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Abstract. We propose and demonstrate a novel approach to identify
linear and nonlinear propagation regimes of an optical signal in an opti-
cal fiber link by using chaos analysis. We show that the chaotic charac-
teristics of a propagating optical signal are affected by both the chro-
matic dispersion and the nonlinear effects in the optical fiber. Linear or
nonlinear behavior is detected by determining the maximum Lyapunov
exponent of the signal and the use of the recurrence plot technique. An
experimental demonstration is performed using 10-Gbps signal propaga-
tion in a 100-km fiber link with different launched optical powers. Chaos
analysis shows a clear identification of the linear and nonlinear optical
propagation regimes by using a classification scheme based on a
multilayer neural network. Numerical simulations confirm the experimen-
tal results. © 2009 Society of Photo-Optical Instrumentation Engineers.
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Introduction

eployment of high-speed transparent and reconfigurable
ptical networks requires effective flexible and robust opti-
al performance-monitoring �OPM� techniques1 to ensure
igh-quality service. Indeed, these networks are susceptible
o various types of impairments, which may vary over the
ime. Knowledge of signal degradation can therefore be
sed to identify the signal impairment cause and its loca-
ion. This can also provide different mitigation schemes
uch as impairment compensation or traffic rerouting over
nother network segment. One of the most crucial impair-
ents in optical networks is fiber nonlinearity, which leads

o severe power-dependent degradation of the signal qual-
ty, especially at bit rates of 10 Gbps and beyond, and is
ne of the most difficult parameters to monitor. Therefore,
t is necessary to develop robust and effective OPM tech-
iques capable of identifying the nonlinear operation re-
ime in the network. From a maintenance point of view, it
s critical for the service provider to identify physical non-
inear impairments accumulated along the light path via the
lacement of OPM elements1 at different location in the
ptical network.

In today’s deployed networks, optical power monitoring
s the common method to detected a possible nonlinear
ropagation regime. However, in reconfigurable mesh opti-
al networks where dynamic equalization elements are
sed, remote optical power monitoring is not an effective
rediction method since the link power budget can change
ynamically. Indeed, the signal could undergo a nonlinear
egime propagation in a section of the link due to an unex-
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pected increase of its optical power �caused by some am-
plifier transient effects, for example�. However, since the
signal optical power is dynamically equalized when passing
through a reconfigurable add-drop multiplexer �ROADM�,
it is not possible to detect the signal nonlinear propagation
using power monitoring at a fiber section located after the
ROADM.

It is required that the detection of the nonlinear behavior
should also be possible at remote locations, which are far
away from the fiber section, where the nonlinear effects
take place. Several approaches have been proposed in the
literature recently. For example, in Ref. 2, the authors pro-
pose a new paradigm for determining nonlinear physical
impairments using Q factor estimation based on the choice
of few cumulative criteria �residual dispersion and nonlin-
ear average phase variation�. Wu et al.3 proposed a tech-
nique using artificial neural networks based on eye diagram
and eye histogram parameters to monitor several impair-
ments, and among them, the signal nonlinearity strength.

Here, we propose a novel approach to determine the
signal propagation regime, based on chaos theory, a branch
of nonlinear analysis, which is used to describe nonrepeat-
ing systems that are too complex for traditional techniques.

Detailed theoretical and experimental investigations of
semiconductor laser dynamics have shown chaotic
behaviors4 and have paved the way to optical chaotic
communication.4–6 Furthermore, conventional optical com-
munications are based on semiconductor lasers as optical
sources. While propagating in optical fiber, the optical sig-
nals might undergo nonlinear effects such as self-phase
modulation �SPM�, cross-phase modulation �XPM�, four-
wave mixing �FWM�, stimulated Brillouin scattering
October 2009/Vol. 48�10�1
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SBS�, and stimulated Raman scattering �SRS�, which
ight affect the chaotic properties of the propagating opti-

al signals. Therefore, chaos and time-series analysis seem
aturally applicable to identify nonlinearity in optical net-
ork systems.
In this paper, the chaos theory is used to identify linear

nd nonlinear propagation regimes of a single channel in an
ptical link. Therefore, we focus our analysis on the inter-
ction between chromatic dispersion �CD�, SPM, and SBS
nly. This paper is organized as follows. Section 2 provides
he principles of the proposed approach using the chaos
heory. Section 3 describes the experimental setup used
ith a 10-Gbps signal launched into a 100-km-long fiber.

n Sec. 4, the different optical propagation regimes are de-
ned. Experimental and numerical results are presented and
iscussed. In Sec. 5, the chaos and time-series analysis is
resented. The maximum Lyaponov exponent �MLE� and
he recurrence plot �RP� derived from the phase space of
he signal are calculated from experimental and numerical
esults. The impact of the chromatic dispersion and the op-
ical power is discussed. The signal processing approach for

Fig. 1 Optical propagation regime identification scheme.

