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In the stationary situation the transmitted light by a ring cavity containing a homogeneously broadened two level ab- 
sorber exhibits a multiple-valued response to a constant incident light. The stability of the stationary state is investigated in 
the fast limit of the atomic relaxation. The stationary state is not always stable even when it belongs to the branch with a 
positive differential gain. In some cases all the stationary states becomes unstable and the transmitted light exhibits a "cha- 
otic" behavior. 

The transmitted light by a Fabry-P6rot cavity contain- 
ing a two level absorber exhibits a bistable behavior 
[1,2]. This phenomena is usually called by the name 
optical bistability, and it originates from the satura- 
tion of  the light absorption by the two level absorber 
(the absorptive bistability) [1] or from the coopera- 
tion between the cavity mistuning and the nonlinear 
dispersion of  the absorber (the dispersive bistability) 
[2]. From the theoretical point of  view the optical bi- 
stability is interesting since it can be considered as a 
typical example of  a first order like phase transition in 
a system far from thermal equilibrium. 

In a Fabry-P6rot cavity there exist two electric fields 
which propagate in the counter directions and interact 
with each other via the absorber, and moreover the 
electric field varies depending on the spatial coordinate, 
so that the theoretical analysis of  the Fabry-P6rot ca- 
vity system is very complicated even when we confine 
ourselves to the stationary situation [1,3].  To avoid 
these complexities almost all of  the theoretical investi- 
gations have used the mean field model in which the 
spatial variation of  the electric and the polarization 
fields is avergaed [ 4 - 6 ] .  In the mean field model, there- 
fore, the important  effect of  propagation is usually not 
taken into account. Recently, Bonifacio and Lugiato 
have proposed a considerably simple system in which 
the problem of  the absorptive bistability can be treated 
analytically with taking full account of  the propagation 
effect [7,8]. In this system the ring cavity is used in 

place of  the Fabry-P6rot cavity as the feed back mech- 
anism of  the light. 

The aim of the present letter is to report some novel 
features of  the ring cavity system as follows. (1) I f  the 
detuning of  the incident light with the absorber is in- 
troduced, the ordinary bistable behavior is drastically 
modified, and in the stationary situation the transmitted 
field becomes a multiple-valued function of  the incident 
field. (2) The stationary solution is not always stable 
even when it belongs to the branch with a positive dif- 
ferential gain, In some cases all the stationary solutions 
become unstable, and the transmitted field exhibits a 
"chaot ic"  behavior. 

To show the above features we first prove that under 
some appropriate conditions the dynamics of  the trans- 
mitted light can be described by a set of  difference- 
differential equations which do not involve the spatial 
coordinate. The device of  the ring cavity system is il- 
lustrated in fig. 1. E I is the incident field, and E T and 
E R are the transmitted field and refec ted  one, respec- 
tively. L is the length of  the sample cell containing the 
two level absorber, and .6? the total length of the optical 
circuit in the ring cavity. We assume that the mirror 1 
and 2 have reflectivity R while the mirror 3 and 4 have 
100% reflectivity. Let E(t,z) be the complex envelope 
of  the electric field. Then the following boundary con- 
ditions are obtained: 

E(t,O)= v~EI ( t  ) + R exp(ik~?) E ( t -  l/c,L ), ( la)  
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sample cell 
~-  ET 

Fig. 1. The ring cavity system. See text. 

ET(t) = v'T-E(t, L) exp(ikL), ( lb)  

where T -  1 - R is the transmittivity coefficient of  
the mirror 1 and 2, k = co/c is the wave number of  the 
electric field in the vacuum, and l ~ . ~ -  L. For the 
sake of  simplicity we assume that the two level system 
in the sample cell is homogeneously broadened. Then 
the propagation of  the electric field in the absorber is 
described by the Maxwell-Bloch equations given as fol- 
lows: 

~E/~z = 4niNl~kp , (2a) 

Op/8"r = (iAw -- 7z)p -- iuwE, (2b) 

Ow/Or = -  711(w + 1/z) + iU(p*E - pE*)/z,  (2c) 

where r ~ t - z/c is the retarded time, O and w the di- 
mensionless polarization and half the population dif- 
ference of  the two level atom, respectively, g the tran- 
sition dipole moment,  and Aco - co - ~ (~2: the transi- 
tion frequency of  the two level atom) the detuning fre- 
quency. 3'± and 3,11 are the transversal and longitudinal 
relaxation rates, respectively, and N the density of  the 
atoms. 

