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ABSTRACT

The experimental manifestations of dispersive (non-Gaussian) transient transport
in disordered solids are discussed and compared with the predictions of theoretical
treatments. The mathematical equivalence of the two theoretical approaches
based on the formalisms of continuous-time random-walk (CTRW) and generalized
multiple-trapping is demonstrated. Several transport mechanisms are discussed, viz.
extended state motion with multiple trapping, hopping and trap-controlled hopping.
Experimental studies on the chalcogenide glasses a-Se and a-As,Se, are emphasized
but results for organic solids and a-Si0, are included. There is independent
evidence that transport occurs by a hopping process for the organic systems, but no
such clear evidence exists for the inorganic solids. Nevertheless, on the basis of the
temperature behaviour of the transit time dispersion and the values of parameters
obtained from numerical analysis, we argue that hopping is also the microscopic
transport mechanism in the inorganic solids.

For a-As,Se; and a-8i0, the hopping time distribution function assumes the
algebraic form (t) ~t~1+® where 0 <« <1 and a~const. For the organic systems
and a-Se, more complicated time and temperature dependences of the distribution
function are necessary to fit the data at all temperatures. In this context the
observation of & transition from dispersive to non-dispersive transport as a function
of increasing temperature in a-Se and poly-(N-vinylcarbazole) {(PVK) is of particular
interest. The subtle role played by local morphology in generating a transit time
dispersion is demonstrated by comparing PVK and its brominated derivative
3Br-PVK.

A special section will be devoted to time-dependent electrical phenomena of
metal semiconductor surfaces. That discussion will include & description of the
experimental procedures necessary to identify the nature of contacts and their
influence on the interpretation of steady-state conductivity data.
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§ 1. INTRODUCTION

A unifying feature of disordered solids is the broad distribution of event
times that characterizes many of their time-dependent physical properties.
This feature is independent of the detailed atomic or molecular structure of
the solid and therefore gives rise to universal behaviour of a large number of
disordered solids, whether organic or inorganic. Several examples are well
known. The frequency dependence of the a.c. conductivity varies as w® where
s<1. The temperature dependence of the dielectric and elastic relaxation at
the glass transition 7', exhibits the WLF temperature dependence

Vr=1]ryexp [C|(T — T )[(Co+ T —Ty,)],

where, for most systems studied, the coefficients =, €, and C, are approximately
material-independent (see, for instance, McCrum ef al. 1967). The low-
temperature ( <1 K) acoustic and dielectric behaviour also shows some proper-
ties unique to the disordered state. The specific heat varies linearly with
temperature, exceeding the Debye 7 contribution by about a factor of 1000
{Zeller and Pohl 1971). This extra heat is attributed to the presence of another
type of distribution, that of low energy excitations. The density of these
excitation states is ~ 107 em—3, again independent of the material. Low-
temperature acoustic attenuation is very similar in all disordered solids and the
acoustic coupling constant in dielectric glasses is ~20J em—3, which means
that the elastic dipole moment associated with the low-energy excitation is
approximately independent of the material (for a recent review, see Dransfeld
and Hunklinger 1977). Similar behaviour has been reported for amorphous
metals.

Recently there has been considerable interest in a transient time-dependent
property that has been observed in time-of-flight experiments and is unique
to the presence of disorder (Pfister and Scher 1977) (the disorder can be
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generated by many types of trapping states in a crystalline material). It
was noted that a sheet of net charges injected into the solid undergoes a signi-
ficant broadening as it propagates through the bulk in the presence of an
external field. In fact, due to the wide distribution of the statistical event
times, the broadening can be so substantial that Gaussian statistics can no
longer be applied. We are presented with the interesting situation that the
distribution of event times extends into the time range characteristic of the
experiment, viz. the time necessary for an appropriate portion of the injected
carriers to complete their drift through the sample (transit time &;).

The failure of Gaussian statistics to describe the dynamics of the propagating
carrier packet in time-of-flight experiments introduces a number of novel
physical phenomena which are being observed in an increasing number of
disordered solids.

This review deals with the novel aspects of transient transport in disordered
solids. Emphasis is on the properties of a-Se and a-As,Se,, but the essential
observations for other disordered solids, in particular organic materials, are
summarized. The review does not address physical properties other than
-transient (non-steady state) phenomena since steady-state properties of amor-
phous solids have been discussed in a number of recent review articles (Mott
1977, Owen and Spear 1977, Mort and Pai 1977). We start with a non-
mathematical description of non-Gaussian transient transport (§ 2.1) before a
more rigorous mathematical treatment is given (§2.2). Emphasis is on the
general principles that govern non-Gaussian transport, which is demonstrated
using the continuous-time random-walk (CTRW) formalism. Other mathe-
matical treatments and computer simulations of non-Gaussian transport are
then reviewed. In particular, the equivalence of a generalized multiple-
trapping formalism (Noolandi 1977 b, Schmidlin 1977 a,b) and CI'RW is outlined.
The mathematical formalism is then applied to discuss three specific transport
mechanisms : extended state transport, hopping and trap-controlled hopping.

In §3.2 pertinent experimental results are surveyed and the general
features of non-Gaussian transport are illustrated for transient hole transport
in a-Se and a-As,Se;. A connection between fransient and steady-state
measurements necessitates a discussion of contact properties and transient dark
injection (§ 3.3). Several additional examples for disordered solids exhibiting
non-Gaussian transport are discussed in § 3.4.

In §4 the mathematical description of transport mechanisms is compared
with the experimental information. While the microscopic details underlying
charge transport in the amorphous chalcogenides cannot be pinned down with
certainty, it is argued that the holes in these materials propagate by a hopping
process rather than in extended states. Similar transport mechanisms are
proposed for the organic systems. For the latter materials, the experimental
evidence for a specific transport mode is much more substantial, since the
transport state can be controlled by sample preparation.

§ 2. THEORETICAL BACKGROUND
2.1. Non-mathematical description of non-Gaussian fransport
Time-of-flight experiments on a-As,Se; films demonstrate that holes,
injected by a pulse of light from the sample surface, propagate through the bulk

2p2
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in a manner that cannot be described by conventional Gaussian statistics
(Scharfe 1970, Pfister 1974, Scher and Montroll 1975, Pfister and Scher 1977 a).
That is, the dispersion o of the carrier sheet and the mean displacement / from
the illuminated surface do not obey the well-known relations ooct¥/2 and loct
which are expected from Gaussian statistics. The experimental transient hole
current traces demonstrate a significant spreading of the hole packet as it
propagates through the sample film. In fact, whereas for Gaussian statistics
o/l ~t71/2 the observed current traces indicate that the spread o and the mean
displacement ! feature the same time dependence, i.e. ofl=const. These
experimental results led to the recognition that the microscopic processes which
control hole transport in a-As,Se, must be characterized by a wide distribution
of event times (Scher and Montroll 1975, Pfister and Scher 1977 a, b). Specifi-
cally, to obtain non-Gaussian behaviour, the event time distribution has to
extend into the time range of the experimental observation determined by the
transit time ¢; which measures. the transit of an appropriate fraction of the
(fastest) injected carriers. Such broad distributions can easily be manifested
in hopping transport where trivial fluctuations of the hopping distance and/or
activation energy can introduce significant fluctuations in the nearest neighbour
hopping time due to the strong localization of the charge carrier and the large
activation energy typical for these low mobility solids (0-4-0-6 V). Similarly,
in the case of multiple trapping transport, broad release time distributions can
be obtained for small fluctuations of mobility-limiting traps of sufficient depth.
Scher and Montroll (SM) showed from first principles that in the non-Gaussian
case the distribution function (¢) which describes the probability for an event
to happen at time f after the preceding event is a slowly decaying function of time.

For hole transport in a-As,Se,, the distribution function #(t) can be approxi-
mated by the slowly varying power dependence

z/;(t) ~ t—(1+oz),

where the disorder parameter « assumes a value between zero and unity.
This distribution function sharply contrasts with the exponential time

dependence (1)~ exp (—t]7),

which is associated with a single event time 7 and is sufficient (but not necessary)
to describe the Gaussian case. As will be discussed in following sections, for
a-As,Se; o is roughly constant, ~ 0-5, for a wide range of experimental condi-
tions (temperature, pressure, sample thickness, applied field). In contrast to
this, a description of hole transport in a-Se requires a more complicated ¥(t)
which is temperature-dependent ; only at low temperatures is the power time
dependence approached (Noolandi 1977 a). The weak time dependence of
#(t) necessary to explain transient hole transport in a-As,Se;, and in a-Se at low
temperatures, clearly reflects the fact that there is no characteristic time for
the transport behaviour. The algebraic time dependence of #(f) produces
some novel behaviour of the transport properties, as a function of field, tempera-
ture, sample thickness and time, which can be checked by experiment (§ 3).
SM use the formalism of continuous-time random-walk (CTRW) to calculate
the transient current observed in a time-of-flight experiment. For the special
case of an algebraic y(t), they are able to provide a complete mathematical
description of the transport properties in terms of a single parameter o the
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value of which depends upon the detailed microscopic transport process and
has been calculated for the cases of hopping at fixed activation energy and
extended state transport with multiple-trapping by a distribution of traps (see
derivation and references in § 2.2).

Independent of the detailed transport mechanism, the general behaviour of
the experimental observables can be qualitatively predicted once the concept
of the broad event time distribution has been accepted. Indeed, although the
mathematics of the non-Gaussian statistics describing the time-evolution of the
carrier packet are not conventional, the final results are transparent and can be
qualitatively described. Before proceeding to the detailed theoretical pre-
dictions, let us consider what qualitative features are to be expected for non-
Gaussian transport.

We first recall that in the Gaussian case the time development of the injected
carrier sheet can be described in terms of the mean displacement ! from the
illuminated surface and the dispersion o which characterizes the spread of the
charge sheet about the mean (fig. 1 (a)). The current induced by the drifting
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Schematic representation of carrier propagation under Gaussian conditions. Top :
Position of representative carriers in the sample bulk at t=0 (O), t<tp (@)
and f~¢; (). Middle : Charge distribution in sample bulk at t=0, ¢ <y and
t~ty. Bottom : Current pulse in external circuit induced by charge displace-
ment. Units normalized to f; and ¢, =i(f;). Dashed line represents transient
current for lower applied bias field, i.e. longer transit time.
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Fig. 1 (b)
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Schematic representation of carrier propagation under ideal non-Gaussian conditions.
Top : Position of representative carriers in the sample bulk at =0 (O),
t<t; (@) and t~tp (*). Middle: Charge distribution in sample bulk at
t=0, t<tp and t~tp. Bottom : Current pulse in external cireuit induced by
charge displacement in linear units (left) and logarithmic units (right). Dashed
line represents transient current for lower applied bias field, i.e. longer transit
time.

charge sheet is I =equq E/L where pgq is the drift mobility and ¢ the number of
injected carriers. If one neglects deep trapping of the carriers in transit, i.e.
waEr> L, where 7 is the deep trapping lifetime, the transient current remains
constant, independent of the spreading o about the mean I. When the leading
edge of the carrier packet reaches the back electrode, the current begins to drop,
and the width of the current decay is a measure of the dispersion o at that time.
Usually the time when the peak of the charge packet strikes the back electrode
is identified with the transit time ;. Hence, for a carrier packet spreading
according to Gaussian statistics, (o/l), oct;~2, ie. the current pulse will
sharpen with increasing transit time when plotted in units of ¢y (by lowering
the external field, for instance).

In the dispersive non-Gaussian case, the carrier packet is not expected to
grow symmetrically about its mean position. Immediately after the occurrence
of the carrier-producing light flash some carriers will rapidly move out of the
generation region due to a rare succession of short event times. As time
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evolves, an increasing number of carriers will suffer an event that can immobilize
them for times of the order of the observation time, t;. Under extreme non-
Gaussian conditions, the distribution of the carrier packet grows asymmetrically
featuring a leading edge penetrating deep into the bulk, while the maximum of
the charge density moves only slowly out of the generation region (fig. 1 (b)).
For such asymmetric carrier propagation, the spread and the mean position
have the same time dependence, hence o/l=const. Thus the shape of the
transient current is independent of the transit time when plotted in units of i,
a feature which has been termed ° universality of the current shape ’.

The mean drift velocity v; of the propagating carrier packet must decrease
with time since, for sufficiently broad event time distributions, the number of
carriers immobilized for a time of the order of {; must grow. With v, time
dependent, the transit time ¢ =L/v4 must increase faster than proportional to
the sample thickness, implying a thickness-dependent drift mobility pq =L/t E.
This feature, of course, is in sharp contrast with the Gaussian case where the
drift mobility is a well-defined intrinsic quantity.

