

VIBRATIONAL EXCITATIONS OF PURE FeCl_3 AND GRAPHITE INTERCALATED WITH FERRIC CHLORIDE⁺

N. Caswell and S. A. Solin

The Department of Physics and The James Franck Institute, The University of Chicago, Chicago, IL 60637

(Received 26 June 1978 by R. H. Silsbee)

The polarized Raman spectra of crystalline FeCl_3 , and of stage 1 and 2 graphite- FeCl_3 intercalation compounds have been obtained. The observed FeCl_3 derived modes are assigned vibrational species according to the space group C_{3h}^2 (R3) for the pure crystal and the D_{3d} layer factor group for the intercalated compounds. Measurements show that FeCl_3 intercalated in graphite maintains its layer structure, no evidence for monomeric FeCl_3 or dimeric Fe_2Cl_6 being observed. There is also no evidence for FeCl_2 layer stoichiometry.

It was first shown in 1932 by Thiele¹ that ferric chloride will intercalate graphite. Since that initial observation the ferric chloride intercalant has become one of the most heavily studied rivaling C_nM $\text{M} = \text{K}$, Rb , Cs and C_nBr for the sheer volume of independent investigations of which it has been the focus.² To date however there have been no studies of the vibrational excitations and lattice properties of graphite- FeCl_3 . Such studies and particularly those carried out using the Raman spectroscopic technique have proved indispensable to the understanding of the physical properties of the alkali metal^{3,4,5} and bromine intercalation compounds. As we shall now show such techniques are also fruitfully applied to graphite- FeCl_3 .

As the result of an excellent electron diffraction and x-ray diffraction investigation of graphite- FeCl_3 by Cowley and Ibers⁶ a great deal is known about the structure of graphite- FeCl_3 which is intrinsically interesting and somewhat unique. Consider first pure FeCl_3 . It is, like graphite itself, a layer crystal but with the BiI_3 structure for which the hexagonal non-primitive unit cell consists of three layers each containing 2 FeCl_3 units.⁷ A given layer in this structure is composed of a layer of iron atoms sandwiched halfway between two distinct layers of chlorine atoms in such a way that the iron atoms are octahedrally coordinated to six chlorine atoms with the three fold axis of the chlorine octahedra parallel to the c axis of the crystal. This layer structure and the layer primitive cell are shown in Fig. 1. Notice from Fig. 1 that the chlorine atoms within a layer form a triangular lattice whereas the iron atoms form the more open

honeycomb structure identical in form to the layers in graphite. If the sites at the centers of the iron hexagons were also occupied the layer sandwiched would have FeCl_2 stoichiometry and the resultant three dimensional crystal would then have the CdCl_2 structure.⁷

One of the most intriguing things about the graphite- FeCl_3 system is that upon intercalation FeCl_3 enters the graphite planar interstices as layers with essentially the same structure that obtains in pure FeCl_3 . In particular for the stage 1 compound $\text{C}_{6.6}\text{FeCl}_3$ the iron atoms form two dimensionally ordered domains of typical size 1000 Å and with an iron layer structure identical to that in pure FeCl_3 .^{6,8} However, the iron lattice is incommensurate with the graphite lattice the a axis lattice parameters being respectively 6.06 Å and 2.46 Å.⁶ Therefore, the chlorine atoms tend to retain an undistorted octahedral coordination about the iron atoms identical to that in pure FeCl_3 and simultaneously occupy preferred sites associated with the carbon host. As a result of these competing conditions the chlorine atoms lose long range (≈ 1000 Å) two dimensional order and randomly occupy the preferred sites. Nevertheless the distortions of the octahedra engendered by preferred site occupation are small ($\sim 3^\circ$ relative rotation of the chlorine triangles, $2'2'2'$ and $2\ 2\ 2$ in the octahedron of Fig. 1a, about the c axis of the layer). Therefore in what follows we shall ignore the above mentioned distortions and assume that the intercalated FeCl_3 layers in graphite- FeCl_3 have the same structure as in pure FeCl_3 .

⁺ Research supported by the US ERDA. It has also benefitted from the support of the University of Chicago Materials Research Laboratory by the NSF.