ttereafter we confine our consideration to the fast 
limit of  the transversal realxation. Under this condition 
the polarization follows the electric field adiabatically: 

o = i u w E / ( i a ~ o  - ~1)" (3) 

Substituting eq. (3) into eq. (2a), we can write the elec- 
tric field E(t , z )  in the following integral form 

E ( r  + z / c , z )  = E ( r , O )  

× exp [20 W(r ,z ) ( iA~  + 71)/(Aco 2 + 72)] ,  (4) 

where 0 - 2zrNkt 12 and the function W(r,z) is defined 
by 

z) = f dz' w(r + z'/c, z'). W(r, (5) 
0 

By substituting eqs. (4), (5) into eq. (2c) and integrating 
it over z, eq. (2c) leads to 

8 W(r, z)lOr = --711 (W + z12) - 12 2 IE(r, O) 12 

X {exp [407j W/(Aw 2 + 72)] - 1)/40. (6) 

Now we introduce the following dimensionless quanti- 
ties 

e(t,z) - gE(t ,z) lzx/Tl  Til(1 + A2), 

x - t3,11, ¢(t) - W(t -- ~ / c , L ) / L ,  (7) 

where A --= A~/7±. Combining eqs. (4) and (6) with the 
boundary conditions (1) and using the dimensionless 
quantities defined by eq. (7), we finally obtain the fol- 
lowing set of  equations which do not involve the spatial 
coordinate: 

e(x,0) = %/~el(X ) + Re(x  - K,O) exp(aL¢(x))  

× exp {i(aLA(ep(x)+ ½) -- 60} , (8a) 

d¢(x)/dx = - (¢ (x )  + 1/2) - 2 [e(x - K, 0)[2 

× [exp(2aL¢(x)) - 1] /aL,  (8b) 

and 

eT(X) = x /Te(x  - ~, O) exp(aL¢(x))  

× exp{i(aZA(¢(x) + ½) -- (60 + k/))), (9) 

where eT(x ) and el(x ) are defined by gET(t  - l/c)~ 
2 (1,±711(1 + A2)}1/2 and gEi(t)/2 (7±711(1 + A2)}1/2, 
respectively, a - 207J(Aco 2 + 72) is the effective ab- 
sorption coefficient, and 60 = - k ( x / ~  L + l) + 2rrM 
(~" : the linear dielectric constant 1 - 4nNv2zSco/ 
(Aw 2 + 72), 2~rM: the multiple of  2~ nearest to 
k ( x / ~ L  +/)) is the mistuning parameter of  the ring 
cavity containing the linear absorber. The parameter 
K - 711.1~/c denotes the dimensionless round trip time. 
We notice that eqs. (8a), (8b) and (9) can be interpreted 
as difference-differential equations whose solutions are 
uniquely determined if both the initial value 9(0) and 
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the boundary condition e(x,0) in the time range 
- k  ~< x < 0 are given. ,~ 

In the stationary situation we can set dc~(x)/dx = 0 
and e(x,O) = constant. By eliminating e(x,O) from eqs. 
(8a), (8b) and (9), the stationary solution of  the trans- 
mitted field intensity is related with the incident field 
intensity by the following equation: 

lei 12 = IdT 12 { [exp( -aL~)  - R] 2 + 4R e x p ( - a L ~ )  

× sin 2 [6(1#TI2)/2] T -2,  (10) 

with 

6(IdT 12) -- 6 0 - ~LA(~ + 1/2), (1 1) 

where ~ denotes the stationary solution, and ~ is related 
with [#t  i2 by 

(~ + l /2)/[exp(-2c~L~) - 1] = 2ldTI2/T~L. (12) 

q~ is a monotone increasing function of  l e t  ]2 which 
varies from - 1 / 2  to zero. 6(I eT 12) denotes the intensity 
dependent mistuning parameter, which is originated 
from the nonlinear shift of  the wave number in the ab- 
sorber. Since 6([dT 12) varies from 6 0 to 6 0 - ~LA/2, 
the factor • = sin 2 6(1 eY 12)/2 oscillates as a function 
of  ld TI 2 provided that the parameter czLA is large enough. 