The general result of the CTRW obtained for an algebraic distribution
function ¥(f)oct~1+*) is summarized in the following equations (Scher and

Montroll 1975) —a) t<t
’ T

I({t)~ (1)

=0ta) gt
o [ 2N oxp (AT 2)
™\ 15 exp ) (

where 0 <« <1 is defined by the time dependence of the distribution function.
Following eqn. (1), the rate of current decay increases at a characteristic time
tp (‘ transit time’). At this time the rate of carrier loss at the substrate
electrode begins to dominate the rate of temporary carrier immobilization in the
bulk of the sample. Thus, {; approximately characterizes the time when the
leading edge of the carrier packet reaches the absorbing substrate. Kquation
(2) predicts the expected superlinear relationship between sample thickness and
transit time. Furthermore, the shape of the transient current I(t) and the
field and thickness dependence of the transit time {y are correlated via the
disorder parameter «. The smaller «, the stronger the (E/L)-dependence of ¢y
and the more dispersive the shape I(f). At constant temperature, « is roughly
constant, hence the current shape displays the scaling property ofl~ const.
Finally, the sum of the power exponents describing the time dependence of
I(t) at times shorter and longer than fp equals — 2 and is therefore independent
of the actual disorder and underlying transport mechanism.

Equations (1) and (2) strictly apply to dispersive transport which can be
characterized by an algebraic time dependence of the distribution function
H(t). More complicated (¢) expressions may be necessary to explain the
experimental data over broad experimental ranges. Hole transport in a-Se
constitutes an example where a complete transition from non-dispersive
Gaussian to dispersive non-Gaussian transport can be observed as a function
of decreasing temperature (Pfister 1976). In addition to non-algebraic
distribution functions, deviations from the current shapes given by eqn. (1)
are expected if the evolution of the spreading of the propagating carrier packet
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is distorted by non-uniform fields due to space-charge and surface trapping.
The latter case has recently been discussed in connection with corresponding
observations made for hole transport in a-As,Se; (Pfister and Scher 1977 a).
For the generation of the data presented in § 3, care has been taken to avoid
distortion of the current shape. For a-Se and a-As,Se, this can be approxi-
mately achieved by low levels of carrier injection (<CV), proper choice of the
electrode material, extensive dark resting and adjusted time delay between the
application of the bias field and the flash occurrence. Increasing the com-
plexity of #(¢) inevitably leads to a larger number of independent parameters
which can be extracted from the experimental current traces only by elaborate
computer fits. For the discussion of the experimental results in § 3 we restrict
ourselves to a comparison with the theoretical predictions based upon the
algebraic distribution function, i.e. eqns. (1) and (2) which contain all the
principal features underlying dispersive transient transport.

The remainder of § 2 describes the mathematical formalisms used to explain
dispersive transport. In particular, the formalism of continuous-time random-
walk and the equivalence between the CTRW and the more conventional
generalized multiple-trap formalism are emphasized. The CTRW is then
applied to discuss several transport mechanisms, viz. multiple-trapping, trap-
controlled hopping and conventional hopping.

2.2. Mathematical formalism of CTRW on a laitice
2.2.1. Introduction

In a system composed of a random distribution of molecular sites, the
displacement between neighbouring molecules p as well as their energy level
difference A varies from site to site. Although the systems considered here
are homogeneous, i.e. the average molecular concentration and average energy
difference are independent of the spatial variables (r), the degree of this site-to-
site variation is crucial for the physical properties we are investigating. These
random variations have a large effect on the spread of transition rates between
the molecules. The transition rates themselves in a real physical system can
depend on variables other than p and A, e.g. on the relative angular configura-
tion of the molecules (Slowik 1977). However complicated the form of the
transition rates and the details of the molecular charge transfer, it is assumed
that these rates depend sensitively on a number of parameters that are statisti-
cally distributed. Thus, even rather mild variations of some system para-
meters  map ’ onto a broad distribution of transition rates. This mapping is
not unique. A number of different parameter dispersions can produce very
similar transition rate distributions. There can be gross distinctions, such as
differences in temperature dependence, between various microscopic
mechanisms. This will be discussed in the following sections. The point
emphasized here is that a model based on the distribution of rates as the
primary input is the important level of description for the time-dependent
phenomena in these disordered systems.

One way to sample these rates is to observe a carrier move along some path.
The carrier encounters a series of nearest-neighbour hops or capture and release
from traps. Most of these time events will be short and a few will be long on
the time scale of observation.
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One can ‘fold’ this distribution of time events into a single probability
distribution function (t) (as introduced in the preceding section) to leave a
given site. As the i(f) represents a properly weighted statistical sampling of
the entire distribution of fluctuating rates over the time history of a path, it is
not surprising that a transport model using ¢(¢) will be non-Markoffian. A
system is Markoffian if the present value of a set of parameters, defining the
system, determines the future characterization of the system. It is non-
Markoffian in a very specific way. The only additional information needed to
specify the state of a system, besides the probability of occupancy of the sites
at time ¢, is the time of arrival at each site. No knowledge of previous states
of the system for times ¢’ <¢is needed. Thisisin contrast to a recent discussion
of the non-Markoffian properties of this transport model (Pollak 1977). In
fact this process is known technically as semi-Markoffian (Pyke 1961).

The model is a continuous-time random-walk (CTRW) on a lattice with
(t) determining the random times to leave each site, and p(s) the spatial
displacement probability at each step. The electric field E dependence, which
causes a spatial asymmetry, is included in p(s). The lattice parameter a, is
the mean hopping distance or mean distance between frapping events.

In order to further motivate this model, we can consider a system composed
of periodically reproduced large cells ; each cell containing » randomly placed
sites, where #>1. One can solve such a model exactly ; however, the (f)
becomes a n x n matrix (f). The picture of a carrier leaving a cell at various
random times is now seen simply as the different ways it hops out of the cell
from each of the n sites. While this is more graphic, the actual computational
details would be very involved. Satisfactory results would most assuredly
be obtained by introducing an effective i (tf) with a cell parameter a, that
would reproduce the use of i,;(t) with a larger cell size.

We now consider the computation of a CTRW with a more general (s, ¢)
and specialize to the factorization p(s)¢(t) below. The p(s) determines the
spatial asymmetry of the carrier displacement, e.g. it contains the electric
field dependence.

2.2.2. The mathematical model

The basic quantity in a CTRW, with time as a continuous variable, is
P(s, t|s,), the probability of the carrier being found at s at time ¢ if it started
from s, at £=0. One must allow for the possibility that the carrier could
arrive at s at an earlier time 7 <t and remain at s for at least the time interval
t— . This is done by introducing an auxiliary function : let B, (s, £)Af be the
probability for a carrier to just arrive at s between ¢ and ¢+ Al in » steps, if it
started at t=0% and s, (we will suppress the s, dependence for brevity) where

S = 8,0, + Solly + 5yds, (3)

and s; is equal to an integer, d;, the unit primitive translation vectors of the
lattice. The random walks (RW) are restricted to be on infinite lattices or on
finite lattices (V3 distinet points) with periodic boundary conditions.

The central aspect of any RW is the step-by-step generation of the proba-
bility to arrive at a given site. The probability of reaching the site s in n+1
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steps is simply related to the previous one in » steps at some other site

R, (s, t)= Z j dr f(s—s',t—1)R, (s, 7). (4)
8
where (s, t)A¢ is the probability that successive steps occur between ¢ and
t+ At and the displacement is s. The R, function is thus observed to be
the n-fold convolution of factors, i.e. it is a sum of the probabilities of all
the paths, each with cumulative » random times adding up to time {. The
relation between R and P occurs at the last step as will be shown below.
The function of immediate interest is

t)y= Z=0 R, (s,t), (5)

the probability per unit time to reach s in time ¢, independent of the number of
steps to get to s. Thus, summing eqn. (4) over = and inserting the initial
condition :
RO(S: t)= Bs,os(t_0+)a (6)
one obtains
i
R(s,t)— Y, | drf(s—s',t—7)R(s’, ) =38, (8(t — 0T). (7
g 0
The form of eqn. (7) lends itself to solution by transform techniques, which
reduces eqn. (7) to an algebraic one.
One takes the Laplace transform of eqn. (7) to obtain :

)= X d(s—s', wB(s', u)= 5,0, (8)

where

(s, u)= ;‘? dt exp (—ut) 4(s, t). (9)

The solution of eqn. (8) is accomplished with the use of Fourier transforms
(k;=2mm;[a,N, m; integer) :

=Y E(s,u)exp (—ik.s), (10)
with the result : '
- exp (itk . s)
At P LT A uy -
where
= Y (s, u) exp (—ik . s), (12)

8

which can be called the generalized structure function of the CTRW.

The final part of the solution involves the relation between P(s,¢) and
R(s, 1), r<t: ¢
P(s,t)= § R(s, 1)®(t—7)dr, (13)

0

where ®@(t) is the probability that the walker remains fixed in the time interval

[O’ t] : 1

O@#)y=1— { H(r)dr, (14)
0
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with $y= ¥ s, b). (15)

Taking the Laplace transform of eqn. (13), we obtain a simple final expression :
P(s, u)= B(s, w)[1 - (u)]/u, (16)

where E(s, u) is given in eqn. (11).

Hence, one has obtained the Laplace transform of P(s, ¢), our basic propa-
gator, as a function of A(k, u), the transform of (s, t), the single distribution
function (J(u)=A(0,u)). To calculate the current I(f) in a transient photo-
conductivity measurement, one must take the inverse Laplace transform of
eqn. (16) and obtain P(s, ). Inthislatter case, one cannot evaluate &1 P(s, u)
without specifying a definite yi(s, ). It is at this point that one uses a simpli-
fied expression for (s, £), namely

‘/j(s’ t)=P(s)‘//(t), (17)
where p(s) describes the spatial asymmetry in the step displacement. To
complete the calculation of I(t), one must include the effects on P(s, £) of the
absorbing boundary (Montroll and Scher 1973) and then equate I(¢) to the time
derivative of the spatial mean (s> of P(s,t). The results of that calculation
are given in eqns. (1) and (2).

2.3. Comparison with generalized multiple-trapping formalisms

Both Noolandi (1977 b) and Schmidlin (1977 a, b) have made a comparison
between the CTRW and multiple trapping. Their treatments differ in some
details of interpretation. We have chosen to follow the discussion by Noolandi
(1977 b) as his interpretation follows more closely the one discussed by ourselves
(Pfister and Scher 1977 a).

In a multiple-trapping problem one usually solves the following set of linear
transport equations :

op
= =9(r, )=V . f(r, 1), (18)
p(r, )=p(r, 1)+ Y, pi(r, 1), (19)
W00 e, thog— i, W, (20)

ot

where ¢(r,t) is the local photogeneration rate, and f is the flux of mobile
carriers which we can relate to the concentration of mobile carriers p(r, t),
f=puEp, where p is the mobility of the carriers. The concentration of carriers
in the sth trap is p,(r, ). The total concentration of carriers is p(x, ), defined
by eqn. (19). The summation in eqn. (19) extends over all the different kinds
of traps in the material. Each trap is characterized by a capture rate, w,,
and a release rate, W,. The trap parameters are assumed to be independent of
r, corresponding to a homogeneous trap distribution.
Equation (18) may then be written

?
__a%:g——l,LE . Vp. (21)
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In order to derive an equation for the total charge concentration, p(x, t), from
eqn. (21), it is necessary to obtain a relation between p(x, t) and p(x, £). This
can be done easily using eqn. (20) and introducing the Laplace transform
(L.T.),

[e.e]
B(r, u)= | exp (—ut) p(r, 1) dt, (22)
0
giving
uP; = po;— P; W, (23)
where we have assumed p,(r, 0)=0. Using eqn. (23), we get immediately
p=0p, (24)
where
-1
~ (£33
=<1 L . 25
According to the convolution theorem, the inverse transform of eqn. (24) is
t
p(r7 t): 5 Q(t“t’)P(r: t’) dt,) (26)
0
and using this result in eqn. (21) gives
op ! op(r, t')
—=g—ukll t—1t) ———dt’ 27
L —g—pl | Qu-t) Lo, 27)

where the électric field is in the x direction.

It was necessary to derive an equation involving only the total charge
concentration because now a direct comparison can be made with the equation
governing the time dependence of P(s,¢) in the CTRW. The total charge
concentration is proportional to P(s,t). One uses the relation between
R(3, w) and P(3, u) in eqn. (16) and inserts it into eqn. (8) which can be algebrai-
cally rearranged to yield

dP

= (&)= g $(t —2)Z[p(s— ") P(s', x) — p(s’ — s) P(s, x)] d, (28)

where
$(u) =uih(u)/[1 — H(u)]. (29)

One recognizes eqn. (28) as a generalized master equation with a relaxation
function ¢(f). An exponential (¢)= W exp (— Wt) yields $(¢) =2W5(¢), so that
eqn. (28) reduces to an ordinary master equation which is local in time. A
non-exponential (t), i.e. a distribution of rates W, leads to the non-local
dependence on time exhibited by the generalized master equation.