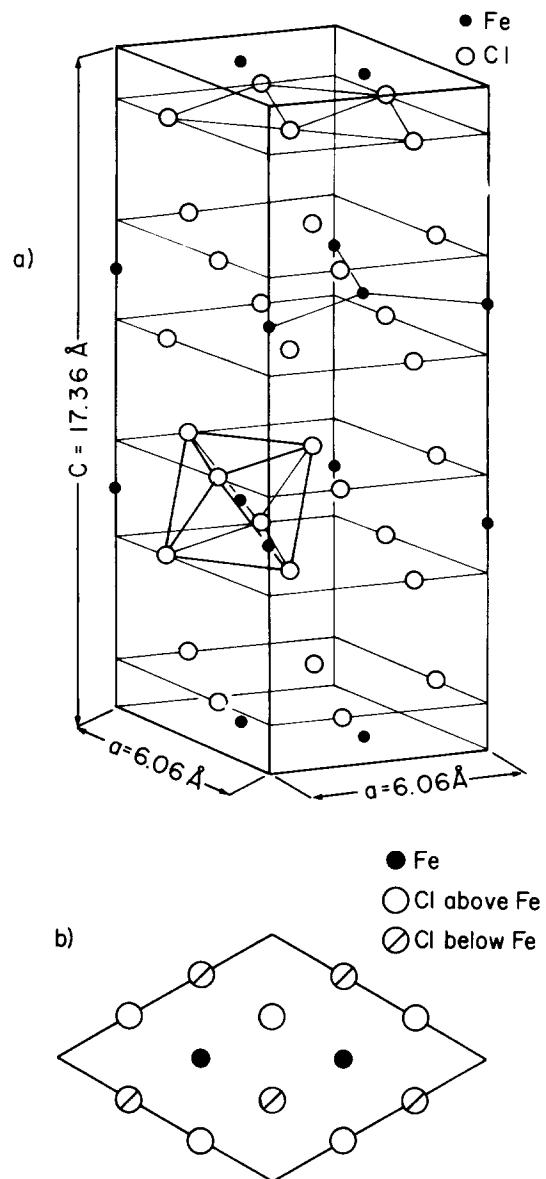


Fig. 1a The nonprimitive hexagonal C_{3i}^2 cell of FeCl_3 . The intersection of each chlorine plane with the cell surface is indicated. Also shown is the triangular (6-fold coordinated) Cl plane structure, the hexagonal (3-fold coordinated) Fe plane structure, and an FeCl_6 octahedra.

Fig. 1b The D_{3d}^1 primitive unit cell of an FeCl_3 sandwich layer viewed along the c axis normal to the layer. Relative sizes of chlorine and iron atoms are not to scale.

Samples of graphite FeCl_3 were prepared from anhydrous FeCl_3 and highly oriented pyrolytic graphite (HOPG) using the two zone method and vapor pressure isotherms reported by Hooley.⁹ The sample stage was established from measurements of 00ℓ x-ray spectra which were made in situ, except as noted. X-ray measurements were made on a G.E. powder diffractometer using $\text{Mo K}\alpha$ radiation. Raman spectra were recorded at room temperature in the backscattering configuration using 5145 \AA or 4880 \AA argon laser excitation.

An important point is to be made regarding sample homogeneity. A homogeneous stage 1 sample was not obtained even after prolonged heating at temperatures reported to produce homogeneous stage 1 in 200 mesh natural graphic flakes.⁹ An 8 mm x 12 mm x .2 mm sample (dimensions before intercalation) heated for a total of 4 days showed x-ray lines of both "pure" stage 1 and HOPG. "Pure" is used here in the sense of Metz and Holwein¹⁰ to denote uniform stage regions large enough to produce narrow ($\Delta 2\theta < .2^\circ$) x-ray reflections. The Raman spectra of this sample showed only stage 1 bands. The sample was then heated with $T_{\text{FeCl}_3} = 400^\circ\text{C}$ and $T_{\text{graphite}} = 410^\circ\text{C}$ for one day. After this the x-ray spectrum indicated a pure stage 2 while Raman measurements indicated a 50-50 mixture of stage 2. An 8 mm x 6 mm x .2 mm sample had stage 1 and HOPG x-ray reflections and a stage 1 Raman spectra after being heated at stage 1 temperatures for 38 hrs. After 7 days both x-ray and Raman in situ measurements indicated pure stage 1. However when removed from its preparation tube and cleaved, the inside surface showed evidence of both stage 1 and HOPG in its Raman spectrum. X-ray reflections still indicated only stage 1.

