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A B S T R A C T  

The  e x p e r i m e n t a l  m a n i f e s t a t i o n s  of d ispers ive  (non-Gauss ian)  t r an s i en t  t r an spo r t  
in d i sordered  solids a re  d iscussed  a n d  c o m p a r e d  w i th  the  pred ic t ions  of theore t ica l  
t r e a t m e n t s .  The  m a t h e m a t i c a l  equ iva lence  of t he  two theoret ica l  app roaches  
based  on  t h e  fo rma l i sms  of c o n t i n u o u s - t i m e  r a n d o m - w a l k  (CTRW)  a n d  general ized 
mu l t i p l e - t r app ing  is d e m o n s t r a t e d .  Several  t r an spo r t  m e c h a n i s m s  are  discussed,  viz. 
e x t e n d e d  s t a t e  m o t i o n  wi th  mul t ip l e  t r app ing ,  h o p p i n g  a n d  t rap-cont ro l led  hopping .  
E x p e r i m e n t a l  s tud ies  on  the  ehalcogenide  glasses a-Se a n d  a-A%Se 3 are emphas i zed  
b u t  r e su l t s  for organic  solids a n d  a-SiO 2 are inc luded.  The re  is i n d e p e n d e n t  
evidence t h a t  t r a n s p o r t  occurs  b y  a h o p p i n g  process  for the  organic  sy s t ems ,  bu t  no  
such  clear ev idence  ex i s t s  for t h e  inorganic  solids. Never the less ,  on  t he  bas is  of t h e  
t e m p e r a t u r e  b e h a v i o u r  of the  t r ans i t  t ime  dispers ion a n d  t he  va lues  of p a r a m e t e r s  
ob ta ined  f r o m  n u m e r i c a l  analys is ,  we a r g ue  t h a t  h o p p i n g  is also t h e  microscopic  
t r a n s p o r t  m e c h a n i s m  in the  inorganic  solids. 

For  a-As2S % a n d  a-SiO 2 t h e  h o p p i n g  t ime  d i s t r i bu t ion  func t ion  a s s u m e s  t h e  
algebraic  fo rm ¢(t) ~ t -(1+~1 where  0 < a < 1 a n d  a ~ const .  For  the  organic  s y s t e m s  
a n d  a-So, m o r e  compl ica ted  t ime  a n d  t e m p e r a t u r e  dependences  of t he  d i s t r ibu t ion  
func t ion  are  necessa ry  to fit  t he  d a t a  a t  all t e m p e r a t u r e s .  I n  th i s  con tex t  t he  
obse rva t ion  of a t r ans i t i on  f rom dispers ive  to non-d i spers ive  t r a n s p o r t  as a func t ion  
of increas ing  t e m p e r a t u r e  in a-Se a n d  poly- (N-vinylcarbazole)  (PVK)  is of par t i cu la r  
in teres t .  T h e  sub t le  role p layed  b y  local m o r p h o l o g y  in gene ra t i ng  a t r an s i t  t ime  
dispers ion is d e m o n s t r a t e d  b y  c o m p a r i n g  P V K  a n d  i ts  b r o m i n a t e d  der iva t ive  
3 B r - P V K .  

A special  sec t ion will be devo ted  to t i m e - d e p e n d e n t  electrical  p h e n o m e n a  of 
m e t a l  s e m i c o n d u c t o r  surfaces .  T h a t  d i scuss ion  will inc lude  a desc r ip t ion  of t h e  
e x p e r i m e n t a l  p rocedures  necessa ry  to iden t i fy  the  n a t u r e  of con tac t s  a n d  the i r  
inf luence on  t h e  i n t e rp re t a t i on  of s t e a d y - s t a t e  conduc t i v i t y  da ta .  
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§ 1. INTRODUCTION 