Fig. 2 Optica
ptical Engineering 105002-
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optical propagation regime identification is described and
discussed in Sec. 6. After the conclusion, in Sec. 7, an
appendix is provided in Sec. 8 to briefly introduce the dif-
ferent steps used in the chaos theory comprising the con-
cepts of time series, phase space reconstruction, Lyapunov
exponent, and RP calculations.

2 Principles of the Optical Propagation Regime
Identification

The proposed approach to identify the optical propagation
regime of an optical signal is presented in the block dia-
gram of Fig. 1, which is composed by two main subblocks.

The first subblock refers to the chaotic parameter extrac-
tion block. This subblock derives the different chaotic pa-
rameters from the detected optical signal. First, the phase
space of the optical time-series signal7,8 is reconstructed
after having removed its noise component in the noise-
removing stage. The attractor founded from the phase space
reconstruction is used to derive the MLE �Ref. 9� and the
RP �Ref. 10�. The MLE provides a direct measure of the
sensitive dependence on initial conditions by quantifying
the exponential rates at which neighboring orbits on an at-
tractor diverge �or converge� as the system evolves in time.
The RP provides, for a given moment, the times at which a
phase space trajectory visits roughly the same area in the
phase space. Each of the previous steps is described with
more details in Sec. 8.

The second subblock refers to the signal-processing
block, where the extracted chaotic parameters are processed
to identify the optical propagation regime of the detected
signal. The RP matrices are treated as 2-D binary images.
They are used as the input to the pattern-recognition-
processing block. There are many well-know mature tech-
niques for pattern recognition.11,12 In this analysis, matched
filters, known as phase-only filters13 �POFs� are imple-
mented and provide good discrimination capabilities. A
training set of optical signals with different optical power
levels provides different nonlinearity degrees and serves to
design the POFs for the filter bank. These filters are used to
classify the nonlinearity level by cross-correlation with the
constructed RP of the signal whose optical launched power
is to be determined. In the last step, the calculated MLE
value is combined to the output cross-correlation results as
inputs to a multilayer perceptron neural network, which
provides an identification of the nonlinearity strength of the
tested optical signal.

rk test setup.
l netwo
October 2009/Vol. 48�10�2
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Experimental Setup
igure 2 shows the experimental setup used to evaluate the
ptical propagation regime of an optical signal launched
nto a standard single-mode fiber �SSMF� �International
elecommunication Union �ITU� standard G.652�. An opti-
al Mach-Zender modulator �MZM� modulates a cw beam
roduced by a semiconductor laser at 1560.6 nm with a
seudo random binary signal �PRBS� at a bit rate of
0 Gbps. To increase the SBS threshold, an amplitude
ither of 10 kHz is applied to the optical signal with a
odulation depth of 5%. An erbium doped fiber amplifier

EDFA� is used to provide several optical launched power
evels, to stimulate different levels of SPM and SBS in
00 km of SSMF. At the link end, the optical signal is
mplified, filtered using an optical band pass filter �OBPF�
o remove the amplifier noise and then detected. A variable
ptical attenuator �VOA� is placed before the second EDFA
o control the optical signal-to-noise ratio �OSNR� for bit
rror rate �BER� measurements. The optical received power
s kept constant using a second VOA. The detected optical
ignal is sampled using a digital communication analyzer
DCA� to produce the optical discrete time-series data to be
nalyzed according to the chaos theory. Each unit of
ampled data contains a pattern of 512 bits with eight
amples per bit and is postprocessed using the chaos-based
ptical propagation regime identification algorithm. In the
xperiment, launched optical power levels of 5, 10, 12, 14,
nd 16 dBm are used.

Numerical simulations of the signal propagation are also
erformed using the split step Fourier method algorithm.14

he nonlinear propagation regime identification algorithm
s then also applied to the simulated detected signal to be
ompared to the experimental results.

Optical Propagation Regimes
SNR dependence on the launched optical power is mea-

ured to determine the different propagation regimes of the
ignal. The OSNR is measured over a bandwidth of 0.1 nm
o reach a reference BER of 1�10−7. Figure 3 shows the

ig. 3 Measured OSNR dependence on optical launched power for
ER=1�10−7 in the case of a 10-Gbps signal with and without
mplitude dither. The different optical propagation regimes regions
A, B, and C� are indicated.
ptical Engineering 105002-
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dependence of the measured OSNR with respect to the op-
tical launched power. According to the graph, three differ-
ent optical propagation regimes can be characterized for the
launched optical power:

1. Linear propagation regime (regime A, up to 11 dBm:
The required OSNR is almost constant and indepen-
dent of the launched power. Fiber nonlinearities are
negligible.