We chose $\text{Mo K}\alpha$ radiation to excite the x-ray spectra because the pyrex sample preparation tubes are relatively transparent at that energy. The "sampled depth" ($\approx 1/2$ the penetration depth) of $\text{Mo K}\alpha$ radiation is $\approx .2 \text{ mm}$ for stage 1 and stage 2 graphite FeCl_3 . In contrast, other reported x-ray measurements of homogeneous compounds used $\text{Cr K}\alpha$ radiation.¹⁰ The "sampled depth" of this radiation is $\approx 2.5 \times 10^{-2} \text{ mm}$, making sample inhomogeneities much less apparent. The 5145 \AA and 4880 \AA light used for Raman measurements samples even less; approximately $3 \times 10^{-6} \text{ mm}$. Because the Raman experiment samples very little depth along the c direction, it probes inhomogeneities primarily in the a direction. We report data on samples which are homogeneous pure stages to the limit of the penetration depth of visible radiation. Sample preparation and homogeneity will be addressed in more detail elsewhere.¹¹

Pure FeCl_3 crystals were prepared by vapor

transport during the intercalation process and grew at the cooler end of the sealed evacuated pyrex tube. The crystals of typical dimensions 3 mm x 3 mm x .5 mm exhibited a clearly defined hexagonal morphology and dark green mirrorlike surfaces. They too were studied *in situ*, a necessity given the extremely hygroscopic character of FeCl_3 .

Polarized Raman spectra of both graphite- FeCl_3 and pure FeCl_3 were recorded at room temperature and were excited with the 4880 Å and 5145 Å argon laser excitation lines using the back scattering geometry. Since stages 1 and 2 graphite FeCl_3 and FeCl_3 itself are uniaxial layer materials the group theoretical symmetry species of their vibrational excitations could be determined with incident radiation propagating along the "c" axis irrespective of the orientation of the *a* axis.

As noted above, FeCl_3 crystallizes in the BiI_3 structure and has space group symmetry C_{3i}^2 ($R\bar{3}$) with

2 molecular units in the rhombohedral primitive cell.⁷ Its vibrational excitations transform according to the irreducible representations

$$\Gamma_{\text{vib.}}^{\text{cryst.}} = 4 A_g + 3 A_u + 4 E_g + 3 E_u .$$

The $4 A_g + 4 E_g$ modes are Raman active while the $3 A_u + 3 E_u$ modes are infrared active.

Consider also the FeCl_3 layers from which the three dimensional structure is built up. As can be seen from Fig. 1 the layer has factor group symmetry D_{3d} and its primitive cell also contains two FeCl_3 units. The vibrational excitations of the layer transform according to the irreducible representations of the D_{3d} point group as follows:

$$\Gamma_{\text{vib.}}^{\text{layer}} = 2 A_{1g} + 2 A_{2g} + 4 E_g + A_{1u} + 2 A_{2u} + 3 E_u .$$