A unifying fea ture  of disordered solids is the  b road  d is t r ibut ion  of even t  
t imes t h a t  character izes  m a n y  of the i r  t ime -dependen t  physical  propert ies .  
This  fea ture  is independen t  of the  deta i led  a tomic  or molecular  s t ruc tu re  of 
the  solid and  therefore gives rise to universa l  behav iou r  of a large n u m b e r  of 
disordered solids, whe ther  organic or inorganic.  Several  examples  are well 
known.  The  f requency  dependence  of the  a.c. conduc t iv i ty  var ies  as oJ s where 
s ~< 1. The  t e m p e r a t u r e  dependence  of the  dielectric and  elastic r e l axa t ion  a t  
the  glass t rans i t ion  Tg exhibi ts  the  W L F  t e m p e r a t u r e  dependence  

l / r =  1/~ 0 exp  [C~(T-  Tg)/(C2+ T -  Tg)], 

where,  for mos t  sys tems  studied,  the  coefficients %, C 1 and  C 2 are a p p r o x i m a t e l y  
mate r i a l - independen t  (see, for instance,  McCrum et al. 1967). The  low- 
t e m p e r a t u r e  ( ~< 1 K )  acoust ic  and  dielectric behav iou r  also shows some proper-  
t ies unique to the  disordered state.  The  specific hea t  var ies  l inear ly  wi th  
t empe ra tu r e ,  exceeding the  Debye  T S cont r ibu t ion  by  a b o u t  a fac tor  of i000 
(Zeller and  Pohl  1971). This ex t r a  hea t  is a t t r i b u t e d  to the  presence of ano ther  
t y p e  of dis t r ibut ion,  t h a t  of low energy  exci tat ions.  The  dens i ty  of these 
exc i ta t ion  s ta tes  is ~ 10 ~ cm -a, again  independen t  of the  mater ia l .  Low- 
t e m p e r a t u r e  acoust ic  a t t e n u a t i o n  is ve ry  similar  in all d isordered solids and  the  
acoust ic  coupling cons tan t  in dielectric glasses is ~ 20 J cm -a, which means  
t h a t  the  elastic dipole m o m e n t  associa ted  with  the  low-energy exc i ta t ion  is 
a p p r o x i m a t e l y  independen t  of the  ma te r i a l  (for a recent  review, see Dransfe ld  
and  Hunk l inge r  1977). Similar  behav iou r  has been r epor t ed  for a m o r p h o u s  
metals .  

Recen t ly  there  has  been considerable in teres t  in a t r ans ien t  t ime -dependen t  
p r o p e r t y  t h a t  has been  observed  in t ime-of-f l ight  exper imen t s  and  is unique  
to  the  presence of disorder (Pfister and  Scher 1977) (the disorder  can be 
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generated by  many types of trapping states in a crystalline material). I t  
was noted that  a sheet of net charges injected into the solid undergoes a signi- 
ficant broadening as it propagates through the bulk in the presence of an 
external field. In fact, due to the wide distribution of the statistical event 
times, the broadening can be so substantial that  Gaussian statistics can no 
longer be applied. We are presented with the interesting situation that  the 
distribution of event times extends into the time range characteristic of the 
experiment, viz. the time necessary for an appropriate portion of the injected 
carriers to complete their drift through the sample (transit time tT). 

The failure of Gaussian statistics to describe the dynamics of the propagating 
carrier packet in time-of-flight experiments introduces a number of novel 
physical phenomena which are being observed in an increasing number of 
disordered solids. 

This review deals with the novel aspects of transient transport in disordered 
solids. Emphasis is on the properties of a-Se and a-A%S%, but  the essential 
observations for other disordered solids, in particular organic materials, are 
summarized. The review does not address physical properties other than 
transient (non-steady state) phenomena since steady-state properties of amor- 
phous solids have been discussed in a number of recent review articles (Mort 
1977, Owen and Spear 1977, Mort and Pai 1977). We start with a non- 
mathematical description of non-Gaussian transient transport  (§ 2.1) before a 
more rigorous mathematical t reatment is given (§ 2.2). Emphasis is on the 
general principles that  govern non-Gaussian transport,  which is demonstrated 
using the continuous-time random-walk (CTRW) formalism. Other mathe- 
matical t reatments and computer simulations of non-Gaussian transport are 
then reviewed. In particular, the equivalence of a generalized multiple- 
trapping formalism (Noolandi 1977 b, Schmidlin 1977 a, b) and CTRW is outlined. 
The mathematical formalism is then applied to discuss three specific transport 
mechanisms : extended state transport, hopping and trap-controlled hopping. 