2. Medium nonlinear propagation regime (regime B,
from 11 to 15 dBm): The required OSNR decreases
with the launched power because of the eye-opening
enhancement of the detected signal due to the inter-
action between chromatic dispersion and SPM.

3. High nonlinear propagation regime (regime C,
higher than 15 dBm): the required OSNR increases
exponentially because of the strong signal distortion
induced by SBS and the enhanced strength of SPM.

The SBS threshold is measured to be around 15 dBm. The
high SBS threshold is obtained via amplitude dithering of
the signal. Without optical dithering the SBS threshold is
found to be 12 dBm, as shown in Fig 3.

5 Chaos and Time-Series Analysis

5.1 Chaotic Parameter Extraction
For each time-series data sample �the sampled detected op-
tical signal�, the phase space attractor is reconstructed after
noise reduction process step.

The phase space of the optical system can be recon-
structed from a single scalar time series x�t�, t=1,2 , . . ., N
of the sampled optical signal by using the delay-embedding
theorem.8 This theorem states that an appropriate phase
space can be reconstructed using only the original time se-
ries and its time-delayed copies expressed as

Xi = �xi,xi+�,xi+2�, . . . ,xi+�m−1��� i = 1,2, . . . ,L , �1�

where Xi is the m-dimensional state vector �known also as
the attractor8�, xi is the original sampled detected optical
signal, � is the time delay between copies, and m is the
embedding dimension. Appropriate values for � and m can
be obtained using several methods.15,16 The delay-
embedding dimension is found using the False Nearest
Neighbors �FNN� procedure15 and its optimal value is
found to be m=3. The optimal value for the time delay is
found to be �=3 by using the average mutual information
�AMI� approach.15

Figure 4 shows the reconstructed attractor from the
back-to-back detected sampled signal. The attractor exhib-
its complex trajectories, which clearly show that the optical
signal has inherently chaotic characteristics due to the non-
linear complex dynamic of the semiconductor diode laser.

The reconstructed attractors for both the experimental
and numerical signals are shown in Fig. 5 for the cases of
launched power of 5, 10, 14, and 16 dBm and show good
agreement. A multimedia animation �Video 1� is provided
for the simulated optical signal. The pattern obtained from
the experimental sample launched optical signal is used as
the input optical data pattern for the simulation of the fiber
propagation to provide a common initial attractor for ad-
equate comparison with the experimental results. Both at-
October 2009/Vol. 48�10�3
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ractors evolve in a similar manner when the launched op-
ical power level is increased. In both cases, the hole in the
eft-hand lower corner becomes closed when the optical
ower increases, while the attractor broadens and becomes
ore distorted.
The MLE is calculated by applying the method de-

cribed in Appendix A.3. Figure 6 shows the calculated
LE �extracted from the reconstructed attractor� as a func-

ion of the launched optical power after propagation into
00 km of optical fiber, corresponding to an accumulated
hromatic dispersion of 1650 ps /nm. Both experimental
nd numerical results exhibit very good agreement with a
elative error less than 2.5%. The experimental results
shown as square dots� are obtained by averaging the MLE
alues based on the analysis of 50 different time series of
he detected signal.

ig. 4 Reconstructed attractors for the experimental back to back
0 Gbps signal.

ig. 5 Reconstructed attractors for both the experimental and nu-
erical results �Video 1� in the case of a 10-Gbps signal with

aunched power of �a� and �b� 5 dBm, �c� and �d� 10 dBm, �e� and �f�
4 dBm, and �g� and �h� 16 dBm.
ptical Engineering 105002-
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The three optical propagation regimes �A, B, and C�,
defined previously, are also easily identified. In the linear
propagation regime �A�, the MLE increases slowly with the
launched optical power, while in the medium nonlinear re-
gime �B�, the MLE increasing rate is dramatically en-
hanced. In the high nonlinear propagation regime �C�, the
MLE decreases. The MLE decreasing rate is also affected
by the SBS effect, whose threshold was measured to be
around 15 dBm. Numerical calculations were also per-
formed in the case where the SBS effect is not taken into
account and show a higher decreasing rate. Indeed, the SBS
effect acts as a power limiter in the optical fiber by back-
reflecting the exceeding optical launched power during the
first few kilometers of the propagation. Therefore, the SBS
reduces the SPM strength, leading to a softening of the
MLE decreasing rate.