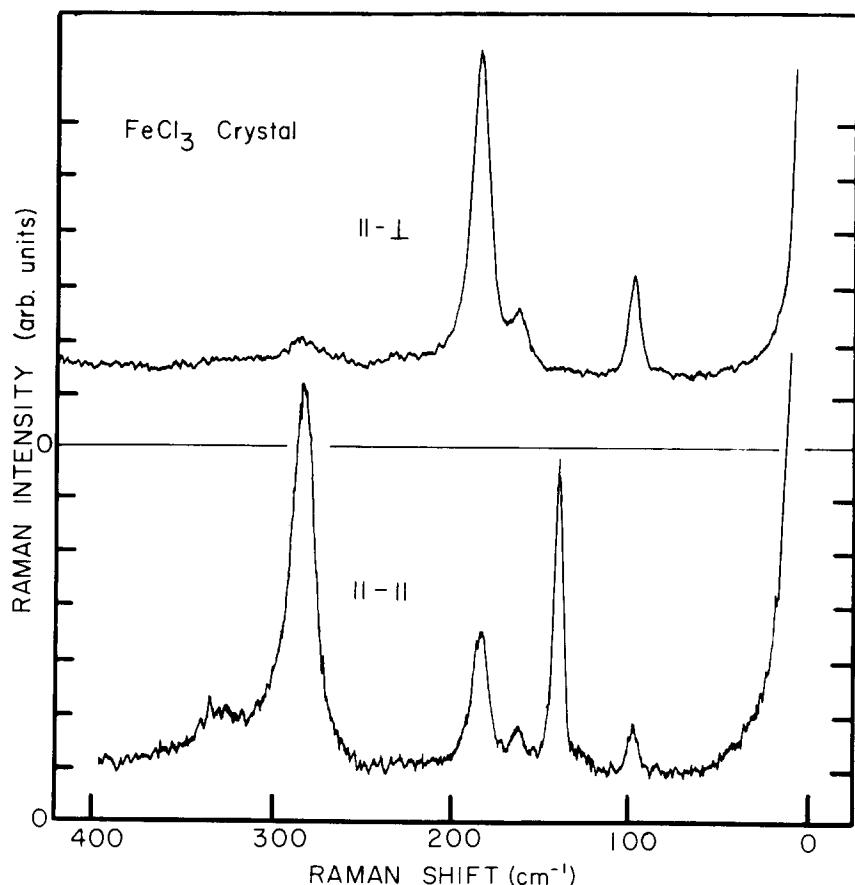


Fig. 2 The polarized Raman spectra of single crystal FeCl_3 . The spectra were excited with 25 mw of 5145 Å argon laser radiation and recorded in the backscattering configuration using a spectral slit width 4.7 cm^{-1} . Note that the abscissa are linear in wavelength rather than wavenumber.