In § 3.2 pertinent experimental results are surveyed and the general 
features of non-Gaussian transport are illustrated for transient hole transport 
in a-Se and a-As2Se 3. A connection between transient and steady-state 
measurements necessitates a discussion of contact properties and transient dark 
injection (§ 3.3). Several additional examples for disordered solids exhibiting 
non-Gaussian transport  are discussed in § 3.4. 

In § 4 the mathematical description of transport  mechanisms is compared 
with the experimental information. While the microscopic details underlying 
charge transport in the amorphous chalcogenides cannot be pinned down with 
certainty, it is argued that  the holes in these materials propagate by  a hopping 
process rather than in extended states. Similar transport mechanisms are 
proposed for the organic systems. For the latter materials, the experimental 
evidence for a specific transport mode is much more substantial, since the 
transport state can be controlled by  sample preparation. 

§ 2. THEORETICAL BACKGROUND 

2.1. Non-mathematical description o] non-Gaussian transport 

Time-of-flight experiments on a-As~S% films demonstrate that  holes, 
injected by a pulse of light from the sample surface, propagate through the bulk 

2D2 
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in a manner that  cannot be described by conventional Gaussian statistics 
(Seharfe 1970, Pfister 1974, Scher and Montroll 1975, Pfister and Scher 1977 a). 
That is, the dispersion a of the carrier sheet and the mean displacement l from 
the illuminated surface do not obey the well-known relations a o c t  1/2 and l o c t  

which are expected from Gaussian statistics. The experimental transient hole 
current traces demonstrate a significant spreading of the hole packet as it 
propagates through the sample film. In fact, whereas for Gaussian statistics 
c~/l ~ t -1/2, the observed current traces indicate that  the spread a and the mean 
displacement 1 feature the s a m e  time dependence, i.e. a / l=eonst .  These 
experimental results led to the recognition tha t  the microscopic processes which 
control hole transport in a-As2Se 3 must be characterized by a wide distribution 
of event times (Seher and Montroll 1975, Pfister and Scher 1977 a, b). Speeifi- 
cMly, to obtain non-Gaussian behaviour, the event time distribution has to 
extend into the time range of the experimental observation determined by the 
transit time t T which measures the transit  of an appropriate fraction of the 
(fastest) injected carriers. Such broad distributions can easily be manifested 
in hopping transport where trivial fluctuations of the hopping distance and/or 
activation energy can introduce significant fluctuations in the nearest neighbour 
hopping time due to the strong localization of the charge carrier and the large 
activation energy typical for these low mobility solids (0-4-0.6 eV). Similarly, 
in the case of multiple trapping transport, broad release time distributions can 
be obtained for small fluctuations of mobility-limiting traps of sufficient depth. 
Seher and Montroll (SM) showed from first principles that  in the non-Gaussian 
ease the distribution function ¢(t) which describes the probability for an event 
to happen at time t after the preceding event is a slowly decaying function of time. 