In the limit of  o_LA ~ 0 and 6 0 ~ 0 the relations 
( I0 )  and (12) reduces to nothing but the absorptive 
bistability which is obtained by Bonifacio and Lugiato 
[7]. On the other hand, if the conditions aLA ~ 1, 
a.L { 1, la01 ~ 1 and [dTI2/T'~ 1 are satisfied, eq. (10) 
reduces to 12ii 2 = I~TI 2 [1 + 4RT -2 (aLAT -1 IdT 12 - 
60/2) 2 ] by the approximation a(IdTI 2) ~ 6 0 
- 2a/,AI eT 12 T - 1 ,  which agrees with the relation ex- 
hibiting the dispersive bistability experimentally ob- 
served by Gibbs et al. [2]. However, if the magnitude 
of the parameter aLA is sufficiently large, the trans- 
mitted field intensity oscillates as a function of the in- 
cident field intensity owing to the factor ¢p = 
sin 2 [6([dT 12)/2], and the ordinary bistable behavior 
will be drastically modified. In fig. 2 the relations be- 
tween the transmitted field and the incident field are 
shown for various values of  the parameter  aLA. The 
parameter aL and the reflectivity R are kept fixed to 
4.0 and 0.95, respectively. As a.LA increases, the or- 
dinary bistable relation (a) obtained for a/ ,  = 0 is dras- 
tically modified as is indicated typically by (c) and (d), 
that is, new branches appear in the lower intensity 
side of  I~T[ and their number increases with a.LA. Pro- 
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Fig. 2. Relations between the transmitted field and the incident 
field for various values of the parameter aLA; (a) aL = 0.0, (b) 
aLA = 2~r, (C) aLA = 4~r and (d) aLA = 6~r. The parameters aL, 
a o and R are kept fixed to 4.0, 0.0 and 0.95 respectively. 

vided that the magnitude of the parameter aL is suf- 
ficiently small, a pair of  new branches with negative 
and positive differential gains is generated whenever 
aLA is increased by 2n. Such a multiple-valued beha- 
vior is due to the intensity dependent mistuning of  the 
cavity with the incident light. The possibility of  the 
multiple-valued response of  the transmitted light has 
been discussed also by Felber and Marburger [9] for a 
Fabry-P6rot cavity system containing a Kerr medium. 

Now we discuss the stability of  the multiple-valued 
stationary state. In this letter we confine our conside- 
ration to the limiting case K '~ 1 i.e. the fast limit of  the 
longitudinal relaxation. In this limit we may set d~b(x)/ 
dx in eq. (8b) equal to zero, and eqs. (8a), (8b) and (9) 

reduce to the following difference equations: 

COn = X/'-T eln + Reon_l  exp(aL~b n) 

× exp {i(aLA(~b n + 1 / 2 ) -  60)}, (13a) 

eT n = x / ~  eon_l exp(a-L• n) 

× exp {i(aLA(q~ n + 1/2) - (6 0 + kl))) ,  (13b) 

where eOn, eTn and eln denotes e(x 0 + nK,0), 
eT(x 0 + nK) and ei(x 0 + nK), respectively, and q5 n is 
related with eOn_ l by 

(% + 1/2)/[1 - exp(aL~bn] = 2[e0n_112/aL. (14) 

The stability problem is investigated by linearizing eq. 
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Fig. 3. Stability of the multiple-valued stationary state in case 
of fig. 2(d). stable, - . . . . .  unstable. The branches A and 
D are both stable. Note that all the stationary solutions are un- 
stable in the region e I < lelI < e 2 . 

(13a) around the stationary solution ¢. The linear mo- 
tion of eon around its stationary solution is character- 
ized by two eigenvalues of a 2 X 2 evolution matrix, and 
the stationary solution is stable only when each of the 
two eigenvalues has an absolute value less than the unity. 

The stability of the multiple-valued stationary state 
has been studied numerically. As is naturally expected, 
the branches with the negative differential gain 

d le T [/dl e l I <  0 are always unstable. An interesting fact 
is that even the stationary solutions in the branch with 
a positive differential gain are not always stable. The 
stationary solution becomes stable when the incident 
field intensity lelI is set in the vicinity of the supremum 
and infimum of the branch (see fig. 3). 