Since the MLE exhibits a nonmonotonic behavior, the
optical propagation regime identification cannot be based

Video 1 Evolution of reconstructed attractors derived from numeri-
cal results in the case of 10-Gbps signal with launched power from
0 to 16 dBm �MPEG, 1.6 MB�.
�URL: http://dx.doi.org/10.1117/1.3247130.1�.

Fig. 6 MLE of the 10 Gbps after propagating into 100 km of SSMF
as a function of the launched optical power; experimental and simu-
lation results. The three propagation regimes regions �A, B, and C�
are indicated.
October 2009/Vol. 48�10�4
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nly on this parameter since it can lead to an ambiguity.
herefore, the RP extracted from the phase space of the
ptical sampled signal is used to strengthen the estimation
recision. The RP of each attractor is calculated with a
utoff distance of �=0.005 �see Appendix A.4�. The RP
resents a recurrent pattern structure, which is shown in
ig. 7 in both cases of the experimental and numerical re-
ults for launched powers of 5, 12, 14, and 16 dBm. A

ig. 7 RP �1024�1024 pixels� of the experimental and numerical
0 Gbps signal �Video 2� for launched powers of �a� 5, �b� 10, �c� 14,
nd �d� 16 dBm.

Table 1 Normalized error between the RPs obta
function of the optical launched power in the cas

Launched Power 5 dBm 10 d

Relative error �%� 4.52 4.7
ptical Engineering 105002-

Downloaded from SPIE Digital Library on 08 Nov 2009 to 15
multimedia animation �Video 2� is provided for the simu-
lated signal.

The RP of the optical chaotic system has a complicated
structure. Due to the exponential divergence of nearby tra-
jectories at the phase space, the diagonal lines are discon-
tinued, and the distance between diagonal lines is not con-
stant, characterizing the multiple time scales present in
chaotic systems. Rectangular black areas �made of vertical
or horizontal lines� on the RP denote that the system state
does not change or has small perturbations over a specific
time scale. As shown in Fig. 7, as the signal launched
power changes from 5 to 16 dBm, the density of vertical
and horizontal lines increases, which can be seen as the
spread of black areas in the RP images.

The relative error between RP pictures resulting from
the experimental and numerical data is calculated using

e =

�
i

�
j

�Pr�i, j� − Ps�i, j��

�
i

�
j

�Pr�i, j��
, �2�

where Pr�i , j� and Ps�i , j� are the RP binary pictures de-
rived from the experiment and the simulation, respectively,
for identical launched power levels.

As shown in Table 1, the error is less than 5.1% for
launched power leveles between 5 and 16 dBm. This indi-
cates a good agreement between the RP images obtained
and both the experiment and the simulation.

5.2 Impact of Chromatic Dispersion and Optical
Power

Besides the impact of nonlinear effects, optical signals are
also affected by chromatic dispersion, which leads to tem-

Video 2 Evolution of recurrence plot derived from numerical results
in the case of 10-Gbps signal with launched power from 0 to 16 dBm
�MPEG, 1.6 MB�.
�URL: http://dx.doi.org/10.1117/1.3247130.2�.

ith the experimental and numerical signals as a
0 Gbps signal propagating in 100 km of SSMF.

12 dBm 14 dBm 16 dBm

5.1 4.9 4.67
ined w
e of a 1

Bm

9
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oral signal distortions. Therefore, it is expected to have an
nfluence on the chaotic parameters of the signal. Figure 8
hows numerical simulations of the evolution of the calcu-
ated average MLE value for a 10-Gbps signal as a function
f the link length of the SSMF �and therefore as function of
ifferent accumulated dispersion levels�. Three launched
ower levels �5, 13, and 16 dBm� corresponding to the
hree signal propagation regimes as defined previously in
ig. 3 �A, B, and C�, are considered. Figure 8 shows that

he average MLE value exhibits a similar behavior for the
hree launched power levels with an increasing slope up to
0 km of SSMF followed by a decreasing slope to 160 km
f SSMF. The average MLE level is therefore affected by
he combination of chromatic dispersion and nonlinear ef-
ects while keeping the same tendencies for the different
aunched powers.