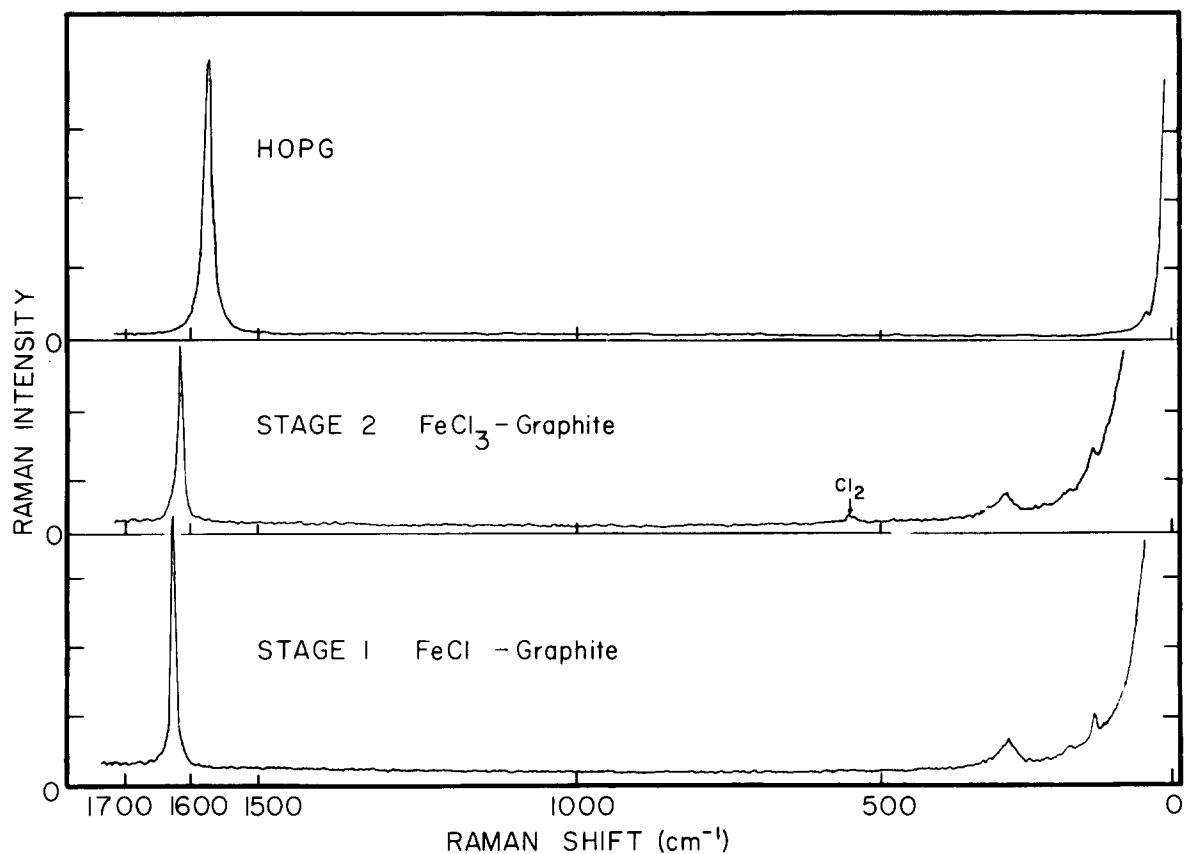


Fig. 3 The Raman spectra of stage 1 and stage 2 graphite FeCl_3 compared with the corresponding spectrum of pristine HOPG. The spectra were excited with 100 mw of 5145 \AA argon laser radiation and recorded in the backscattering configuration using a spectral slit width 4.7 cm^{-1} . The feature of 555 cm^{-1} in the spectrum of the stage 2 compound is due to Cl_2 vapor which was introduced at a pressure of 1 atom prior to sealing off and heating the sample tube. Note that the abscissa are linear in wavelength rather than wavenumber.

Of these $2 A_{1g} + 4 E_g$ or six modes are Raman active. Note that both the A_{1g} and A_{2g} excitations of the layer correlate to the A_g modes of the crystal whereas the E_g layer modes correlate to the E_g crystal modes.

In Figs. 2(a) and (b) we show the polarized Raman spectra of pure FeCl_3 single crystals. The spectrum labelled \parallel, \parallel will contain both A_{1g} and E_g modes whereas that labeled \parallel, \perp will contain only the E_g modes. This distinction results from the structure of the Raman tensors for A_{1g} and E_g of C_{3h} and the fact that the former which contains no off diagonal elements is invariant under rotations about the optic axis. Six of the eight group theoretically predicted modes of FeCl_3 are observed and their positions and symmetry

species are labeled in Table 1. By comparison with the spectra of other crystals with the BiI_3 structure¹² the weak mode at 341 cm^{-1} is identified as having A_{1g} symmetry but this designation is somewhat uncertain.

The Raman spectra of graphite FeCl_3 may be divided into two regions: a high frequency region consisting of graphite intralayer modes and a lower frequency region consisting of intercalant modes.

Fig. 3 shows the complete spectra of stage 1 and stage 2 graphite FeCl_3 and pristine HOPG. We will concentrate first on the high frequency region. As expected from the nearest layer model of Nemanich, Solin and Guerard the samples show a single sharp depolarized band in this region. This band is associated with the $E_{2g} \text{ } 1580 \text{ cm}^{-1}$ intralayer mode of the hexa-