One now sees the physical basis for the non-local time dependence in the
multiple-trapping case. The free carrier concentration p(s,t) at time ¢ has
contributions from trapped charge which has been immobilized at an earlier
time and subsequently released. If ((u) is weakly dependent on u, then
2(s, t)ocp(s, t). This will oceur if wu< W, or t> W, 1. Thus if the time of
interest is large compared to all the release times, the multiple-trap case will
reduce to a local time dependence. If there is only one trap i =1 then ¢> W1,
otherwise there would be no multiple trapping. Hence, again we see that the
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non-locality in time is related to a distribution of rates. In the trapping case
it is a spread in the release rates W, and the spread must extend over the time
range of observation.

One more step is now needed to show the equivalence between the multiple
trapping and the CTRW with an appropriate choice of #(f). The form of the
kinetic equations for the trapping case assume r to be a continuous variable,
while the CTRW takes place on a discrete lattice. We, therefore, take the
continuum limit of the generalized master equation and, neglecting diffusion,
has been shown (Leal Ferreira 1977) to be

op(, t') .,
et (30)

op ¢
X eeg—aA -t
where a, is the lattice cell constant, and A is the asymmetry factor in the
transition probability between cells caused by the electric field. The genera-
tion term has been included explicitly in eqn. (30). Equating the transforms
of eqns. (28) and (30) (with P=p) gives

$=(pE]a,A)@, (31)
and the relation between ¢ and J in eqn. (29) leads to
f=(1+ur@-1), (32)

where = (a,A/nE) for convenience. Using eqn. (32), (f) can be calculated in
terms of the trap parameters {w;, W}, provided the quantity = is defined
independently.

2.4. Transport mechanisms
2.4.1. Multiple trapping

The formal equivalence between multiple trapping and the CTRW model
has been demonstrated. Another, and perhaps, more physically transparent
approach to the connection between trapping and the CTRW can be obtained
by avoiding the continuum limit of the generalized master equation. Instead
one makes the multiple-trap model discrete in the spatial variable. In fact,
conventional multiple trapping, into various localized states, of a carrier moving
in a band state is the simplest transport mode to understand, as the important
stochastic variable, the release rate, W,, is a single site quantity. The carrier
moves an average distance ur K before it is trapped in a particular level with a
probability ¢,. Thus, the lattice constant in the direction of the field a, is set
equal to wrE and J(t) is simply a weighted sum of the probability per unit
time to be released from one of the levels to the band,

h(t) = Z £Wiexp (= Wi). (33)
One can cast egqn. (33) into spectral form

P(t) = Odep(W)WeXp(—Wt), (34)

where

p(W)= 3 &3(W — W), (35)



760 G. Pfister and H. Scher

is an effective spectrum of release rates. The term °effective’ is used to
indicate that each W, in p(W) is weighted by ¢;, the probability the carrier
encounters the ith level.

The t(u) produced by the two approaches, (1) taking the continuum limit of
the CTRW and (2) reducing the multiple-trapping problem to a discrete lattice
case can now be shown to be the same in the asymptotic limit of many trapping
events. From eqns. (32), (25) we have

ﬁ(u)=[1+m+ufz_;u:’%]w. (36)

If we expand in powers of ur and choose

T= Zwi’ (37)

we obtain a result equal to the L.T. of eqn. (33). Thus in the small ur or
t>r limit the approaches are the same (in fact if one is not in that limit,
multiple trapping makes no sense). The sum over ¢ in eqn. (35) can now be
converted into an integral over all the variables characterizing the capture
probability and release rate. A particularly simple example will illustrate the
main point :

p(W)= 0]' de g(e)3(W — W(e))é(e), (38)
where
0, € <€
9(€)={ (39)
Nexp[—(e—ep)/kTy], e>ey
and

W(e)=vexp (—e/kT). (40)

The capture probability is assumed to be a slowly varying function of e
Using eqns. (38)—(40) we obtain

O, W> Vo

p(W)=< NrT ¢ W\ @ITo-1 (41)
——exp (ﬁ><7> ERT In (»/W)], W<wg

with vp=vexp (—ey/kT). Note that, aside from logarithmic terms,
p(WyecWet, a=T|T,. (42)

A p(W) of the form of eqn. (42) leads to a () ~¢~*~* and therefore a multiple-
trap mechanism with a g(e) as in eqn. (39) can generate dispersive transport.
An important point is that for this mechanism the «, as in eqn. (42), is lempera-
ture dependent. This T-dependent property persists with even more elaborate
trapping models, provided g(e) falls off sufficiently fast with e> ey, and is
related to the fact that the spread in W is caused by a variation in trap depth e.

This property is physically obvious because the carriers having transit
times appearing in the tail of I(t) must have experienced deeper traps than the
carriers traversing the sample earlier. Hence the relative change of ‘tail ’
transit times with temperature is more rapid and thus changes the shape of

I(t).
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One could have a trapping model where the spread in W is caused by a
change in v (eqn. (40)). However, the physical interpretation of a spectrum
of v corresponding to, e.g. one trap depth ¢ leads more naturally into a hopping
model. This consideration leads to the larger question of whether the set of
numbers {&;, W,} in eqn. (33), defining the J(¢), have the specific physical
meaning of capture and release parameters from a set of isolated trap states or
does {¢;, W;} generate a particularly convenient mathematical basis to repre-
sent a () * In other words, the () could correspond to a hopping motion
and be represented by a judicious set of {£;,, W;} parameters. The (t)
generated by Noolandi using eqn. (33) could have meaning independent of the
parameters he used to fit a-Se data (Noolandi 1977 a). The form of (¢) in
eqn. (33) facilitates the computation of the pertinent inverse Laplace trans-
forms in the CTRW, e.g. the spatial transforms y(%, £) of the propagator of the
carrier packet, is determined by a set of discrete singularities of the integrand.
One can thus rapidly generate a packet motion and the current corresponding
to a general (¢) represented by the ‘ basis set ’ in eqn. (33).

If one uses a density of states with a finite width (i.e. & maximum trap
energy), one could generate a spectrum of rates

p(W)=cW*texp (- Wi/W), (43)
which gives rise to a
B(t) = 2c( W jt) V2K [2(W $)12], (44)

where W, is a minimum release rate which corresponds to the largest trap
energy A, and K () is the modified Hankel Function. Now if the density of
states is peaked around an energy A, the transit time could vary as
trocexp (A/kT) and ¢, W, can increase with increasing 7. Using eqn. (44) one
can show that for W, <1 one has dispersive transport and for Wip> 1 non-
dispersive or Gaussian transport. In addition, if there is a temperature-
independent contribution to «, e.g. an energy dependence of », the (t) generated
by the p(W)in eqn. (43) can describe a Gaussian to non-Gaussian transition with
decreasing temperature, with a weakly 7-dependent «, and no change in the
activation energy at the transition. It is important to point out that the y(t)
in eqn. (44) has an algebraic form only for Wit<1. The SM theory is not
synonymous with the use of a () of an algebraic form. It should be em-
phasized that the form of p(W) in eqn. (43) generates a (f) that serves as a
model for a Gaussian to non-Gaussian transition. A different model for (¢)
based on the assumption of three traps has been used to fit the Gaussian to
non-Gaussian transition in a-Se (Noolandi 1977 a).

2.4.2. Hopping

Time-dependent hopping among a random distribution of sites is a difficult
but exciting theoretical problem. In modelling this problem with a CTRW
on a lattice we rely on the ergodic nature of the transport process. The carrier
in transversing the disordered medium samples a wide variety of environments
(as discussed above). The distribution of hopping times, due to the variation
in site separations and site energy fluctuations, over the entire medium is
folded into the hopping time distribution to leave a single site, (¢). Let us
define the probability ¢(s,, t) for a carrier to stay on a site s, in the disordered
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solid. The Q(s,, t) decays in time due to many parallel channels to leave the
site
_de

T (Sq, £) =Q(s¢, ¢ Z W(s;—So, €;— €)> (45)

where W(r, ¢) is the transition rate to a site displaced by r and with a change
of site energy e. We calculate the configuration average of (s, ) and express
it in spectral form,

In ®@#)=1n {Q(se, t)> = — 6‘ AW [1—exp (— Wi)]p(W), (46)

where

p(W)={ de d® g(e)p(r)S[W — W(r, o)1, (47)

p(r)d?r is the probability a site is located in a volume d® centred about r and
g(e) is the probability density of changing the site energy by e. p(W) is a
spectrum of rates and from the definition

do()
Plt) = ——— (48)
one has
= [ dW Wp(W)exp (— Wt) ©(). (49)

Thus, for a hopping problem the spectral form of (¢) is different from eqn. (34)
for the multiple-trap case. The difference lies in the fact that for the trapping
problem one can assume a supposition of independent release rates (weighted by
the probability of the carrier being in the level) because there is only one way
to leave each state. In the hopping problem, the carrier can leave the state
via parallel channels, therefore, the weighting of a specific ‘release’ rate
W exp (— Wt) must include the probability of whether the carrier is still in the
state (®(t)). Hence, the physical interpretation of {¢;, W} in eqn. (33) for a
J(t) applied to a hopping problem could be significantly modified.

One can calculate i(t) for general g(e) and p(r). If we assume a spatially
random site distribution, p(r)=N, the site density, then one obtains,

47 3¢ 3€
- 3 2
a=— NR, [(ln T)E— i In T+(kT)2:|’ (50)

where 7= W, exp (—¢/kT)t, and &, & are the first and second moments of g(e)
measured Wlth respect to e, the peak position of g(e).

One can also include percolation effects in #(¢) by introducing a spatial
cut-off in p(r).

2.4.3. Trap-controlled hopping

As discussed above, in general, one can have a carrier hopping through a
material and experiencing fluctuations in the energy level of the localized site,
as well as the dispersion in intersite separation. The fluctuation in energy
levels will tend to increase the dispersion in hopping times and add temperature
dependence to the effective «, as shown in the multiple-trap case above. If the
carrier is interacting with hopping sites corresponding to distinct sets of energy
levels, then the fluctuations can be discrete, as opposed to disorder-induced
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energy fluctuations in, e.g. impurity hopping conduction in semiconductors
(Scher and Lax 1973). For definiteness, we will consider two sets of states,
and we will designate the sites as h and t, where the density N is much larger
than N;. The carrier can hop from h to h with an activation energy A, and
from t to h with A;. If A, > A, then the typical hop time 7, from t to h is
much greater than the typical hop time 7, from h to h. We call this situation
trap-controlled hopping because there is a discrete separation between the
spectrum of 7, and 7,. Although there are two activation energies in this
hopping case, the transit time activation can range from A, to A, depending
on the relative densities N, /N;. For Ny, > N, there will be a large number of
hopping paths that do not pass through a t site ; hence, most of the fastest
carriers (which determine #;,) will not encounter a hop with A,. As N, increases,
the number of paths that do not contain a t site decreases and the activation
energy A of & tends to A,.

To recap, in hopping the nature of the dispersion, as exemplified by «, and
the displacement between events are correlated. In trap-controlled hopping
this correlation is not operative. One can independently vary the number of
events and the dispersion of event times. T'he rate-limiting steps are the release
times from a set of isolated trapping sites (density N.), while the dispersion of the
release tymes is determined by the local distribution of hopping sites (density Ny)
around the trap, as well as any fluctuation in the trap energy.

The (t) for trap-controlled hopping is calculated in the same way it is for
hopping (§ 2.4.2). However, the mean spatial displacement is determined by
the both &, NV, and the electric field X.

If E=0, the carrier diffuses away isotropically and the mean spatial
displacement between trapping events is ~ N, V3, or the mean volume swept
out by the carrier is N,=*. For finite E, the mean volume is still ~N,1;
however, the spatial displacement, d, is modified. We can define an effective
area of diffusion o(K) and

%

o(B) =5 (51)
for a finite value of . We can assume the saturation (with increasing &) value
of o(E) which is o, is proportional to N, ~2/3,

Hence, one has for the transit time

W'y tp=(Nyop)*(LJI(E)p)* exp (A[KT), (52)

where po~ N1, p=(47Ny/3)~V3, and I(¥) is the mean spatial displacement
at each hop. The main change from the ‘ pure ’ hopping case is the reduction
of the transition rate pre-factor by the factor ~ (N,/N,)V* and the reinterpreta-
tion of A, the activation energy

A=Ay +A, (53)

where A}, is a hopping energy and A; is the mean trap energy. Thus, one can
relate the observed activation energy to a trap depth, while maintaining a temperature
independent dispersion. This does not preclude a small but significant fluctua-
tion in the trap energy that adds to the dispersion.