For hole transport in a-As2S%, the distribution function ¢(t) can be approxi- 
mated by the slowly varying power dependence 

¢(t) ~t-(1+% 

where the disorder parameter a assumes a value between zero and unity. 
This distribution function sharply contrasts with the exponential time 

dependence ~b(t) ~ exp ( - t/r), 

which is associated with a single event time ~ and is sufficient (but not necessary) 
to describe the Gaussian ease. As will be discussed in following sections, for 
a-As2Se 3 a is roughly constant, ~ 0-5, for a wide range of experimental condi- 
tions (temperature, pressure, sample thickness, applied field). In contrast to 
this, a description of hole transport in a-Se requires a more complicated ¢(t) 
which is temperature-dependent ; only at low temperatures is the power time 
dependence approached (Noolandi 1977 a). The weak time dependence of 
¢(t) necessary to explain transient hole transport in a-As2Se3, and in a-Se at low 
temperatures, clearly reflects the fact that  there is no characteristic time for 
the transport behaviour. The algebraic time dependence of ¢(t) produces 
some novel behaviour of the transport properties, as a function of field, tempera- 
ture, sample thickness and time, which can be checked by experiment (§ 3). 

SM use ~he formalism of continuous-time random-walk (CTt~W) to calculate 
the transient current observed in a time-of-flight experiment. For the special 
case of an algebraic ¢(t), they are able to provide a complete mathematical 
description of the transport properties in terms of a single parameter a the 
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value  of which  depends  upon  the  detai led microscopic  t r a n s p o r t  process and  
has been ca lcula ted  for  the  cases of hopping  a t  f ixed ac t iva t ion  energy  and  
ex tended  s ta te  t r a n s p o r t  wi th  mul t ip le - t r app ing  b y  a d is t r ibut ion  of t r aps  (see 
der iva t ion  and  references  in § 2.2). 

I n d e p e n d e n t  of the  deta i led t r a n s p o r t  mechan ism,  the  general  behav iour  of 
the  expe r imen ta l  observables  can be qua l i t a t ive ly  p red ic ted  once the  concept  
of the  b road  even t  t ime  dis t r ibut ion has  been accepted.  Indeed ,  a l though the  
m a t h e m a t i c s  of the  non-Gauss ian  s ta t is t ics  describing the  t ime-evolu t ion  of the  
carr ier  packe t  are not  convent ional ,  the  final resul ts  are t r a n s p a r e n t  and  can be 
qua l i t a t ive ly  described: Before proceeding to the  deta i led theoret ical  pre- 
dictions, let  us  consider  w h a t  qual i ta t ive  fea tures  are to  be  expec ted  for  non-  
Gauss ian  t r anspor t .  

We  first  recal l  t h a t  in the  Gauss ian  case the t ime  deve lopmen t  of the in jec ted  
carr ier  sheet  can be descr ibed in t e rms  of the  m e a n  d i sp lacement  1 f rom the  
i l lumina ted  surface  and  the  dispersion a which character izes  the  spread  of the  
charge sheet  a b o u t  the  mean  (fig. 1 (a)). The  cur ren t  induced  b y  the dr i f t ing 

Fig. 1 (a) 
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Schematic representation of carrier propagation under Gaussian conditions. Top : 
Position of representative carriers in the sample bulk at t = 0 (O), t < t T (O) 
and t ~ t T (.). Middle : Charge distribution in sample bulk at t = 0, t < t T and 
t ~ t w. Bot tom : Current pulse in external circuit induced by charge displace- 
ment. Units normalized to t T and i T = i(tT). Dashed line represents transient 
current for lower applied bias field, i.e. longer transit  time. 
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Fig. 1 (b) 
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t LOG t 
Schematic representation of carrier propagation under ideal non-Gaussian conditions. 

Top: Position of representative carriers in the sample bulk at t=O (©), 
t < t  T (@) and t ~ t  T (*). Middle: Charge distribution in sample bulk at 
t = 0 ,  t < t  T and t ~ t  T .  Bottom : Current pulse in external circuit induced by 
charge displacement in linear units (left) and logarithmic units (right). Dashed 
line represents transient current for lower applied bias field, i.e. longer transit 
time. 

charge sheet is I = eqF,1E/L where Fd is the drift mobility and q the number of 
injected carriers. If one neglects deep trapping of the carriers in transit, i.e. 
FaEr>~L, where r is the deep trapping lifetime, the transient current remains 
constant, independent of the spreading a about the mean I. When the leading 
edge of the carrier packet reaches the back electrode, the current begins to drop, 
and the width of the current decay is a measure of the dispersion a at tha t  time. 
Usually the time when the peak of the charge packet strikes the back electrode 
is identified with the transit time t T. Hence, for a carrier packet spreading 
according to Gaussian statistics, (cr/l)tT~:tw -1/2, i.e. the current pulse will 
sharpen with increasing transit time when plotted in units of t T (by lowering 
the external field, for instance). 