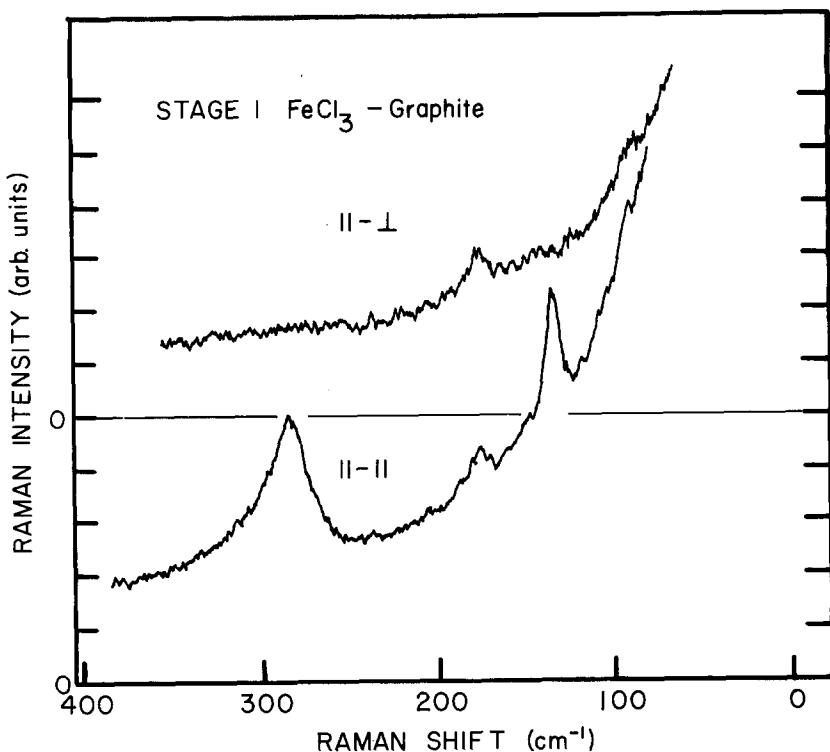


Fig. 4 The polarized Raman spectra of the intercalant intralayer modes of stage 1 graphite FeCl_3 . The spectrum of stage 2 graphite FeCl_3 is identical except for a scale factor due to smaller concentration. The spectra were excited with 100 mw of 5145 \AA argon laser radiation and recorded in the backscattering configuration using a spectral slit width 4.7 cm^{-1} . Note that the abscissa are linear in wavelength rather than wavenumber.

gonal graphite network.^{13,14,3} For a stage 1 compound in which each graphite layer is flanked on both sides by FeCl_3 layers, the mode is upshifted from the corresponding vibration of pristine graphite^{13, 14} by 46 cm^{-1} to 1626 cm^{-1} . Similarly the stage 2 compound in which each graphite layer is flanked by one graphite and one FeCl_3 layer exhibits a high frequency mode upshifted by 32 cm^{-1} to 1612 cm^{-1} .

Figure 4 shows the polarized Raman spectra of the low frequency ($\omega < 400 \text{ cm}^{-1}$) region. All samples examined, including those of mixed stage, show identical structure in this region. Four bands are observed one, with maximum intensity at 287 cm^{-1} , being quite broad and asymmetric. These bands are clearly intralayer modes of the intercalated FeCl_3 layer. Stage 1 and stage 2 therefore have the same FeCl_3 layer structure. Our assumption that the optical vibrational spectra of graphite FeCl_3 can be analyzed by treating the FeCl_3 layers as structurally identical to those in pure FeCl_3 is borne out by the spectra of Fig. 4. For

instances one expects 2 A_{1g} modes for the intercalant layer excitations. We observe both at 139 cm^{-1} and 287 cm^{-1} in the intercalated compound. Moreover, those two modes, although slightly shifted by $\approx 5 \text{ cm}^{-1}$ clearly correspond to layer excitations in pure FeCl_3 . Two of the four group theoretically predicted E_g modes are also observed. These too correspond to and are downshifted from modes of pure FeCl_3 .

It can be seen from the spectra of Figs. 2 and 4 that the spectral features of the intercalant are somewhat broadened relative to the corresponding features in pure FeCl_3 . This broadening which is not of instrumental origin is especially noticeable for the A_{1g} mode at 287 cm^{-1} and is probably a manifestation of the disorder associated with the Cl atoms which participate in both A_{1g} modes and three of the four E_g modes of the intercalant layer.

Some of the FeCl_3 intercalate literature addresses the question of FeCl_2 content. Hooley has suggested on

TABLE I

Energy shifts in cm^{-1} and symmetry species of the Raman bands of graphite, FeCl_3 , and graphite- FeCl_3

Pristine HOPG (D_{6h}^4)	Pristine FeCl_3 (C_{3i}^2)	stage 1 graphite FeCl_3 (D_{3d}^1)	stage 2 graphite FeCl_3 (D_{3d}^1)
47 (E_{2g_1}) ^a			
	98 (E_g)	93 (E_g)	
	142 (A_g)	139 (A_{1g})	139 (A_{1g})
	164 (E_g)		
	186 (E_g)	181 (E_g)	181 (E_g)
	282 (A_g)	287 (A_{1g})	287 (A_{1g})
	354 (A_g ?)		
1580 (E_{2g_2})		1626 (E_{2g_2})	1612 (E_{2g_2})