Trap-controlled hopping has been observed in molecularly doped organic
polymers (Pfister et al. 1976). In these systems, a polymer host is doped with

AP. 2E
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molecules known to activate transport. The frap-controlled hopping process
can be verified by proper choice of dopant molecules—for hole transport the
difference of ionization potential can be identified with the trap depth—and
by proper variation of the concentration of the hopping and trapping sites, (h)
and (t), respectively.

2.5. Monte Carlo simulation

Numerical simulation represents another approach to the study of the
various transport mechanisms. In addition to the analytic studies of multiple-
trapping (Pfister and Scher 1977, Schmidlin 1977 b, Noolandi 1977 b), Silver
and Cohen (1977) have independently shown the equivalence of multiple-
trapping and CTRW using Monte Carlo techniques. They used a distribution
of trap-emptying times () oc(ty+¢)~"+* and obtained results identical to SM.
Marshall (1977) has used numerically generated I(¢) results with various trap
distributions to fit experimental a-Se data of Pfister (1976 a). The fit was less
successful with a-As,Se; data.

Earlier, Silver et al. (1971) had used numerical simulation of transient
currents to study the effect of various types of bulk trap distributions and
surface traps on the shape of I(f). An interesting aspect of these studies was
the discussion of delayed surface release, i.e. the time scale of release from
surface traps is large compared to the transit time. Therefore, in this case,
the shape of I(¢) is controlled by the spectrum of surface release times. While
this was not pertinent to the dispersive transient currents we are currently
investigating, it does have some bearing on the effects of contacts on various
transient current responses which will be considered in a later section.

More recently, Silver (1977) has been simulating hopping on a random
distribution of sites in an attempt to understand the extent of dispersion in this
transport mode. He considers a randomly generated set of sites on a plane
with the site at the origin occupied at {=0. In each configuration of sites he
determines the probability, as a function of time, that the particle will remain
within a certain radius B. The configuration average of this probability Q(f)
is then obtained for a number of different radii B=1, 2, 2-5 (the unit of length
is set equal to the mean intersite separation). For RE=1 he finds @(f) has a
very slow fall-off with ¢, Q(f)oct—* with a~0-2. He demonstrates that for
R =25 the relative shift, from the R=1 curve, along the time axis, is substan-
tial ~104-105. He correctly points out that such a large shift is incompatible
with random walk or ordinary diffusion theory. The traditional predictions
are based on the result that the width of the diffusing packet increases as /2,
However, a CTRW calculation with a (t)oct—1+*) predicts the width of the
packet only grows as ¢£-%/2 (Shlesinger 1974) in the absence of an applied bias.
A calculation based on Shlesinger’s (1974) result predicts a shift of ~ 10% for
B,/R,=2:5 and «=0-2. This is dramatically confirmed by the numerical
simulation work of Silver (1977).

The simulation work is still incomplete on the larger question of how much
dispersion can be expected for hopping where the randomness is solely due to
positional disorder.

2.6. Percolation approaches

Percolation theory has been applied to d.c. hopping transport in amorphous
solids (Ambegoakar, Halprein and Langer 1971, Pollak 1972). Most notably
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these treatments have yielded the Mott 7-1/4 law. One can obtain the 7'-1/4
law in other models of the hopping transport, e.g. that of Aspley and Hughes
(1975).

Pollak (1977) has recently addressed the percolation technique to the
time-dependent hopping problem on a random medium. He groups sites into
clusters in which all the intersite transition rates W, (r) are less than some
limiting value W(r,) and then assumes that these clusters may be connected
with a single spatial link of separation r_,. This reduces the time-dependent
problem to motion along a one-dimensional chain with a series of limiting steps
each with the same transition rate.

It is not surprising, with such a construction, that one would obtain
essentially dispersionless transport. In our opinion, while Pollack (1977) may
have implicitly pointed to some limitations in the extent of dispersion due
solely to positional disorder, his treatment of the problem, at this point, does
not substantially demonstrate this limitation. His basic conclusion is that,
for a carrier, if a site is hard to leave, it is hard to enter. Therefore, the
hopping carrier avoids all sites which are difficult to enter. This apparent
difficulty can be overcome if the hopping is among fluctuating energy levels.
Our view is that the anomalous dispersion can be caused by the relatively few
long hopping times on the time scale set by the fastest carriers. In other
words, most of the carriers must experience a wide dispersion of a statistically
small sampling of long hops in order to have non-Gaussian spreading. Of
course, the physically isolated site will be avoided but that type of site is not
necessary to cause the accumulative spreading in time that we have been
discussing.

In fig. 3 of Noolandi (1976) one observes, in the temperature range for
non-Gaussian transport, e.g. 7'=143 K, that the largest transition rate differs
from the smallest by a factor of 100. However, the ratio of encounter between
the fastest site and the slowest is comparable (~ 25). Hence, one can observe
in Noolandi’s (1976) fit to the a-Se data the need for a judicious small admixture
of the slow sites. The y(t), constructed from these parameters, shown in
fig. 1 of Noolandi (1977 b), has an algebraic time dependence ~¢—%+*) only
over a two-decade span of time which includes the transit time. This feature
re-emphasizes the fact that anomalous dispersion generated by the behaviour
of #i(t) need not have an indefinitely long algebraic tail !

It has been shown that the conductivity corresponding to the percolation
path at threshold is zero (Kirkpatrick 1973). One must go beyond threshold
where the topology of the path changes rapidly to obtain finite conductivity.
There are more interconnections and small cycle loops. The spread in hopping
times along such a path is not known at present.

Even with the rather simple path constructed by Pollack (1977), since
W ;(ry) is the rate-limiting step and one assumes that r /Ry~ 15 (cf. § 3.4), one
observes that a 309, variation in », can give rise to a spread of hopping times of
two orders of magnitude. This would be sufficient to disperse the transit
time.

In our opinion the controversy of hopping time dispersion on a spatially
random distribution of sites reduces to one of degree. The question to be

answered is a quantitative one : how much dispersion for a given value of
NR3?

2E2
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§ 3. EXPERIMENTAL RESULTS AND DISCUSSION
3.1. Sample preparation and experimental technique

All chalcogenide films described in this study were open boat evaporated
at a rate of ~1 pm/min onto aluminium substrates held approximately at the
temperature of the glass transition of the chalcogenide (~ 320 K for a-Se and
~ 450 K for a-As,Se;). The films were slowly cooled before transparent top
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(@) Transient hole current in a-As,Se;. L=58 um, T'=296 K, £=10 V/um. Pulse
illumination through semi-transparent aluminium (blocking) contact. (b)
Transient hole current in a-Se. L=79 um, T=160K, E=10 V/um. Pulse
illumination through semi-transparent gold contact. Before the application
of gold a ~1 um polycarbonate insulating layer was coated onto the selenium
sample to provide blocking contact. (c) Transient hole current in a-As,Se,
of fig. 2 (a) in units log I versus log¢. (d) Transient hole current in a-Se of
fig. 2 (b) in units log I versus log ¢.

electrodes were evaporated to obtain a sandwich cell sample structure. The
films typically were 5-100 pm thick.

Free carriers were generated by a 5 ns light flash derived from a nitrogen
laser which impinged upon the top surface of the sample. Neutral density
filters were inserted into the light beam to assure that the injected carrier
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density did not exceed ~1/10 of C'V where C is the sample capacitance (e=6-4
for a-Se and 11-2 for a-As,Se,) and V the applied voltage. In a typical experi-
ment the light flash lagged the application of the voltage step by about 1/10 of
the dielectric relaxation time (ejep). The current transients were stored in a
transient digitizer from which plots of log I versus log ¢ were generated on an
a—y recorder. The transit times were defined by the intersect of tangents
approximating log I versus log ¢ for ¢ <ty and t> ty, respectively (eqn. (1)).

3.2. Experimental manifestation of non-Gaussian and Gaussian transport
3.2.1. Current shape

At room temperatures hole transient currents in a-Se reflect a well-defined
charge transit with little dispersion. As the temperature is lowered, the shape
of the transient current becomes increasingly featureless, until below ~180 K
dispersive non-Gaussian transport is observed, which exhibits features similar to
room temperature hole transport in the binary glass a-As,Se; (Pfister 1974,
1976). Examples of non-Gaussian transient hole currents for a-As,Se; at room
temperature and a-Se at 160 K are displayed for the same field conditions in
fig. 2 (@) and fig. 2 (b), respectively. Clearly both traces deviate strongly
from the rectangular pulse shape expected for non-dispersive Gaussian trans-
port. Fig. 2 (¢) and fig. 2 (d) show the same current traces displayed in units
log I versus log¢. While in the conventional units I versus ¢ a fiduciary time
characteristic of the hole transit is difficult to identify, such a time is readily
obtained from the log I versus log ¢ traces. In accordance with the predictions
of eqn. (1), the transient current can be described by two distinet power law
time dependences where the power exponents can be obtained from the slopes
of the tangents approximating log I versus logi at early (t<tp) and late
(t>tp) times of the carrier propagation. Furthermore, the sum of the power
exponents is approximately —2, which indicates that for the chosen experi-
mental conditions the probability distribution function for both materials exhi-
bits a power law dependence (t) ~¢~(+®).  From the current traces one derives
the disorder parameters a~ 0-62 and « ~ 0-5 for a-Se and a-As,Se;, respectively.

Increasing the applied field results in a parallel shift of log I versus log?
to shorter times and larger currents, which establishes that £y is a meaningful
measure of a carrier transit. Over a wide experimental field range, the logarith-
mic current plots shift parallel, which confirms that the parameter « indeed is
insensitive to the time frame of the experiment (universality of I(¢)). This
feature is best illustrated in a plot where transient currents recorded for a wide
range of transit times are superimposed by shifting along the logarithmic axes
to produce a master plot. Examples of master plots are shown in fig. 3 (@)
for a-As,Se; at room temperature and fig. 3 (b) for holes in a-Se at 143 K.
The dashed lines in fig. 3 (@) indicate the relative spread ofl expected for
Gaussian transport for the longest and shortest transit time. The o values
obtained from the master plots are «~ 0-45 for a-As,Se; and «~0-53 for a-Se.
Master plots similar to those shown in fig. 3 have been observed for hole
transport in doped organic polymers (Mort et al. 1976, Pfister ef al. 1976,
Pfister 1977), carbazole polymers (Pfister and Griffiths 1978), the charge
transfer complex of poly(N-vinylcarbazole) : trinitrofluorenone (Seki 1974)
and amorphous Si0, (Hughes 1977, McLean et al. 1975).
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{a) Master plot for transient hole currents in a-As,Se;. L =100 pm, 30 um, 7 =296 K.
Plot was obtained by shifting along the logarithmic axes of individual traces
recorded at different bias fields. Transit times are listed in the legend.
The broken lines indicate the relative spread expected for Gaussian transport
in which case ofl~#;71/2 (after Pfister and Scher 1977 a). (b) Master plot
for transient hole currentsin a-Se. L=79 um, T=143 K. Plot was obtained
by shifting along the logarithmic axes of individual traces recorded at different
bias fields. Transit times are listed in the legend (after Pfister 1976 a).

The algebraic time dependence of the transient current I(t) given in eqn.
(1) approximates the experimental current traces in the time range ~ 0-1f; to
10¢p. At much shorter times the current typically falls off fagter than predicted
for (t)oct—+%), There are many possible explanations for this behaviour.
For one thing, at these early times of the transit the carriers drifted over a
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Fig. 4
104 T T T T
500V /75um
w—-2a73K,270ms Al-a-As,Sey=Al
297K,24ms
315K,
89ms 283K54ms
10°F 7
333K;
1.6ms
~ 353K
Y oloems
= 107+
;, 374K,007ms =
@
10'-
CV~1x10"8As )
F~2x101' PHOTONS/em? PULSE
DELAY~ 50ms
100 1 1 1 1
104 103 102 10" 1o 10
tfts
(a)
1
)
]
z
=1
o
2
v
o
_u
[
~ Ok -
o
c
-
1 123K, 0.72s. —* 14ms
- L 1
-2 -1 o) \\ 1
LOG (t/ to)

(b)

(@) Temperature dependence of transient hole current shape in a-As,Se; at 6-7 V/um.
(b) Temperature dependence of transient hole current shape in a-Se at 10 V/um.

distance much less than the sample thickness and the development of the
dispersion may be dominated by surface effects which are believed to play a
role in chalcogenides. Another possibility is that the time dependence of the
distribution function cannot be described by a simple power law with constant
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exponent over many orders of magnitude of &;. As will be discussed later, hole
transients in a-Se indeed reflect the limited time range over which y(t) oct—+a),

The shape of the transient current for a-As,Se, is remarkably stable with
respect to temperature. This is demonstrated in fig. 4 (a), where current
traces recorded over a wide range of temperatures are shown in normalized
time units. In contrast with this behaviour, the hole traces for a-Se shown in
fig. 4 (b) show a progressive increase of the dispersion as the temperature is
lowered. Both these observations will have implications on the underlying
microscopic transport mechanisms (§ 4).