In the dispersive non-Gaussian case, the carrier packet is not expected to 
grow symmetrically about its mean position. Immediately after the occurrence 
of the carrier-producing light flash some carriers will rapidly move out of the 
generation region due to a rare succession of short event times. As time 
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evolves, an increasing number of carriers will suffer an event that  can immobilize 
them for times of the order of the observation time, t T. Under extreme non- 
Gaussian conditions, the distribution of the carrier packet grows asymmetrically 
featuring a leading edge penetrating deep into the bulk, while the maximum of 
the charge density moves only slowly out of the generation region (fig. 1 (b)). 
For such asymmetric carrier propagation, the spread and the mean position 
have the same time dependence, hence aft= const. Thus the shape of the 
transient current is independent of the transit time when plotted in units of t T, 
a feature which has been termed ' universality of the current shape '. 

The mean drift velocity v d of the propagating carrier packet must decrease 
with time since, for sufficiently broad event time distributions, the number of 
carriers immobilized for a time of the order of t T must grow. With v d time 
dependent, the transit time t T =L/v a must increase faster than proportional to 
the sample thickness, implying a thickness-dependent drift mobility t~d =L/tTE. 
This feature, of course, is in sharp contrast with the Gaussian case where the 
drift mobility is a well-defined intrinsic quantity. 

The general result of the CTRW obtained for an algebraic distribution 
function ~b(t)oct -(1+~) is summarized in the following equations (Seher and 
Montroll 1975) I t-(1-~), t<t T 

(1) 
I(t)~[t-(l+~) ' t>tT 

[ L ~  1/a 
t T ~ \ / ~ ]  exp (A//cT), (2) 

where 0 < a < 1 is defined by the time dependence of the distribution function. 
Following eqn. (1), the rate of current decay increases at a characteristic time 
t T (' transit t ime '). At this time the rate of carrier loss at the substrate 
electrode begins to dominate the rate of temporary carrier immobilization in the 
bulk of the sample. Thus, t T approximately characterizes the time when the 
leading edge of the carrier packet reaches the absorbing substrate. Equation 
(2) predicts the expected superlinear relationship between sample thickness and 
transit time. Furthermore, the shape of the transient current I(t) and the 
field and thickness dependence of the transit time t T are correlated via t he  
disorder parameter a. The smaller a, the stronger the (E/L)-dependence of tT 
and the more dispersive the shape I(t). At constant temperature, a is roughly 
constant, hence the current shape displays the scaling property aft~ const. 
Finally, the sum of the power exponents describing the time dependence of 
I(t) at times shorter and longer than t T equals - 2 and is therefore independent 
of the actual disorder and underlying transport mechanism. 

Equations (1) and (2) strictly apply to dispersive transport which can be 
characterized by  an algebraic time dependence of the distribution function 
¢(t). More complicated ~b(t) expressions may be necessary to explain the 
experimental data over broad experimental ranges. Hole transport in a-Se 
constitutes an example where a complete transition from non-dispersive 
Gaussian to dispersive non-Gaussian transport can be observed as a function 
of decreasing temperature (Pfister 1976). In addition to non-algebraic 
distribution functions, deviations from the current shapes given by eqn. (1) 
are expected if the evolution of the spreading of the propagating carrier packet 
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is distorted by non-uniform fields due to space-charge and surface trapping. 
The latter case has recently been discussed in connection with corresponding 
observations made for hole transport in a-As2Se a (Pfister and Scher 1977 a). 
For the generation of the data presented in § 3, care has been taken to avoid 
distortion of the current shape. For a-Se and a-As2Se a this can be approxi- 
mately achieved by low levels of carrier injection (4  C V), proper choice of the 
electrode material, extensive dark resting and adjusted time delay between the 
application of the bias field and the flash occurrence. Increasing the com- 
plexity of ¢(t) inevitably leads to a larger number of independent parameters 
which can be extracted from the experimental current traces only by elaborate 
computer fits. For the discussion of the experimental results in § 3 we restrict 
ourselves to a comparison with the theoretical predictions based upon the 
algebraic distribution function, i.e. eqns. (1) and (2) which contain all the 
principal features underlying dispersive transient transport. 