In an optical network, the propagation length is not
xed. However, the residual dispersion is designed and lim-

ted to a specific range to provide optimum transmission
erformance. Therefore, we investigated numerically the
ependence of the average MLE on the link length �from
00 to 160 km� while keeping the residual dispersion level
onstant �1650 ps /nm�, as shown in Fig. 9. The same re-
idual chromatic dispersion level is achieved by adding
ispersion-compensating fiber �DCF� at the link end. The
nfluence of the link length is analyzed for the three
aunched power levels �5, 13, and 16 dBm� in the SSMF, as
efined previously. Two input power levels �−10 and
dBm� into the DCF are considered. For an input power of
10 dBm into the DCF, the average MLE value exhibits no
ependence on the link length and for each launched power
n the SSMF, it shows an equivalent behavior to the specific
ase of the fiber link of 100 km. Indeed, the nonlinear ef-
ects takes place only in the first few kilometers of the link
orresponding to the effective fiber length14 �Leff

14.4 km�, while chromatic dispersion is the only domi-
ant effect afterward. Therefore, the DCF compensates the
ink dispersion at a level making the link equivalent to a
00-km link. When the input power to the DCF is increased
o 0 dBm, the average MLE curves are identical to those of

ig. 8 Numerical dependence of the MLE on the 10-Gbps signal on
he fiber length for three launched power levels �5, 13, and 16 dBm�
n the SSMF.
ptical Engineering 105002-
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the previous case �−10 dBm� for link lengths up to 120 km
but show some deviations for higher link lengths. Indeed,
an increase of the MLE level is obtained for launched pow-
ers of 5 and 13 dBm, while a decrease of the MLE level is
obtained for launched power of 16 dBm. These deviations
at the three different launched power levels suggest that the
nonlinear level of the signal increases while propagating in
the DCF. Indeed, when increasing the link length, the DCF
length increases also to compensate the excess of chromatic
dispersion. DCFs exhibit higher nonlinear coefficients than
SSMF and nonlinear effects accumulate with the increase
of DCF length and input power into the DCF.

These simulations demonstrate that the chaotic param-
eters of the detected signal are affected by both the chro-
matic dispersion and the nonlinear effects. Furthermore, it
shows that chaos and time-series analysis is not focused on
the study of a specific link configuration only but provides
consistent results for a broad class of link configurations
having the same residual chromatic dispersion level as long
as we follow the network design rules and prevent the
DCFs from increasing of the signal nonlinear regime.

6 Propagation Regime Identification Algorithm
The procedure to identify the optical propagation regime is
composed by the following two stages:

1. Pattern recognition stage: This involves cross-
correlation between the RP derived from the phase
diagram of the optical signal and a bank of predefined
POFs.

2. Optical regime classification stage: Identification of
the optical propagation regime in this stage is based
on a classification algorithm using an artificial neural
network approach.

We demonstrated the identification algorithm performances
with the experimental time-series data collected from the
transmission of a 10-Gbps signal in a 100-km SSMF link.

Fig. 9 Numerical dependence of the MLE on the 10-Gbps signal on
the fiber length for three launched power levels �5, 13, and 16 dBm�
in the SSMF assuming a constant residual chromatic dispersion of
1650 ps/nm.
October 2009/Vol. 48�10�6
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.1 Pattern Recognition Stage
rom the RP images of a training set of time-series data
amples with known optical launched power, a POF bank
as constructed to be cross-correlated with the RP ex-

racted from the time-series optical signals with unknown
aunched power levels. The bank filter providing the cross-
orrelation result with the maximum peak value provides
n estimation of the optical launched power level of the
ignal.

Table 2 shows the normalized maximum peak statistics
f the cross-correlation results for a set of several time-
eries samples with the different POFs from the bank for
he case of a 100-km transmission link. The average value
mean� and the standard deviation �std.� of the cross-
orrelation are given for each POF in the filter bank. The
able shows that the cross-correlation procedure enables us
o estimate the level of the launched signal power and
herefore provides an estimation the optical propagation re-
ime into the fiber. For the maximum cross-correlation
alue, nonzero standard deviation values indicates that the
aunched power levels of some data series samples are in-
orrectly identified. When used as a stand-alone step for
ptical propagation regime identification, it has been found
hat a statistics over a set of 20 time-series samples is
nough to correctly determine the launched signal power
evel and therefore the optical propagation regime.

To increase the estimation accuracy, we combine this
tep with a classification stage based on artificial neural
etwork.

.2 Optical Regime Classification Stage
he cross-correlation results derived from pattern recogni-

ion stage and the calculated MLE value are used to iden-
ify the launched optical power and therefore the linear or
onlinear propagation regimes. The motivation for using a
eural network as a classification scheme is the significant
eduction of the number of time-series data samples re-
uired for a decision. Furthermore, combining the MLE
ith the cross-correlation results increases the algorithm

ccuracy.
Although many neural network architectures and con-

ection topologies exist, the proposed approach uses the
ultilayered architecture called the multilayer perceptron

able 2 Statistics of the maximum cross-correlation results of differe
ropagating in 100-km of SSMF.