3.2.2. Thickness dependence

For transient transport with Gaussian dispersion, the drift mobility is well
defined, hence the transit time increases in proportion to the sample length.
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() Thickness dependence of transit time £ for hole transport in a-As,Se, at 10 V/um
and 290 K (after Pfister and Scher 1977 a). (b) Thickness dependence of

transit time ¢y, for hole transport in a-Se at 10 V/um at various temperatures
(after Pfister 1976 a).
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This is not the case for non-Gaussian transport, where the drift velocity
decreases with time. The resulting superlinear thickness dependence of the
transit time is clearly manifested in fig. 5 (@) for hole transport in a-As,Se; at
room temperature. Using the theoretical prediction, eqn. (2), one obtains
from fig. 5 (a) o ~ 0-55 which is in remarkable agreement with the value obtained
from the shape of the transient current. For holes in a-Se the superlinear
thickness dependence is observed at lower temperatures where transport
becomes non-Gaussian (fig. 5 (b)). At higher temperatures (7'>180 K), the
transit time scales with thickness as is expected for a well-defined drift mobility.

The ramnifications of the thickness dependence clearly are that in the region
of dispersive transient transport, a conventional definition of the mobility is
not possible. Hence, any correlation of steady-state dark conductivity, o4,
and transient measurement is not obvious. Indeed, it will be shown in the
next paragraph that at low fields o, and &, display distinctly different field
dependences which further demonstrates the implications of non-Gaussian
transport.

3.2.3. Field dependence

Whereas the thickness dependence of # is rigorously determined by the
statistics of the transport process, the field dependence cannot be obtained
without further assumption. This amounts to a more detailed description of
the field dependence of the mean displacement /(%) between events. To a first
approximation one can reasonably assume loc F in which case eqn. (2) reduces to

by~ (%)W exp (AJRT). (54)

Higher order terms in the expansion of I/(E) can be introduced to obtain
stronger field dependences. For instance, assuming an exponential field
dependence of the transition probabilities between successive events in the case
of hopping transport leads to (Pfister 1977 a, b)

. ep —1/a
tp~ LV [smh <QIZ—T>] exp (A/kT), (55)
where p is the average distance between hopping site of density Ny
(p~ (3N, [47)"1/3) and A, is the activation energy at E=0. At low fields,
eBp[2kT <1, eqn. (55) approaches the earlier result, eqn. (54). At high fields,
epB[2kT > 1, hence

: E
tp~ LV exp (Ay/kT) exp ( ——g%,), (56)
o

i.e. the activation energy approximates a linear field dependence
A=Ay—epE|[2ka

which is determined by the hopping site distance and the disorder parameter .
The high field approximation in eqn. (56) is identical to a treatment of transport
in one dimension in the presence of fluctuating potential barriers (Funabashi
and Rao 1976). At low fields, however, the one-dimensional treatment predicts
tpoc B, implying field independent transport, whereas the formula based on the
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three-dimensional treatment of SM predicts the power law field dependence,
eqn. (54). Thus disorder prevents transient transport from becoming field-
independent even at the lower fields as long as (t) oct—@+*) is a good approxi-
mation to the probability distribution funetion.
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(E£/L)-dependence of transit time for hole transport in a-As,Se, at room temperature.
Range of sample thicknesses 2-2-100 um. Field range 2-10 V/um (after
Pfister and Scher 1977 a).

The low-field approximation, eqn. (54), lends itself to a direct comparison
with the experiment. That is, a plot of log i versus log (£/L) should yield a
straight line of slope 1/« which is independent of sample thickness and applied
field (low enough for eqn. (54) to hold). The result is shown in fig. 6 for
a-As,Seg at room temperature for samples ranging in thickness from 22 um to
100 um. The different data produce a master curve which has an average
slope of —1-85 yielding a~0-55. This value agrees remarkably well with
earlier estimates (fig. 5 (@), fig. 3 (a)). The linear iy versus E/L expected for
the Gaussian transport for the extreme sample thicknesses is indicated to
illustrate the clear deviation from the conventional case.
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Field dependence of hole mobility in 10 um thick a-As,Se, sample at various tempera-
tures. The lines were calculated from eqn. (55) using the parameters listed
in the figure (after Pfister 1977 b).

At higher fields the field dependence of ty becomes stronger than E-Ve,
Fig. 7 shows data for a-As,Se, over a wide field and temperature. The fitted
lines represent eqn. (55) calculated for the parameters listed in the figure.
Again the disorder parameter agrees well with earlier estimates. The applica-
tion of eqn. (55) to the hole transport data for a-As,Se; implies a hopping
mechanism, a subject which will be dealt with in § 4. The hopping distance for
various samples ranged between ~ 4-5 nm which yields a hopping site density
N, ~1018-101% cm—3,

3.2.4. Temperature dependence

Transient hole transport in a-As,Se, is thermally activated with well-defined
activation energy which at low fields has the average value ~0-62 eV (Fisher
et al. 1976, Pfister and Scher 1977). This large value indicates that the prop-
agating hole packet interacts with a density of localized state located several
tenths of an eV below the hopping transport states. The resulting transport
mechanism has been termed ° trap-controlled hopping’ (§3; Pfister et al.
1976, Pfister and Scher 1977). Early experiments on thin films of a-As,Se,
yielded an activation energy of 0-45 eV which was interpreted to indicate the
existence of a second less deep hole trapping level (Marshall and Owen 1971).
It was argued that for thin films and correspondingly short transit times
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( <0-1 ms), the holes interact only with the shallower level at ~0:45 eV and
that the superlinear thickness dependence of the transit time arises because for
thicker samples the carriers interact with progressively deeper-lying traps
(Fisher et al. 1976).
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Low field activation energy for hole transport in a-As,Se, for various sample thickness
and electrodes (after Pfister and Scher 1977 a).

We do not concur with this explanation for the observed transit time disper-
sion and associated non-Gaussian behaviour of the pulse shape and transport
parameters. While it is true that the activation energy for hole transport in
a-As,Se; drops as the evaporated films become thinner (fig. 8), the dispersion
of the pulse shape and the superlinear thickness dependence of the transit time
persists for L > 10 um, where the activation energy approaches a constant value.
It is also seen from fig. 4 (#) that the current at early times of the transient
exhibits the same temperature dependence as the post-transit time current
which would not be expected if the carriers were to interact with progressively
deeper-lying traps as they penetrate the bulk of the sample.

It is interesting to note from fig. 8 that the activation energy measured
with Au as an illuminated electrode is smaller than with Al. Dark current
injection measurements have established that Au is capable of injecting more
charge into a-As,Se; than Al (Abkowitz and Scher 1977) and the dark d.c.
level measured with Au exceeds that measured with Al by about one order of
magnitude. Since Au is more injecting than Al, it is possible that the dark
Fermi level in the former lies closer to the transport states. If the Fermi level
lies close to the 0-62 eV trapping level and the screening length is of the order
of the sample thickness, the observed variation of the activation energy with
the metal contact and sample thickness could indeed be rationalized. More
detailed studies of this effect with different contact material would be desirable.
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An interesting explanation for a thickness-dependent activation energy is
offered by the non-Gaussian transport theory. As discussed in § 2.2, the
dispersion parameter « becomes temperature-dependent if the carriers interact
with traps that are distributed in energy. Combining eqns. (54) and (50)
leads to

A~Ay+kTyIn (L[Ly) ; (57)

hence a temperature-dependent dispersion generates a thickness dependent
activation energy. For a-As,Se, da=dT|T,<0-15 for dT'~100K, hence
T,z 670 K. With these values, one estimates that the activation energy for a
100 pm thick sample is ~ 0-2 eV larger than that for a 2 um thick sample.

Fig. 9
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Temperature dependence of hole velocity in a-Se at different fields. Several repre-
sentative current traces are shown for 10 V/um (after Pfister 1976 a).

With respect to a-As,Se,, hole transport in a-Se exhibits some novel features.
As shown in fig. 4 (b), the current shape, which at room temperature is typical
of a well-defined charge drift becomes progressively dispersive as the tempera-
ture is lowered and below ~ 180K exhibits the signature characteristic of
non-Glaussian transport. Fig. 9 shows that this transition from non-
dispersive to dispersive transport is not accompanied by a change of the
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activation energy which indicates that the same basic transport mechanism
prevails over the entire temperature range (Pfister 1976). The deviation from
the Arrhenius temperature dependence at ~ 250 K is believed to be associated
with the glass transition temperature. In fact, extending the temperature
range to ~ 320 K demonstrates that the hole mobility becomes temperature-
independent above ~ 300K and does not reflect a 7—" behaviour (Abkowitz
and Pai 1978).

3.2.5. Correlations between tp(E, L) and I(¢)

The dispersion of the transient current and the disorder-induced thickness
and field dependence of the transit time are correlated via the parameter « of
eqns. (1) and (2). That correlation constitutes an important test of the non-
Gaussian transport model and can readily be studied for hole transport in a-Se.

Figure 10 shows the dispersion parameter « as a function of temperature. o,
was determined from the thickness dependence of iy (fig. 5 (b)). o; and o
were determined from the slopes of the pulse shape at times ¢ <ty and > ty,
respectively (fig. 4 (b)). In terms of these parameters, the Gaussian régime can
be characterized by oy, = o; =1 and «; > 1 while non-Gaussian transport governed
by i(f)oct=@+e) can be described by 0<ap=a;=a;<1. Figure 10 clearly
demonstrates the approach from Gaussian to non-Gaussian behaviour in terms
of these parameters in the temperature range 140-160 K. Below 140 K
ap, ~ a; ~0-55 whereas «; rapidly falls off to approach a value of ~0-15. The
temperature dependence of o« and the different behaviour of «;, «; and o
suggests that (t)’s were more complicated than originally suggested by SM
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Temperature dependence of parameter « for hole transport in a-Se determined from
thickness dependence of transit time, «;,, initial and final part of current trace,
a; and «;, respectively (after Pfister 1976 b).
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must be used to explain these transport data. Such (t)’s have recently been
obtained from a fit of a parametrized multiple-trap analysis (Noolandi 1977,
see § 4).

Unlike a-Se, for a-As,Se; a temperature variation cannot be utilized to
establish the predicted correlations. However, these correlations could be
established by comparing the power exponent obtained from the field depen-
dence of tr{=1/ug) and the average a-value, determined from the current shape,
ap=1/2(a; + ;). Again, for the non-Gaussian case where §(t)oci=(+) one
expects ag=oa;=oy,. Figures 2 (¢), 3 (a), 4 (@), 5 (a) and 6 indeed establish this
correlation. A more detailed test could be performed following the observation
that the field dependence of the transit time varied among various samples
although they were prepared under identical evaporation conditions. As is
shown in fig. 11, the variation of ay is correlated with a variation of oy.
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at room temperature. <{a;) is average a-value determined from current shape,
ag is determined from field dependence of transit time (after Pfister 1976 b).

3.3. Dark d.c. conductivity and conlacts

The field and temperature dependence of the dark d.c. conductivity in many
disordered systems can be explained by the empirical form (Marshall and
Miller 1973, Fisher et al. 1976)

Gao(T) =0y exp (— Ao/kT) exp (ea(T)E[kT). (58)

Indeed dark conductivity measurements on a-As,Se, with gold contacts confirm
this expression over a wide field and temperature range. Since a4, is obtained
from a steady-state measurement, the mobility u=o/ne is well defined and
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(after Pfister and Scher 1977 a).

should not exhibit the field and thickness dependence of the mobility derived
from the non-Gaussian transient current. In agreement with this prediction,
04, is found to be an intrinsic variable (independent of sample thickness).
Furthermore, as shown in fig. 12, the field dependence of o4, at low fields is
much weaker than the field dependence of the transient conductivity. The
different behaviour of the steady-state and transient conductivities then
constitutes a beautiful example to demonstrate the relation between the distri-
bution of statistical event times and the observation time. Interestingly, at
high fields both o4, and u4, operationally defined as Lt E, approach the same
exponential field dependence exp (ea B /kT), where the coefficient a is approxi-
mately the same for both measurements (fig. 12). Wahile this could mean that
disordered induced fluctuations are overcome in the presence of strong fields,
the field independence of o does not support this view.