The remainder of § 2 describes the mathematical formalisms used to explain 
dispersive transport. In particular, the formMism of continuous-time random- 
walk and the equivalence between the CTRW and the more eonventionM 
generalized multiple-trap formalism are emphasized. The CTI~W is then 
applied to discuss several transport mechanisms, viz. multiple-trapping, trap- 
controlled hopping and conventional hopping. 

2.2. Mathemat ica l /ormal i sm o] C T  R W on a lattice 

2.2.1. Introduction 

In a system composed of a random distribution of molecular sites, the 
displacement between neighbouring molecules p as well as their energy level 
difference A varies from site to site. Although the systems considered here 
are homogeneous, i.e. the average molecular concentration and average energy 
difference are independent of the spatial variables (r), the degree of this site-to- 
site variation is crucial for the physical properties we are investigating. These 
random variations have a large effect on the spread of transition rates between 
the molecules. The transition rates themselves in a real physical system can 
depend on variables other than p and A, e.g. on the relative angular configura- 
tion of the molecules (Slowik 1977). However complicated the form of the 
transition rates and the details of the molecular charge transfer, it is assumed 
tha t  these rates depend sensitively on a number of parameters that  are statisti- 
cally distributed. Thus, even rather mild variations of some system para- 
meters ' map ' onto a broad distribution of transition rates. This mapping is 
not unique. A number of different parameter dispersions can produce very 
similar transition rate distributions. There can be gross distinctions, such as 
differences in temperature dependence, between various microscopic 
mechanisms. This will be discussed in the following sections. The point 
emphasized here is that  a model based on the distribution of rates as the 
primary input is the important level of description for the time-dependent 
phenomena in these disordered systems. 

One way to sample these rates is to observe a carrier move along some path. 
The carrier encounters a series of nearest-neighbour hops or capture and release 
from traps. Most of these time events will be short and a few will be long on 
the time scale of observation. 
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One can ' f o l d '  th is  dis t r ibut ion of t ime events  into a single probabi l i ty  
dis tr ibut ion funct ion  ¢(t) (as in t roduced  in the  preceding section) to leave a 
given site. As the ¢(t) represents  a proper ly  weighted stat is t ical  sampling of 
the entire dis t r ibut ion of f luc tuat ing  ra tes  over  the t ime his tory  of a path ,  it  is 
not  surprising t ha t  a t r anspor t  model  using ~b(t) will be non-Markoffian.  A 
system is Markoff ian if the present  value  of a set of parameters ,  defining the  
system, determines  the  fu ture  charac ter iza t ion  of the  system. I t  is non- 
Markoffian in a ve ry  specific way. The only addi t ional  informat ion  needed to  
specify the s ta te  of a system, besides the  probabi l i ty  of occupancy  of the sites 
a t  t ime t, is the t ime of arr ival  at  each site. No knowledge of previous s tates  
of the  system for t imes t' < t is needed. This is in contras t  to  a recent  discussion 
of the non-Markoff ian propert ies  of this t r anspor t  model (Pollak 1977). In  
fact  this process is known technical ly  as semi-Markoffian (Pyke  1961). 