Signal Power

5 dBm 10 dBm

Mean Std. Mean Std.

5 dBm 1.00 0.00 0.76 0.05

10 dBm 0.85 0.06 0.99 0.02

12 dBm 0.78 0.07 0.91 0.07

14 dBm 0.66 0.07 0.78 0.11

16 dBm 0.64 0.03 0.73 0.03
ptical Engineering 105002-
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and the generalized structure called the nonrecurrent
feed-forward.17 Multilayer neural networks solve the clas-
sification problem for nonlinear sets by employing hidden
layers, whose neurons are not directly connected to the out-
put. The additional hidden layers can be interpreted geo-
metrically as additional hyperplanes, which enhance the
separation capacity of the network. The classification prob-
lem is treated as a supervised training problem, where in
the training process, the network learns to correctly classify
a training set of known vectors.

A multilayer perceptron consisting of only two layers
was used. In the hidden layer 30 neurons were used, while
the output layer was composed by 5 neurons since there are
five classes, noted 1 to 5, each one for a launched optical
power level �5, 10, 12, 14, and 16 dBm, respectively�.

The vectors input to the neural network consisted of the
six elements: the first five elements are the maximum peak
values of cross-correlation results between the RP and pre-
defined POF and the last element is the MLE of the specific
time series �i.e., the one which was used to find the RP�. In
the case of the 100-km fiber link, after training the network
using a 100-vector set and their expected outputs �20 vec-
tors for each class�, 30 new vectors were tested. The ability
of the network to correctly classify the input vector to the
correct optical launched power is shown in Fig. 10. The
multilayer perceptron perfectly identified the signals
launched with 5, 10, 12 and 16 dBm �classes 1, 2, 3 and 5�.
For the signals launched with 14 dBm, the neural network
leads to an uncorrected identification by classing 5 vectors
from 30 test vectors as belonging to the category of the
12-dBm launched power. Note, however, that the erroneous
launched power estimation keeps the signal within the cor-
rect propagation regime identification. In comparison to the
cross-correlation stand-alone stage where 20 time series are
needed for the identification, the classification stage re-
quires only 5 time-series samples for a correct launched
power identification. More sophisticated neural networks
based on a decomposition method,18 for example, can be
used to improve the results.

7 Conclusion
We showed that the initial chaotic characteristics of an op-
tical signal are affected by the linear and nonlinear effects

rimental signals with the POF bank in the case of a 10-Gbps signal

POF Bank

12 dBm 14 dBm 16 dBm

ean Std. Mean Std. Mean Std.

.76 0.07 0.66 0.05 0.66 0.04

.93 0.06 0.85 0.04 0.82 0.04

.99 0.02 0.91 0.06 0.90 0.06

.79 0.11 0.99 0.03 0.95 0.05

.77 0.04 0.97 0.04 0.99 0.03
nt expe

M

0

0

0

0

0
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n the optical fiber. The optical launched power changed the
roperties of the original signal attractor through the non-
inear fiber effects and their interaction with chromatic dis-
ersion.

A set of experiments of a single-channel propagation at
0 Gbps in a 100-km link were been performed and con-
rmed by numerical simulations. We analyzed the largest
yapunov exponent value and the RP derived from the sig-
al attractors in the context of the separation between dif-
erent levels of nonlinearity in an optical signal. It was
hown that a multilayer neural network using the MLE,
ogether with the pattern recognition of the RP derived
rom the attractor, can be used as a classification criterion
or identifying the propagation regime of the optical signal
nd gives a precise evaluation of the signal launched power.

The proposed method based on chaos analysis provides
n interesting novel approach for signal propagation regime
dentification and can be used as monitoring technique in
ptical links.

Further works will be performed to extend this approach
o multiwavelength link transmission.

ppendix: Chaos and Time Series Analysis
he following section provides essential background
nowledge on time-series analysis applied to chaos theory
or the purpose of the optical propagation regime identifi-
ation in optical networks.