An interesting consequence follows from the fact that the steady-state and
transient conductivities exhibit the same field dependence above some limiting
field (~10 V/um for a-As,Se, at room temperature). An exponential field
dependence at high fields is indeed predicted for the transient conductivity
(eqn. (55)). An exponential high field dependence is also predicted for the
steady-state conductivity from a one-dimensional analysis of carriers hopping
over fluctuating barriers (Funabashi and Rao 1976). In fact, the predicted
exponential field dependences are formally equivalent if one equates a=1/s

A.P. 2F
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where « is the disorder parameter in the SM transport theory and s is a measure
of the fluctuation of the potential barriers between localized sites. Now,
describes the time evolution of the propagating carrier packet and itself is time
dependent (eqn. (50)).

The parameter s, on the other hand, describes a steady-state situation and
therefore is time independent. It remains a challenge for future theoretical
work to explain why at high fields both transient and steady-state conduectivi-
ties approach the same field dependence with a=~1/s. The formula of
Funabashi and Rao (1976) predicts that the field dependence of the d.c.
conductivity sets in when epEs/2kT >1. Note that the deviation from the
power law field dependence of the transit time, EVa is expected to occur at a
higher field since the parameter « does not enter the argument of the sinh func-
tion of eqn. (55). This is supported by the experimental data shown in fig. 12.

Some additional remarks are appropriate in the discussion of d.c. dark
currents in highly insulating solids. The important role the contact may play
in these measurements is well appreciated when dealing with crystalline semi-
conductors but they have received little attention in characterizing the electrical
properties of disordered solids. Ideally, the contact used for d.c. measurements
should be invisible (i.e. ¢ ohmic ’) such that the d.c. current flowing through the
sample for a fixed external field is determined only by the transport parameters
of the solid. Most often ohmic contacts are difficult to realize and by using
the technique of four-probe measurements the non-ohmicity of the contacts can
be circumvented. However, for highly insulating solids or solids with appreci-
able surface conductivity, this technique.can lead to erroneous results and one
has to rely on bulk conduectivity measurements performed on thin sample films
which are provided with electrodes on both sides (sandwich cell configuration).
To be able to interpret this type of data which typically consists of a family of
plots of d.c. current versus applied field, j versus E, one first has to establish
the nature of the contact. This may be complicated by the additional problem
that the contact may change its properties as a function of time following the
application of the external field. In the following some procedures are
outlined that should enable one to distinguish among ohmic and non-ohmic
(emission-limited) contacts.

An ohmic contact must satisfy two stringent conditions. The first is
contact invisibility when the applied field is sufficiently low such that any
excess injected carrier is neutralized before it completes the transit across the
film. Under these conditions, the resident carrier density, n, is presumed to
be unperturbed by the contact and only under these conditions can a d.c.
current be interpreted as j =o kK, where o =enp. p is the microscopic mobility.
The second condition is that when the field is high enough such that any excess
injected carrier completes the transit before it is neutralized, the ohmic contact
behaves like a perfect injector with an unlimited carrier reservoir to supply a
space-charge-limited current (SCLC). The transition between the high and low
field behaviour is expected to oceur at fields for which the transit time tp=L[pE
approaches the dielectric relaxation time (Maxwell time) 7= ¢,ep, Where p is the
unperturbed bulk resistivity and e the dielectric permittivity. Taking a-As,Seq
as an example, the transition into space-charge-limited conditions is expected
for fields E 2 L/pegen~0-1V/um for a 100 pm thick sample film assuming
p~1012 Q cm, e=11-2 and p~107° cm?/V s.
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Schematic j—E characteristic and current responses to a voltage step for ohmic and
emission-limited contacts (see text).

Consider the schematical j— & plot in fig. 13, which consists of a linear part
JocE at low fields K < E and a superlinear part joc £ at fields ¥ > E,. j-FE
plots of the type shown are typically found in dark conductivity measurements
in disordered solids, of which a-As,Se,; represents a well-known example. If
the increased field dependence for E > F, is due to space-charge limitation,
the critical field E, increases in proportion to the sample thickness L. (The
transition to SCL occurs when iy~ 7= peey, i.e. By~L/ur.) Hence, changing
the sample thickness provides a straightforward method to check the ohmicity
of the contact and the origin of the superlinear field dependence (dashed
line in fig. 13). If, however, the j-E plots for different sample thicknesses
scale in units of j versus E, one has to resort to alternative techniques to
determine the properties of the contact. If the contact is ohmic and the
current for E > E, is not space-charge-limited, the j—F curve reflects a field-
dependence d.c. conductivity, o(#). If the contact is emission-limited, the
d.c. current level is determined by the rate the contact can supply carriers
and, therefore, the j—F curve represents the field dependence of the carrier
supply. Ohmic contacts can be distinguished from emission-limited contacts

A.P. 2c
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by examining the time evolution following the application of a step-voltage
(Scher ef al. 1971).

If the contact is ohmic, the time to establish current equilibrium following
the application of an external field is determined by the dielectric relaxation
time, T=¢yep, or the RC time of the electronic circuit if BC > 7 (compare the
schematic current responses in fig. 13). If for & > E, the d.c. current shows the
thickness dependence characteristic for space-charge limited currents, then the
current response following a field step E > K should exhibit the cusp well known
from transient space-charge-limited currents. However, unlike the photo-
induced transient current which approaches zero (i.e. dark level) for ¢ > ¢, the
current induced by the step field should asymptote to the space-charge-limited
dark current. If neither of the current responses illustrated in fig. 13 for ohmic
conditions is observed, the contact has to be emission-limited. For 7>ty it
takes a transit time to establish the (emission-limited) d.c. current and
therefore, as shown in fig. 13, the current response is a ramp of width Zy.
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Time-dependent behaviour of gold/phenoxy contact on a-As,Se; following the
application of the applied field at t=0. Region 1: emission-limited contact ;
Region I1: contact characteristic of gold (after Tutihasi 1976).

The contact may change its characteristics as a function of time following
the application of the step field or as a function of the field strength. Figure 14
depicts as an example the time dependence of the dark current for a-As,Se, for
the electrode configuration shown in the insert (Tutihasi 1976). The current
exhibits a distinct S-shape time dependence with a rapid rise occurring at
to~ 250 min. The characteristic time ¢, decreases with increasing field and
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temperature. A similar S-shape time-dependence is observed if the sample is
photoexcited with strongly absorbed light. The detailed examination of this
time-dependence indicates that the gold/phenoxy contact changes from an
emission-limited contact of very low injection efficiency (~blocking) to a
contact characteristic of gold on a-As,Se;,. The transition between the two
régimes occurs when the electric field across the phenoxy layer due to the
electrons trapped at the phenoxy/a-As,Se, interface is sufficiently intense to
promote hole tunnelling from gold into a-As,Se;. It is suggested that similar
electrode effects are important for the time-dependence of the photocurrent
observed in a-As,Se, and other chalcogenide glasses provided with aluminium
or SnO, contacts (Kolomiets et al. 1973).

The techniques described in fig. 13 to determine the properties of contacts
have been successfully applied in a study of the behaviour of gold on a-As,Se,
(Abkowitz and Scher 1977, Abkowitz and Scharfe 1977). Gold is most
commonly used in j—F measurements and the results have been interpreted in
terms of j =c¢ K which implies that the gold contact is ohmic (see for instance,
Hurst and Davis 1974). Paradoxically, using the same contact, time-resolved
photoinduced hole transients can be observed in a-As,Se,, which implies that the
contact exhibits non-ohmic behaviour. The hole transients can be excited
after the dark current equilibrium has been established, precluding any possi-
bility of the contact relaxing from initially blocking to finally ohmic after the
onset of the field. The step-field experiments confirm the perception obtained
from time-of-flight experiments that gold forms not an ohmic but an emission
limited contact, at least for fields where time-of-flight experiments can be
performed (2 1x 10* V/em at room temperature). The time evolution of the
current following the application of the field is initiated by the transit of a
finite charge stored at the gold contacts/a-As,Se, interface. Under steady-
state conditions, the charge reservoir at the interface becomes depleted and the
current value is determined by the rate carriers are emitted from the gold
contact (Abkowitz and Scher 1977). Interestingly this rate appears to reflect
bulk transport properties determined from time-of-flight measurements. The
correlation of the field and composition dependence of the drift mobility and
dark d.c. conductivity in a-As—Se alloys at high fields is well recognized and,
initially, led to the presumption that the dark current in these systems is
ohmic in the sense that j=enpB. The step-field experiments indicate that
the relationship between d.c. current and bulk transport parameters is more
complicated and needs further investigation.

Typical current responses following the application of a voltage step are
shown in fig. 15 for a variety of experimental conditions. The time ¢, of the
current maximum exhibits the field and temperature dependence of the transit
time #; determined from time-of-flight experiments. The various experi-
mental conditions were chosen to demonstrate that the surface charge reservoir
is depletable, depends upon the interface and can be restored by surface-
absorbed light. The detailed time-dependence of the current response at
t~1, can be accounted for by a model that convolutes a time-dependent
depletable surface charge reservoir with the stochastic (non-Gaussian) transport
properties described in § 2 (Abkowitz and Scher 1977). In addition, this model
accounts for the offset in value of the transit time determined by time-of-flight
and by the response to a step in voltage.

262
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Fig. 15
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Current response to a 500 V voltage step of a gold/a-As,Se; sandwich cell L=100 pm,
at room temperature, for various resting periods following the application of
the field. The field was on for 60 s and then off for 5 min after which trace (1)
was recorded. Following a 5 min rest the field was on for 60 s and then off
for 15 s after which trace (2) was recorded. This sequence was repeated for
30s, 60s and 120 s resting periods, trace 3, 4 and 5, respectively. The
sequence 3-5 demonstrates the relaxation of the depleted contact (2) towards
the relaxed contact (1) (after Abkowitz and Scher 1977).

3.4. Dispersive transport in disordered solids other than chalcogenide glasses
3.4.1. Organic disordered solids

Non-Gaussian transport is not specific to chalcogenide glasses but has been
observed in a broad range of disordered solids, both inorganic and organic.
The organic solids offer the enormous experimental advantages that the states
involved in transport can easily be controlled by materials preparation. Thus
hopping transport which prevails in all organic disordered materials studied so
far can readily be identified on the basis of the exponential dependence of the
transit time on the average distance between localized sites which can be
controlled chemically. Hence a study of the organic disordered solids such as
carbazole polymers (Gill 1972, Pfister and Griffiths 1978), molecularly doped
polymers (Montroll 1976, Pfister ef al. 1976, Pfister 1977 a) and organic
amorphous glasses (Gill 1974) should provide some detailed information on the
mechanisms underlying the charge transfer between localized states. In the
following a brief survey of experimental data pertinent to non-Gaussian
transport will be presented. Emphasis will be on the fact that the transport
properties of these systems and the chalcogenide glasses are very much alike,
and thus provide unique models of hopping transport against which modes of
transport proposed for the chalcogenide glasses can be compared and analysed.

Dispersive transient hole and electron transport has been observed for the
charge transfer complex of poly(N-vinylcarbazole) with trinitrofluorenone
(Gill 1972) and, like for a-As,Se,, a plot of log I versus log t showed the univer-
sality behaviour characteristic of non-Gaussian transport (Seki 1973). Similar
master plots could be produced from transient hole current in molecularly doped
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polymers (Mort ef al. 1976, Pfister 1977 a). A specific example for a solid
solution of N-isopropylcarbazole in polycarbonate is shown in fig. 16.
Transport in the disordered organic systems occurs via hopping among
localized sites associated with the dopant molecule. Most commonly charge
transport is unipolar with hole transport prevailing when the dopant molecule
is donor-like, while electron transport is more common for acceptor molecules.
On a molecular level, charge transfer can be viewed as a redox process in which
a neutral molecule transfers an electron to a neighbouring molecular cation
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Master plot for hole transient current in molecularly doped polymer N-isopropyl-
carbazole/polycarbonate NIPC/Lexan (after Mort et al. 1976).

(hole transport) or from an anion to a neighbouring neutral molecule (electron
transport). Hence, the transit time measured as a function of field, tempera-
ture, molecule concentration and kind should yield information on the
mechanisms involved in the exchange of charge between neighbouring localized
sites (dopant molecules). Figure 17 shows the concentration dependence of the
drift mobility for a number of molecularly doped systems. The exponential
decrease of the mobility with increasing average intersite distance p is taken ag
evidence that transport indeed involves hopping. The slope y of the log u
versus p plot gives a measure of the decay of the wave function outside the
transport active molecules. Hence, from the transit time data, information
on a microscopic quantity is obtained !

Similar to hole transport in a-Se a transition from Gaussian to non-Gaussian
transport is observed for hole transport in poly(N-vinylcarbazole), PVK. On
the other hand, as shown in fig. 18 hole transport in brominated PVK, where
the Br substitution occurs at the 8 or 6 position on the carbazole ring, remains
dispersive over the entire experimental temperature range in a fashion similar
to a-AsySe; (Pfister and Griffiths 1978). Hence, PVK and 3Br-PVK constitute
model systems for hopping transport which show features similar to the model
chalcogenide glasses.