The model  is a cont inuous- t ime random-walk  (CTRW) on a lat t ice with 
¢(t) de termining the r andom t imes to leave each site, and  p(s) the spatial  
displacement  probabi l i ty  at  each step. The electric field t= dependence,  which 
causes a spatial  a symmet ry ,  is included in p(s).  The  lat t ice pa ramete r  a 0 is 
the mean  hopping distance or mean  distance be tween t rapping  events.  

In  order  to  fu r ther  mot iva te  this model,  we can consider a system composed 
of periodical ly reproduced  large cells ; each cell containing n randomly  placed 
sites, where n>> 1. One can solve such a model  e x a c t l y ;  however,  the ¢(t) 
becomes a n x n ma t r ix  ¢i~(t). The  p ic ture  of a carrier  leaving a cell at  various 
r andom t imes is now seen simply as the  different  ways it  hops out  of the  cell 
f rom each of the  n sites. While this  is more graphic,  the  actual  computa t iona l  
details would be very  involved.  Sat i s fac tory  results would most  assuredly 
be ob ta ined  by  in t roducing an effective ¢ ~ ( t )  wi th  a cell pa ramete r  a o t h a t  
would reproduce  the use of ¢ij(t) wi th  a larger cell size. 

We now consider the  computa t ion  of a C T R W  with  a more  general ¢(s, t) 
and specialize to  the factor izat ion p(s)¢(t)  below. The p(s)  determines the  
spatial  a s y m m e t r y  of the carrier displacement ,  e.g. it  contains the electric 
field dependence.  

2.2.2. The mathematical model 

The basic quan t i t y  in a CTRW, with t ime as a cont inuous variable, is 
P(s,  tl%), the probabi l i ty  of the carrier b e i n g / o u n d  at  s at  t ime t if it  s t a r ted  
f rom s o a t  t = 0. One must  allow for the possibil i ty t h a t  the carrier could 
arrive at  s a t  an earlier t ime r < t and remain  at  s for a t  least the t ime in terva l  
t -  r. This is done by  in t roducing an auxi l iary funct ion : let  R,~(s, t)At be the 
probabi l i ty  for a carrier to just  arr ive at  s be tween t and t + At in n steps, if i t  
s ta r ted  at  t = 0 + and s o (we will suppress the So dependence  for brevi ty)  where 

S = 81a 1 "~- 82a 2 -~- 83a3, (3) 

and s i is equal  to  an integer,  d i, the  uni t  pr imit ive  t rans la t ion  vectors  of the  
lattice. The r andom walks (I~W) are res t r ic ted to  be on infinite lattices or on 
finite latt ices (N a dist inct  points) with pm'iodic b o u n d a ry  conditions.  

The  central  aspect of any  R W  is the s t e p S y - s t e p  generat ion of the proba-  
bil i ty to  arr ive at  a given site. The probabi l i ty  of reaching the  site s in n + 1 
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steps is simply related to the previous one in n steps at  some other site 

t 

Rn+l(S , t)-~ Z ~ dr  ~b(s- s', t -  7)J?n(S' , r). 
S" 0 

(4) 

where ¢(s, t )At  is the probabil i ty t ha t  successive steps occur between t and 
t + A t  and  the displacement is s. The R~ function is thus  observed to be 
the n-fold convolution of factors, i.e. it  is a sum of the probabilities of all 
the paths,  each with  cumulative n random times adding up to t ime t. The 
relation between R and P occurs at  the last step as will be shown below. 

The funct ion of immediate  interest  is 

R(s, t ) -  E R~(s, t), (~) 
~ t = 0  

the probabil i ty per uni t  t ime to reach s in t ime t, independent  of the number  of 
steps to get to  s. Thus, summing eqn. (4) over n and inserting the  initial 
condition : 

Ro(s,  t) = $,,oS(t - 0+), (6) 
one obtains 

t 

R(s, t) - ~ ~ d r  ~b(s - s', t -  7)R(s', 7) = 8,,0$(t- 0+). (7) 
8' 0 

The form of eqn. (7) lends itself to solution by t ransform techniques,  which 
reduces eqn. (7) to an algebraic one. 