.1 Phase Space Reconstruction
he first step in analyzing a nonlinear system from time-
eries data is to reconstruct an appropriate phase space for
he system. The phase space of a system can be recon-
tructed from the scalar time series of the sampled optical
ignal, by using the delay-embedding theorem.8 This theo-
em states that one can reconstruct an appropriate phase
pace using only the original time series and its time-
elayed copies, as we recall from Eq. �1�:

ig. 10 Classification results using a two-layer multilayer percep-
ron with 30 test vectors corresponding to time-series signals with
aunched power of �a� 5, �b� 10, �c� 12, �d� 14, and �e� 16 dBm.
ptical Engineering 105002-
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Xi = �xi,xi+�,xi+2�, . . . ,xi+�m−1��� i = 1,2, . . . ,L , �1��

where Xi is the m-dimensional state vector �known also as
attractor8�, xi is the original sampled data �the detected op-
tical data�, � is the time delay between copies, and m is the
embedding dimension with L=N− �m−1��. Appropriate
values for � and m can be obtained with several
methods.15,19

In this paper, the method used to determine the sufficient
embedding dimension m is based on the chaotic attractor
property that its orbits in the phase space should not inter-
sect or overlap with each other.19 Such an intersection or
overlap may result when the attractor is embedded in a
dimension lower than the sufficient one stated by the delay-
embedding theorem.8 An algorithm that makes use of this
property to estimate the sufficient dimension m for phase
space reconstruction is developed in Ref. 19. This algo-
rithm involves the nearest neighbor search �NNS�, which is
an optimization problem for finding closest points in metric
spaces. Given a set S of points in a metric space M and a
query point q�M, the NNS enables to find the closest
point in S to q. In many cases, M is taken to be a Euclidean
space and distance is measured by Euclidean distance. In
our case, the nearest neighbor xl has to be found for each
point xi in a time-delay embedding m, denote by Ri�m�
given in Eq. �3�:

Ri�m� = 	�
n=0

m−1

�xl−n − xi−n�2
1/2

. �3�

This calculation is repeated to derive Ri�m+1� in an em-
bedding space �m+1�. If Ri�m+1��Ri�m�, then the neigh-
boring points are closed only because of the overlap due to
the lack of dimension and are not consider neighbors
�false�. Thus, the criterion for false nearest neighbors is
defined by

�xl−m − xi−m�
Ri�m�

� RT, �4�

where RT is a threshold value according to Ref. 15. It is
essential to choose optimally the second parameter �, which
is the time delay shift between the time-delayed copies of
xi. A nonoptimal � yields an attractor that is not adequate to
be used for calculating MLE. To find �, we must to carry
out a weak correlation between the delayed copies, which
conserves a small statistical dependency.15 Two main basic
approaches are widely used to calculate �. In the first ap-
proach, the first zero crossing of the xi autocorrelation func-
tion is used to yield phase space coordinates that are lin-
early independent. However, this approach does not always
adequately capture nonlinear correlations within the data.15

Thus, somewhat related but more widely used approach is
to choose � from the first minimum of the AMI function,
which evaluates the amount of information I, shared be-
tween two data sets over a range of time delays.15 Equation
�5� introduces the average mutual information between two
data sets X and Y:
October 2009/Vol. 48�10�8
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�X;Y� = �
i=1

n

�
j=1

m

P�xi,yj�I�xi,yj�

= �
i=1

n

�
j=1

m

P�xi,yj�log
P�xi,yj�

P�xi�P�yj�
. �5�

s we deal with a shifted version of the single data set xi
nd xi+�, Eq. �4� can be written as

��� = �
ij

Pij���log Pij��� − 2�
i

Pi��� , �6�

here Pi denotes the probability that xi takes a value inside
he i’th bin of a histogram, and Pij is the probability that xi
s in the bin i where xi+� is in the bin j. The first minimum
n the AMI graph is considered as the most suitable choice
or �, since this is the time when xi+� adds maximum infor-
ation to the knowledge we have from xi.
Currently, determining the proper delay time is still an

pen problem.16 There is no common agreement on which
f the two methods should be used to determine the delay
ime. In Ref. 15, there is recommendation to use the first
ero crossing of the autocorrelation function on the grounds
hat it takes into account only linear correlations of the
ata. On the other hand, the estimation of � using AMI is
eliable only for 2-D embeddings, as mentioned in Ref. 20.

In most practical applications, both methods are em-
loyed and it is found either that the estimated delay times
re similar or that the two methods yield significantly dif-
erent values of �, in which case additional constraints may
e needed, such as the construction of 2-D or 3-D phase
pace for different values of � to make the final decision.

.2 Noise Reduction
n general, any sampled signal consists of unavoidable
oise. In nonlinear systems, the important parts of the sig-
al often cover the entire spectrum, making signal separa-
ion from the noise a difficult task. Signals from chaotic
ystems exhibit broadband behavior. Therefore, eliminating
he noise by using a low-pass filter is impractical.