The different temperature behaviour of the dispersion in the two- polymers
might be connected to subtle differences in their morphology. Unsubstituted
PVK undergoes  crystallization ’ to produce folded chain paracrystals (Griffiths
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1975). In a projection down the chain axis of these crystals, the carbazole
groups appear to have a regular trigonal symmetry about this axis. Although
the interchain carbazole symmetry is lost in amorphous PVK, the intrachain
carbazole symmetry and a considerable degree of chain ‘parallelism are probably
maintained. On the other hand, for the bromine-substituted PVK the chain
parallelism characteristic of unsubstituted PVK is not present and the polymer
does not crystallize (Griffiths et al. 1977). The random substitution of the
bromine in either the 3 or 6 position (identical in the monomer but not in the
polymer) can lead to random polarization of the carbazole group and random
steric complications which override the van der Waals interactions that lead
to chain parallelism in unbrominated PVK. This results in a considerably
greater randomness in interchain carbazole-carbazole distances and orientations
in 3Br—PVK and, furthermore, suggests a change in the intrachain carbazole
symmetry and interactions. It is proposed that the different degree of ordering
present in PVK and 3Br-PVK is reflected in the different temperature
behaviour of the dispersion of carrier propagation. Specifically, the increased
randomness among the bromine substituted carbazole groups might be the
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origin of the large relatively temperature-independent dispersion of transit hole
transport in this carbazole polymer.

Trap-controlled hopping (§2) is proposed as novel transport mechanism
that should be observable in a wide range of disordered solids. Unambiguous
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current traces are shown (after Pfister and Griffiths 1978).

evidence for this transport process has first been established for a molecularly
doped polymers. In the specific example, hole transport in the solid solutions
of polycarbonate, N-isopropyl carbazole (NIPC) and triphenylamine (TPA) was
studied. Since the ionization potential of TPA is smaller than for NIPC, it
was expected that TPA, at low concentrations, acts as a hole trap for holes
hopping among the higher occupied molecular orbitals of the NIPC. Figure 19
summarizes the results of the time-of-flight experiments conducted at room
temperature and with an applied field of 50 V/um (Pfister et al. 1976). Plotted
along the ordinate is the drift velocity L/ty, where L is the sample thickness and
tp is the transit time determined from the logarithmic current-versus-time plots.
It should be pointed out that at #; about 10-15%, of the injected carriers
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transited the sample. Plotted along the abscissa is the TPA concentration,
Nirpa, in units of molecules per cm®.  Concentrations were calculated from the
weight ratio of dopant molecule to Lexan with 1-16 g/cm? as an average density.

Two sets of samples were measured. In one set the NIPC concentration
was zero and the TPA concentration was varied. The hole velocities measured
for these samples are shown as solid circles in fig. 19. With use of the same
argument applied to establish hopping transport in NIPC-doped Lexan (Mort
et al. 1976), the strong concentration dependence of L/t shown in fig. 19 also
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confirms this transport mechanism for the TPA/Lexan system. Thus at fixed
temperature and field, the drift velocity is controlled by the overlap of the wave
functions localized at neighbouring TPA molecules with average intersite
distance pppa ~nppy 3.

In the other series of samples, Lexan was doped with NIPC molecules (with
nnrpe =1 x 102t cm~3) and the TPA concentration was varied. npp, was kept
below ~3x10%cm=3 to ensure that the average intersite distance
pxipc~ (My1pc) V3 among the NIPC molecules was not changed by the TPA
molecules. The drift-velocity results at 50 V/um are shown in fig. 19 as the
open circles. For nyp, =0 (arrow), transport occurs via hopping among NIPC



Dispersive (non-Gaussian) transient transport in disordered solids 789

molecules. For the same concentration of ~1x 10% cm~3 transport via TPA
molecules exceeds that via NIPC molecules by more than one order of magni-
tude.

The addition of TPA reduces the drift velocity from the value at npp, =0in
a manner which, for nyp, ~1018-10% cm—3, is approximately proportional to
nppa~t.  With further increasing TPA concentration, the velocity goes through
a minimum at ~2x 10% ¢cm~3 and begins to rise again, approaching, at
~ 3 x 1020 ¢cm—3, the value obtained with films of the first sample series, which
contained no NIPC. Samples with ngp, >4 x 102 cm~2 cannot be prepared
without changing the average intersite distance among NIPC molecules. Also
for total concentrations in excess of 2 x 102 em—3 crystallization effects became
apparent.

From these concentration studies alone, it is possible to explain the general
features of the observations in a relatively simple way. For nqp, =0, the hole
transport occurs via hopping among the NIPC molecules present in a fixed
concentration. As TPA molecules are introduced at low concentrations,
carriers occasionally become localized on a TPA molecule which, because its
ionization potential is lower than NIPC, acts as a trap for holes. Since the
overlap between TPA molecules is so small at these concentrations, further
drift of the charge localized on TPA must await thermal excitation back to an
NIPC molecule. The data points for npp, $2x 1020 em—3 pertain to this
mechanism. At sufficiently high TPA concentrations, the overlap among the
TPA molecules becomes sufficiently large that TPA-TPA hopping begins to
compete with the hopping among NIPC-NIPC and TPA-NIPC pairs observed
at low TPA loading. This process causes the drift velocity to rise for
fppa 2% 102 cm~3 ; and it appears from the data shown in fig. 17 that at
Appa ~ 4 x 1020 hopping among TPA completely dominates the charge transport.

TPA in low concentrations inhibits hole transport through NIPC because
its ionization potential is lower. It follows then that, in the converse case,
charge transport through TPA should not be influenced by NIPC as long as the
intersite distance (npp,)~Y/® remains constant. This is experimentally con-
firmed in fig. 19 by the coincidence of the velocities measured for nyp, ~ 4 x 1020
em~3 for both sample series and by the point identified by an asterisk which
pertains to a sample with the loadings nypc~ 2 x 102 cm—3 and #gpp, ~ 85 x 1020
em™3,

These experiments clearly demonstrate the strength of the molecularly
doped systems for the interpretation of transport data on a microscopic level.
In chalcogenide glasses, the identification of transport mechanisms has to rely
upon numerical arguments. For the organic systems, the ability to control the
densities and species of the localized state produces unambiguous evidence for
the underlying microscopic transport processes.

3.4.2. a-810,

Transient hole transport in a-Si0, provides a further interesting example
where non-dispersive and dispersive transport can be observed on the same
sample. Unlike for a-Se or PVK where the transition between the two
statistics occurs as a funetion of temperature and involves the same underlying
transport mechanism, in a-Si0, the transition can be observed as a function of
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time and involves two different transport processes, viz. the early time
‘intrinsic’ and the late time °extrinsic’ transport. Both these transport
processes are believed to be hopping (Hughes 1977). In the experiments the
charge carriers are generated in the bulk by an X-ray pulse of half width of
~3mns:. The electron mobility in a-Si0, is so high that they are swept out of
the sample bulk within a few pico-seconds and therefore the current following
the X-ray pulse at times 25 ns is due to hole motion (Hughes 1975, 1977).
Following Hughes (1977), the holes created by ionizing radiation at a random
site in the bulk of the SiO, film initially are transported by hopping among the
2p orbitals of neighbouring oxygen atoms. At these early times, the hole is
expected to form a small polaron by distorting the lattice positions of nearby
ions. The initial polaron hopping has been termed °intrinsic’ transport
process. The hole lifetime is of the order of 100 ns, after which it becomes
trapped and proceeds its transport via hopping among structural defects
(‘ extrinsic ’ transport). The extrinsic process exhibits all the features of a
non-Gaussian transport governed by a algebraic hopping time distribution
function, eqn. (54), where a =const. The dispersion depends upon the prepara-
tion of the oxide films and its corresponding « values range from ~ 0-14 (McLean
et al. 1975) to ~ 0-3 (Hughes 1977).

The hole transport dispersion in a-SiO, is remarkably stable with tempera-
ture. Figure 20 shows a composite of transient voltage responses of a metal/
Si0,/Si MOS device (McLean et al. 1977). The composite recovery curve has
been constructed from individual recovery traces measured at various tempera-
tures. The individual traces were then shifted along the temperature axis by an
amount calculated from the activation energy and the difference of experimental
and reference temperature (297 K, top axis ; 87 K bottom axis). The solid line
was caleulated using the CTRW result for () ~t~®+*) where a=const. = 0-22
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for the temperature range 87-377 K! Note also the enormous time range
over which the theoretical fit approximates the data (McLean et al. 1975).

The extrinsic hole mobility in a-SiO, is activated with ~ 0-37 ¢V and the
hopping site density is ~ 1019 cm=3. Interestingly, this value is of the same
order as the hopping site density estimated for hole transport in a~As,Se,

(§4.3).

§ 4. INTERPRETATION OF TRANSPORT MECHANISMS
4.1. Introduction

The theoretical concept of CTRW introduced in § 2.2 is generally applicable
to any microscopic transport mechanism, whether hopping transport or trans-
port in extended states. In fact, the mathematical equivalence between the
formation of CTRW (Scher and Montroll 1975) and the generalized multiple-
trapping formalism (Noolandi 1977, Schmidlin 1977) has been demonstrated in
§2.3. Hence, the analytical treatment of a specific transport mechanism will
centre on the calculation of the event time distribution function ¢(t) and specify
its dependence on the microscopic transport parameters. Even if such a
calculation were possible, the experimental verification of the assumed micro-
scopic transport mechanism is exceedingly difficult and often ambiguous if
the transit time dispersion and its temperature dependence are the only
experimental inputs. This is the situation for amorphous chalcogenides, and
the identification of the underlying mechanism of charge transport remains
somewhat ambiguous. We believe that transport in these systems, a-Se and
a-As,Se,, occurs via a hopping process and we provide the reasoning in the next
paragraphs.

For doped organic polymers the situation is much clearer, since the kind and
density of the transport states can be changed by materials preparation in a
controlled and predictable manner. The dependence of the transit time upon
the concentration of the dopant molecules clearly establishes hopping as
underlying transport mechanism (fig. 17). Hence, these systems provide
unique models for the study of dispersive and non-dispersive (fig. 18) hopping
transport in disordered solids. Hopping in disordered systems is not synony-
mous with dispersive transport. The transition to non-dispersive transport at
higher temperatures observed in PVK and the relative temperature insensitivity
of the transit time dispersion in the related carbazole polymer 3Br—PVK (fig. 18)
are clear evidence that the observation of a transit time dispersion depends on
subtle differences in sample morphology, viz. the microscopic transport
parameters.

4.2. Doped polymers

The key observable parameters of transport in doped polymers are y, the
empirical quantity describing the localization of the charge at the hopping site
(fig. 17), and the activation energy A, the energy required to transfer the charge
carrier between neighbouring localized sites. At room temperature and
50 V/um applied field, these parameters have the typical values of y~1-2x 108
em~'and A~0-3-0-6 eV. No calculation of the overlap integral and activation
energy associated with transfer of charge between localized sites is available for
the doped organic system.
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It is generally found that the overlap term, exp (—yp), depends upon
temperature and field (Pfister 1977 a) and that the activation energy depends on
field (Gill 1972, Pfister 1977 a) and hopping distance (Pfister 1977 a). In
dealing with these issues, one has to take into account that the picture of a
charge transfer between localized sites is very simplified. In particular,
positional disorder (hopping site distances) and a distribution of energy levels
(activation energy) cannot obviously be separated. The hopping distance
calculated from the dopant concentration assuming point-like molecules is
indeed of the same order as the geometrical dimensions of the molecules them-
selves. Hence, the relative orientation of the molecules becomes an important
factor for the transfer of the charge carrier, since the overlap term is extremely
sensitive to the local morphology. A calculation of the overlap integral
between the highest occupied molecular orbital of neighbouring NIPC molecules
in vacuum shows that—as a function of the relative orientation at fixed distance
between the centres of mass—this quantity varies by about seven orders of
magnitude (Slowik and Chen 1977).

The strong dependence of the overlap on the relative orientation of neigh-
bouring molecules may have some interesting consequences regarding the
interpretation of the transport activation energy.

Given the fact that the overlap term can be maximized by relative rota-
tional motion of neighbouring molecules, a carrier may await such an event
before hopping to its neighbour. In such a case the electronic transport
activation energy contains a term that describes the activation over rotational
or librational barriers of pertinent groups of the dopant molecule. The
observation of a temperature-dependent overlap term might indeed indicate
that molecular motion plays an important role in electronic transport. The
observation of trap-controlled hopping in mixed doped polymer systems (fig. 19)
suggests that traps provide an additional source for the activation energy.
Specifically, impurities with an ionization potential less than that of the dopant
molecule may constitute traps for hole transport. Hence, the activation
energy is expected to involve four terms, namely, Ay, Ag, Ag, A, A, is the
polaron binding energy which includes polarization of the polymer host matrix,
A4 is the site-to-site fluctuation of the electronic transport levels, A, is the
energy difference between the transport levels of trapping molecules and
hopping states and A, is the activation energy for rotational or librational
molecular motion.

