. The critical pressure, P,, where the Q factor starts to level off with
decreasing pressure can be found by equating Eq. (3.118) and Eq. (3.122),
ie.,

4 ﬁ [ p ,_ Apho,
n\ RT Q,

The critical pressure is thus found to be about P,=5 Pa, or, 4x10° Torr.

As a summary, the dependence of the Q factor on the air pressure from
atmospheric pressure to high vacuum is schematically shown by the curve in
Fig. 3.21. Let us start at pressures higher than atmospheric pressure. The Q
factor at high pressure is independent of pressure as shown by sector A of the
curve in Fig. 3.21. The Q factor in this pressure range is determined by the
geometries and the moving directions of the structure: the damping could be
squeeze-film damping, slide-film damping, drag force damping or a
combination of these mechanisms.

When the pressure is pumped down to a certain extent (10°~10° Pa), the Q
factor starts to rise when the mechanism of rare air damping starts to play an
important role. The Q factor is inversely proportional to the air pressure in the
pressure range when the rare air damping plays a major role in air damping, as
shown by sector B of the curve in Fig. 3.21. The transition pressure, P, for
sector A to sector B is usually in the range of several hundred Pa. The exact
pressure is dependent on the geometries and vibration mode of the micro
structure.

At high vacuum, when the air damping is very small, the effects of internal
friction and energy losses via the structure supports have to be considered.
Generally, the Q factor in very low pressure must be determined by rare air
damping, as well as the internal friction and the support losses of the
structure. Obviously, the O factor will be mainly determined by the internal
friction and the support loss when the vacuum is high enough and the Q factor
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becomes a constant as shown by sector C of the curve in Fig. 3.21. The Q
factors of silicon microstructure in high vacuum are usually in the order of
10°. The exact value is dependent on the geometry design of the micro
structure.

The pressure, P, in the figure, where the Q factor begins to level off with
decreasing pressure is usually in the range of several Pa, the exact value is
also dependent on the geometries of the micro structure.

A

i >
Po Pa P
Fig. 3.21. The dependence of Q factor on air pressure
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