An interesting example is the case of (d) in fig. 2. The 
stability of the stationary solutions in this case is dis- 
played in fig. 3. A remarkable feature is that in the 

region e 1 < l elI < e2 all stationary solutions are unstable. 
What happens in this region? In fig. 4(a) a typical be- 
havior of the transmitted field in this region is displayed. 
This result has been obtained by iterating eqs. (13a, b) 
from an appropriate initial value %0" As the time steps 
are advanced in the unit  K the transmitted field varies 
in an apparently erattic manner.  To make the situation 

* In the special case ~L = a o = 0 we can choose eon as a real 
quantity, so that eq. (13a) can be solved by a graphical 
method. By this method it is easily proven that in case of 
the pure absorptive bistability the branch with a positive 
differential gain is always stable. 
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Fig. 4. "Chaotic" behavior of the transmitted field in case of 
fig. 2(d). (a) A typical example of the "chaotic" behavior ob- 
tained for lell = 0.3074. (b) The hysteresis loop involving the 
chaotic behavior, stationary, • • • chaotic, I I I I I I periodic. 
In the chaotic or periodic region the magnitude of leTI Is ex- 
pediently chosen as the mean square average of eTn over a suf- 
ficiently long iteration steps. 

of such a "chaotic" behavior clear we have plotted the 
complex sequence eTn obtained by a successive iteration 
of eq. (13a,b) on a complex plane. It has been found 
that as the iterated step is advanced the plotted point 
tends to be attracted into a figure which appears to 
consist of an infinite set of one dimensional curves. 
Almost identical figures have been obtained when the 
initial value e00 is changed over a considerably wide 
range. This fact strongly suggests that the figure repre- 
sents the "strange attractor" of the difference equation 
(13a,b) [10]. Except for initial few steps the complex 

point eTn is trapped into the strange attractor and the 
trajectory of eTn wanders over it. Thus the "chaotic" 
behavior of the transmitted field is due to the wander- 
ing motion inside the strange attractor ~ 

* Strictly speaking the motion of the transmitted field is not 
always "chaotic" in the region el < lelI < e2. There exist 
some narrow regions in which the transmitted field exhibits 
periodic behaviors. 
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The strange attractor exists when l elI is set outside 
the region e 1 < lelI < e 2, and it continues to the stable 
stationary solution (the stable fixed point) of  the 
branch B as lelI is decreased below e 1 . When lelI is set 
below supremum a s of  the branch A, the strange at- 
tractor coexists with the stable fixed point (the stable 
stationary solution) corresponding to the branch A. 
From these facts, as is illustrated in fig. 4(b), we can 
expect a hysteresis loop involving the "chaotic" be- 
havior as follows: Let us assume that lell is varied very 
slowly between zero and some value slightly larger than 
a s. In the increasing process o f  lelI the transmitted field 
is stationary in the first place and it increases along the 
branch A. However, as soon as lelI exceeds a s, the 
transmitted field suddenly becomes "chaotic".  On the 
other hand, in the decreasing process the "chaotic" 
behavior lasts until l elI reaches to some value e L which 
lies between a s and the supremum b S of  the stable 
region of  the branch B. As le d is decreased further the 
transmitted field flips to the branch A via the stable 
portion of  the branch B. The transmitted field exhibits 
periodic motions with the period 2 m (m: a positive in- 
teger) when l elI is set in the region bounded by b s and 
e L. The value of  m increases through successive bi- 
furcations as lelI increases from b s, and it appears to 
become infinity as lelI approaches e L [11]. As lelI ex- 
ceeds e~, the "chaotic" motion finally take the place 
of  the periodic motion. We note that, as is shown in 
fig. 4(b), the periodic motion appears also in narrow 
regions sandwiched between the "chaotic" regions (the 
window structure [11]). In these regions the period of  
the motion appears to be given by l X 2 m (l: a positive 
integer). 

In conclusion we have shown that the multiple- 
valued stationary state of  the transmitted light by a 
ring cavity system is not always stable, exhibiting a new 
kind of  instabdity, in some cases the transmitted light 
exhibits a "chaotic" behavior. In the present report we 
have demonstrated such a "chaotic" behavior for specific 
values of  the parameters c~L, t~LA, 6 0 and R etc. The 
"chaotic" behavior, however, appears over a wide range 
of  these parameters./~ more detailed report will be 
presented in forthcoming publications. 

The author is grateful to Professor It. Hasegawa for 
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discussions. 
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