The temperature dependence of the hole hopping mobility and transit time
dispersion in poly(N-vinylearbazole) is qualitatively very similar to that for
hole transport in a-Se (figs. 9 and 18). Of particular interest is the observation
of a transition from dispersive to non-dispersive transport as the temperature is
raised which is not associated with a detectable change of the activation energy.
Inspection of the current traces as a function of temperature shows that the
hopping time distribution function (¢) can be approximated by the power time
dependence {~0+%), over a temperature range of ~315-355K. At lower
temperatures o; <a; whereas at higher temperatures o;>1 and o;—1 (Pfister
and Criffiths 1978). With respect to PVK, the dispersion of hole transport
for the bromine-substituted polymer, 3Br-PVK, is much less temperature
sensitive and remains dispersive at the highest experimental temperature. In
this case {f)~1~0+®) is a good approximation in the temperature range
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345-395 K. At lower temperatures a; <«; and at higher temperatures o> 1
and o;—0-8 (Pfister and Griffiths 1978).

The data for hole hopping transport in PVK and 3Br-PVK thus demonstrate
that the Scher-Montroll approximation of a hopping time distribution
P(t) ~£0+*) is a good approximation over some temperature range, but that
more complicated (t)’s are necessary to account for the data for all tempera-
tures. The temperature dependence of the dispersion indicates that fluctua-
tions of the various activation energies involved in charge transport (A, Ay, A,)
play an important role in the observed transit time dispersion. Finally, the
different temperature dependence of the dispersion of hole hopping in the two
closely related polymers demonstrates the subtle role played by sample
morphology (§ 3.4).

4.3. a-As,Se,

The key features of transient hole transport in a-As,Se, are its broad
non-Gaussian dispersion which is strikingly temperature insensitive (fig. 4 (a))
and its high activation energy (~0-6 eV). Over the experimental temperatures
and field range, the algebraic time dependence of #(t) proposed by Scher and
Montroll (1975), yi(t) ~t~+%), provides a good consistent description for all
experimental results.

The transport data for a-As,Se; are best interpreted in terms of a trap-
controlled hopping mechanism since, on the one hand, the constancy of the
dispersion with respect to temperature cannot be reconciled with a multiple
trapping model that has the trap depth as dominant random variable that
produces all of the dispersion and, on the other hand, the activation energy is
too large for conventional hopping transport. The analysis of hole transport in
a-As,Se; in terms of a generalized multiple-trapping model leads to the con-
clusion that both hopping and extended state motion are compatible with the
experimental results but the most plausible view is (trap-controlled) hopping
transport (Schmidlin 1977 b).

We propose that holes in a-As,Se; hop through a density of localized
transport states Ny, and achieve local thermal equilibrium with a trapping
density N < N,. The activation energy is associated with the hop from the
trapping site (t) to the transport site (h) and the dispersion of the carrier packet
is dominated by the randomness of the (t)—(h) site separation (which is the same
as that of the (h)—(h) sites). It is likely that fluctuating trap energy levels also
contribute to the transit time dispersion. A consistent interpretation of the
numerics yields for a-As,Se;: N, <10Ycm=3, N,210% cm—2 (Pfister and
Scher 1977 a).

The trapping states in the trap-controlled hopping process might be
associated with the recently proposed °intrinsic’ gap states in chalcogenide
glasses (Mott et al. 1975, Kastner et al. 1976). It is argued that it is energeti-
cally favourable for the lowest energy neutral defects to pair-wise swap
electrons, resulting in the reaction 2D—D*4D-. This reaction is proposed
to be exothermic due to strong electron—phonon coupling that is evident from
the enormous Stokes shift of the photoluminescence (Street 1976). The charged
defect states are spin-paired and hence could provide an explanation for the
absence of E.S.R. in chalcogenide glasses. Kastner et al. (1976) described the
formation of charged defects in terms of valence alternation. The lowest
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energy defects, threefold coordinated chalcogen atoms (C,?), undergo a bond
alternation to form a valence alternation pair in which one of the chalcogen
atoms is singly coordinated negatively charged (C,~) and the other is threefold
coordinated positively charged (C;+). These charged defect models have gone
a long way to explaining luminescence (Street 1976, Street et al. 1974), non-
radiative recombination and photoinduced structural changes (Street 1977)
and photoinduced E.S.R. and midgap absorption (Bishop et al. 1975).
Applying this model to the proposed trap-controlled hopping transport, one
would predict that the holes hop through a set of localized states and interact
with the higher lying D~ (or C,7)level. The occupation of the D—level induces
a rearrangement of the polarization of the environment of the trap which results
in an upwards shift in energy to the D level. The net effect is that the carrier
becomes trapped at the depth A, of the D~ level but the reactivation into the
transport states requires the additional energy such that the observed activa-
tion energy is composed of at least two terms A= A; + A(D-D~). An estimated
upper limit of A(D-D~)is ~0-3 eV which yields A, ~0-3 eV. This value for A,
is not unreasonable.

No correlation between electronic transport, photoinduced E.S.R. and
absorption, all measurements that probe the density of gap states, has been
reported to date. According to the Mott and Street model, such a correlation
should exist since it associates the luminescence centre and the hole trap with
the same defect D~ (or C;~). However, current measurements indicate that
such a correlation is doubtful. By sample preparation techniques or doping,
the drift mobility in a-As,Se; can be changed by more than three orders of
magnitude, but neither the intensity of the photoluminescence nor photoinduced
E.S.R. changes in any correlated manner (Pfister and Taylor ef al. 1978).
For instance, alloying a-As,Se, with AsI; (0-5 wt. 9, I) improves the hole
mobility by at least a factor of 20, while alloying with 0-1 wt. 9, thallium
reduces the mobility by more than two decades (Pfister et al. 1977, Pfister and
Taylor et al. 1978). In both cases no change of the transport activation
energy or transit time dispersion was observed. In terms of the proposed
model, one would argue that iodine reduces and thallium enhances the nega-
tively charged density, D~ (or C;~) as a result of charge compensation. That
these density changes are not manifested in the spectroscopic measurements
indicates either that the luminescence centre is not charged, as has been pre-
sumed (Street 1976) (or at least is not the D~) or that the law of mass action
cannot be applied in its proposed form. Certainly the defect chemistry of
chalcogenide glasses is far from being understood and many more experiments
on chemically modified glasses are necessary to obtain a more fundamental
understanding of the gap states.

4.4. a-Se

The activation energy for hole transport in a-Se is ~0-27 eV at 10 V/um,
which remains constant throughout the entire temperature range of the
transition and down to at least ~120 K (fig. 9). It is possible that at tempera-
tures higher than 240 K, a transition to a lower activation energy is indicated
in the log L/t versus 1/T plot (fig. 9) but, due to the overall deviation from the
Arrhenius temperature dependence in the neighbourhood of the glass transition,
the experimental data cannot establish such a transition with certainty. The
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observation of a transition from Gaussian to non-Gaussian transport at ~ 180 K
and the strikingly well defined single activation energy below ~ 240 K poses
some restrictions on the choice of microscopic transport models. Certainly
conventional hopping with temperature-independent hopping density and
fixed hopping energy can be ruled out. Also, one would expect that a multiple
trapping model using a non-peaked density of gap states would contradict the
observed constancy of the activation energy.

Apart from these minor limitations, all transport mechanisms discussed in
§ 2.4 are, in principle, compatible with the experimental results. A detailed
computer analysis using the multiple-trap formulation showed that the entire
temperature and thickness dependence of the hole current shape and transit
time can be explained in terms of three traps with different but temperature-
dependent capture cross-section and release rate (Noolandi 1977 a). Within
experimental error, the depth of all three trapsis ~0-3eV. Obviously, such a
trap distribution needs some further physical justification. In any case, these
results suggest that the distribution of release rates from the traps arises
entirely from variations of the pre-exponential factor which strongly supports
trap-controlled hopping as transport mechanism. Hence the prefactors of the
release rates can be interpreted as representing the distribution of the overlap
integrals (hopping site distances).

§ 5. CONCLUDING REMARKS

There is unambiguous experimental evidence that, for a large number of
disordered solids, transient electronic transport as observed in time-of-flight
measurements reflects the existence of a significant fluctuation of microscopic
event times. In fact, the results shown for transient hole transport in a-Se
and carbazole polymers suggest that under appropriate experimental conditions,
most likely determined by an upper value of the temperature, all disordered
solids will exhibit a broad dispersion of carrier transit times. These features
are independent of the transport mechanism and simply reflect the fact that the
microscopic transport events are characterized by exponentials exp () where
the random variable x (for instance A/kT, yp) is much larger than unity, such
that trivial fluctuations in x induce large fluctuations in the event times. The
resulting event time distribution can be sufficiently broad that the experimental
transit time becomes part of the distribution. Under these circumstances, the
broadening of the propagating carrier packet—injected into the solid, for
instance, by a pulse of strongly absorbed light—mno longer can be described in
terms of Gaussian statistical spreading.

On the experimental side, there appears little dispute that the time-of-flight
current pulses exhibit features incompatible with a conventional statistical
analysis that assumes Gaussian broadening of the carrier packet. There might
be some disagreement about the actual pulse shapes observed in various
samples, as has recently been pointed out by Godson and Hirsch (1977) for the
case of electron transport in PVK : TNF, but we do not feel that such observa-
tions challenge the overall validity of the concept of non-Gaussian transport
put forward in this review. It is well known that transient pulse shapes are
distorted by the presence of surface traps and non-uniform fields, e.g. as shown
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in Pfister and Scher (1977 a). Furthermore one has to bear in mind that the
power law time dependence assumed for the event time distribution function
() presents only one example of non-Gaussian transport. Other distribution
functions leading to different time dependences of the transient current can be
chosen to model non-Gaussian behaviour. The selected i(¢) represents an ideal
case since the equations of a CTRW based on this distribution function can be
analytically solved.

The observation of non-Gaussian transport itself does not specify the
transport mechanism. While for the organic material transport undoubtedly
oceurs by hopping, the issue of whether holes in the inorganic solids proceed in
extended states or in a hopping channel is not resolved and, until appropriate
materials modification is available, can very likely not be solved to everybody’s
satisfaction. Indeed, models of extended state-transport have been proposed
that explain the overall features of transient hole transport in chalcogenide
glasses as well as does hopping transport (Fisher et al. 1976, Marshall 1977).
We believe, however, that the values of the parameters obtained from these
analyses are more compatible with hopping transport (Pfister and Scher
1977 a, Noolandi 1977 a, Schmidlin 1977 b).

The framework of CTRW was initially introduced to give a model for
hopping transport and for simplicity of discussion and calculation. SM chose
to deal with a fixed hopping energy in a random network. It is apparent
that this framework is more general and can model any kind of transport
mechanism. This has been conclusively demonstrated by the mathematical
equivalence between the multiple-trapping formalism and CTRW (Schmidlin
1977 a, b, Noolandi 1977 b).

There is general agreement that any kind of transport in the presence of
sufficiently fluctuating energy levels can give rise to non-Gaussian behaviour
and that the associated distribution function is temperature dependent—as
observed for holes in a-Se or PVK. However, the issue has recently been
raised as to whether hopping transport through random sites but fixed activa-
tion energy is compatible with non-Gaussian statistics, implying that under
these circumstances transport is always well defined (Pollak 1977, Silver
1977). Theoretically, the situation is unclear since an analytically satisfactory
proof of these arguments has not been produced so far (cf. §2.6). Experi-
mentally one would look for a clearly defined hopping system which shows non-
Gaussian transport with a temperature-independent dispersion—at least over a
sufficiently wide temperature range that fluctuating energy levels can be
safely excluded. Towever, this approach has been unsuccessful so far, since all
systems undergo a transition to non-dispersive behaviour with increasing
temperature. Hence for all known hopping systems, fluctuating energy levels
have to be considered in the mathematical analysis. It is indeed suggested
that, at least for disordered organic solids where the separation and spatial
dimension of the hopping sites are comparable, disorder in hopping distance
and activation energy cannot be separated.

In our opinion only the most global features of dispersive non-Gaussian
transport have been covered by experiment and theory. The next improve-
ments will have to deal with issues more microscopic in origin. Dispersive
current shapes for well-defined systems that exhibit hopping or extended-state
transport will have to be compared with experimental dependences predicted
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from theories that are built on detailed microscopic models. Thus non-
Gaussian transport is expected to remain an area of active interest which
continues to offer a challenge to both theory and experimental work.
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