^aSee Ref. 15.

the basis of Mossbauer studies that at low temperature 3% of the iron in the stage 1 compound is in a 2^+ state.¹⁵ There is no evidence in our Raman spectra for FeCl_2 layer excitations which would have vib.
 $\Gamma_{\text{layer}} = A_{1g} + E_g$ and based on the spectra of FeCl_2 crystals would occur at $\approx 149 \text{ cm}^{-1}$ and 250 cm^{-1} respectively.¹⁶ Moreover, our Raman results not only clearly confirm that FeCl_3 occupies the graphite lattice as layers but we see no evidence for monomeric FeCl_3 or dimeric Fe_2Cl_6 which are prominent components of the vapor produced during the intercalation process. The Raman spectrum of monomeric FeCl_3 which has symmetry C_{3v} contains as expected two

polarized and two depolarized bands which occur at 69 (A_1), 114 (E), 367 (A_1), and 460 cm^{-1} (E).¹⁷ The spectra of Fe_2Cl_6 contains additional features but its most intense bands correspond to those of FeCl_3 .¹⁸ Thus the Raman spectra of FeCl_3 and Fe_2Cl_6 molecules are sufficiently distinct from the spectra we observe for the intercalation compounds that we conclude molecular forms of FeCl_3 if present constitute less than 1% of the intercalated species.

Acknowledgement--We gratefully acknowledge useful discussions with E. Flynn, G. Hooley, and J. Perachon. We are indebted to Dr. A. W. Moore for supplying the highly oriented pyrolytic graphite used in this work.

REFERENCES

1. THIELE, H., *Seitschrift fuer Anorganische und Allgemeine Chemie* 207, 340 (1932).
2. STUMPP, E., *Materials, Science and Engineering* 31, 53 (1977) and references therein. Also EBERT, L. B., *Annual Review Material Science* 6, 181 (1976).
3. NEMANICH, R. J., SOLIN, S. A., and GUERARD, D., *Physical Review B* 16, 2965 (1977).
4. SOLIN, S. A., *Materials, Science and Engineering* 31, 153 (1977).
5. DRESSELHAUS, M. S., DRESSELHAUS, G., EKLUND, P. C., and CHUNG, D. D. L., *Materials, Science and Engineering* 31, 141 (1977).
6. COWLEY, J. M., and IBERS, J. A., *Acta Crystallographica* 9, 421 (1956).
7. WYCOFF, R. W. G., "Crystal Structures," 2nd ed. (Wiley, New York, 1964), Vol. 2.
8. OHHASKI, K., and TSUJIKAWA, *Journal of the Physical Society of Japan* 36, 422 (1974).

9. HOOLEY, J. G., and BARTLETT, M., Carbon 5, 417 (1967).
10. METZ, W., and HOHLWEIN, D., Carbon 13, 87 (1975).
11. CASWELL, N., and SOLIN, S. A., to be published.
12. KIEFER, W., Zeitschrift fuer Naturforschung 25a, 1101 (1970).
13. BRILLSON, L. J., BURSTEIN, E., MARADUDIN, A. A., and STARK, in Physics of Semimetals and Semiconductors, ed., by D. L. Carter and R. T. Bate, Pergamon, Oxford, 1971, p. 187.
14. NEMANICH, R. J., and SOLIN, S. A., Solid State Communications 23, 417 (1977). Also NEMANICH, R. J., LUCOVSKY, G., and SOLIN, S. A., Proceedings of the International Conference on Phonons, Paris, 1977, in press.
15. HOOLEY, J. G., BARTLETT, M. W., LIENGNE, B. V., and SAMS, J. R., Carbon 6, 681 (1968).
16. LOCKWOOD, D. J., JOHNSTONE, I. W., MISCHLER, G., and CARRARA, P., Solid State Communications 25, 565 (1968).
17. LITTERST, F. J., SCHICHL, A., and KALVINS, G.M., Chemical Physics to be published.
18. PAPATHEODOROU, G. N., to be published.