In this paper, the state space averaging technique21,22 is
sed for noise reduction via prediction. This prediction
ethod separates the deterministic and random components

f the time series, since only the deterministic part is pre-
ictable. If the deterministic part is the signal and the ran-
om part is the noise, a new time-noise-reduced series is
onstructed. Practically, the separation is never perfect, and
emoving the noise always distorts the signal to some ex-
ent.

The behavior of the chaotic signal can be defined as a
lear contour in the phase space with the noise separated
rom this contour by using a filtering process.21 This
ethod looks for points in the time-delayed phase space

hat are close to the present point to see how they evolve.22

he idea behind this method is that using a future data, a
ackward prediction can be done. The method described in
ef. 23, considers a window containing 2n points around a
iven point in the m-dimensional phase space denoted x�m�,
nd proceeds to average over a cluster of neighbor points.
very point in the phase space is weighted by exp�−d2 /�N

2 �,
here d is distance of each point in the m-dimensional
ptical Engineering 105002-
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embedding space from the last known value xi
�m�, and �N

2 is
the standard deviation of the noise. Equations �7� and �8�
define the new predicted value of x�m�. In general, �N

2 is
unknown and the results are sensitive to the chosen value
and should be optimized for each data set.

xi =

�
k=n

N−n

wi�k�xi

�
k=n

N−n

wi�k�

, �7�

where

wi�k� = exp	−
1

�N
2 �

j=−n

n

�xk−j − xi−j�2
 . �8�

A.3 Largest Lyapunov Exponent
Chaotic systems in general exhibit sensitive dependence on
initial conditions, therefore in the phase space, trajectories
�orbits�, which start arbitrarily near each other, separate ex-
ponentially fast. A well-known approach in the chaos
theory to measure the chaos degree is given by Lyapunov
exponents,22 which provide a direct measure of the sensi-
tive dependence on initial conditions by quantifying the
exponential rates at which neighboring orbits on an attrac-
tor diverge �or converge� as the system evolves in time.
Following the method given in Ref. 9, the MLE is calcu-
lated from the sampled optical data signals. According to
this method, the Euclidean distances �separation� between
each point x�n� and its nearest point x�l� are calculated in
the m-dimensional time-delay embedding phase space and
we average the logarithmic rate of these separation accord-
ing to

L�k� =
1

2�N − k − m + 1� �
n=m

N−k

log �
j=0

m−1

�x�l − j + k� − x�n − j

+ k��2. �9�

The result L�k� is defined as the stretching factor.9 The
stretching factor L�k� versus k yields a linear increase at the
lower k’s, followed by a flat asymptotic. This linear part of
the curve represents the exponential increase of L�k� as
more points from the orbit are included, while the flat
asymptotic region signifies the saturation effect of expo-
nential divergence due to the finite size of the attractor. The
largest Lyapunov exponent ��1� is given by Eq. �10� at
intermediate values of k �i.e., a least-squares line fit for the
slope of the first part of the curve�.

�1 = dL�k�/dk . �10�

A.4 RP
Another measure11 for analyzing chaos systems is by pro-
viding a 2-D image, the RP, derived from the matrix dis-
tances between all points in the phase space related to the
attractor, as
October 2009/Vol. 48�10�9
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�i, j� ª ��� − �Xi − X j�� , �11�

here i , j=1, . . . ,N. Eq. �11�, � � stands for a norm function
e.g., the Euclidean norm�, and ��x� is the Heaviside step
unction. The cutoff distance � defines a sphere centered at

i. When X j falls within this sphere, the state will be close
o Xi and thus R�i , j�=1.

Thus, if the point R�i , j� is marked as recurrent, the state
j belongs to the neighborhood centered in i of size �; this

eans that the state of the system at time i has some simi-
arity to the state of the system at j: the system is remaining
n nearby orbits. The binary values in R�i , j� can be simply
isualized by a matrix plot of black and white pixels.

For a stationary signal �e.g., white noise� the dependence
hould be only on the distance between i and j but not on
heir position, so that recurrence plot should appear homo-
eneous. Vertical or horizontal lines on a recurrence plot
enote that the system state does not change or changes
ery slowly in time. Diagonal lines correspond to trajecto-
ies passing in the same region as the phase space at differ-
nt times. Therefore, parallel and perpendicular lines to the
ain diagonal appear when the series presents some deter-
inism or periodicity. The length of lines parallel to the
ain diagonal of the recurrence plot indicates how fast the

rajectories diverge in phase space. In pure stochastic sys-
ems, no parallel or vertical lines appear on a recurrence
lot, as in the case of white noise signals. In general, an
ggregation of points indicates persistent nonstationary;
lack bands or areas indicate rare or extreme events.
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