One takes the Laplace t ransform of eqn. (7) to obtain : 

/~(s, u) - F~ ~ ( s -  s', u)/~(s', u) = ~.,0, (s) 
8' 

where oo 
~(s, u ) =  I dt exp ( - u t )  ~b(s, t). (9) 

o 

The solution of eqn. (8) is accomplished with  the use of Fourier  t ransforms 
(k i = 2~rmi/aiN , m i integer) : 

U(k, u ) =  E /~( s ,  u) exp ( - i k .  s), (10) 
8 

with the result  : 

where 

exp ( ik .  s) 
(11) 

A(k, u ) =  ~ ¢(s, u) exp ( - i k .  s), (12) 
8 

which can be called the generalized s t ructure  function of the CTt~W. 
The final part  of the solution involves the relation between P(s,  t) and 

R(s ,  r) ,  7 < t : t 
P ( s ,  t) = ~ R(s ,  7 ) O ( t -  7) dr ,  (13) 

o 

where O(t) is the probabil i ty t h a t  the walker remains fixed in the t ime interval  
[0, t] : t 

¢P(t) = 1 - j" ¢(7) dr,  (14) 
0 
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with ¢ ( t ) -  ~ ¢(s, t). (15) 
$ 

Taking the Laplace transform of eqn. (13), we obtain a simple final expression : 

P(s, u) =/q(s, u)[1 - ¢(u)]/u, (16) 

where/~(s, u) is given in eqn. (11). 
Hence, one has obtained the Laplace transform of P($, t), our basic propa- 

gator, as a function of A(k, u), the transform of ¢(s, t), the single distribution 
function (¢ (u ) -A(0 ,  u)). To calculate the current I(t) in a transient photo- 
conductivity measurement, one must take the inverse Laplace transform of 
eqn. (16) and obtain P($, t). In this latter case, one cannot evaluate ~f- lp($,  u) 
without specifying a definite ¢($, t). I t  is at this point tha t  one uses a simpli- 
fied expression for ~,b($, t), namely 

¢($, t)=p(s)¢(t) ,  (17) 

where p($) describes the spatial asymmetry in the step displacement. To 
complete the calculation of I(t), one must include the effects on P($, t) of the 
absorbing boundary (Montroll and Scher 1973) and then equate I(t) to the time 
derivative of the spatial mean ($} of P($, t). The results of that  calculation 
are given in eqns. (1) and (2). 

2.3. Comparison with generalized multiple-trapping/ormalisms 
Both Noolandi (1977 b) and Schmidlin (1977 a, b) have made a comparison 

between the CTRW and multiple trapping. Their t reatments differ in some 
details of interpretation. We have chosen to follow the discussion by Noolandi 
(1977 b) as his interpretation follows more closely the one discussed by ourselves 
(Pfister and Scher 1977 a). 

In a multiple-trapping problem one usually solves the following set of linear 
transport equations : 

-~  =g(r ,  t ) f ( r ,  t), (18) 

p(r, t)=p(r, t)+ Epi( r ,  t), (19) 
i 

~pi(r, t) 
3t - p ( r ,  t)wt-p~(r , t)Wi, (20) 

where g(r, t) is the local photogeneration rate, and / is the flux of mobile 
carriers which we can relate to the concentration of mobile carriers p(r, t), 
f = t~Ep, where/z is the mobility of the carriers. The concentration of carriers 
in the i th trap is pi(r, t). The total concentration of carriers is p(x, t), defined 
by  eqn. (19). The summation in eqn. (19) extends over all the different kinds 
of traps in the material. Each trap is characterized by  a capture rate, wi, 
and a release rate, W i. The trap parameters are assumed to be independent of 
r, corresponding to a homogeneous trap distribution. 

Equation (18) may then be written 

~p ~-i=g-~E. Vp. (21) 
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In order to derive an equation for the total charge concentration, p(x, t), from 
eqn. (21), it is necessary to obtain a relation between p(x, t) and p(x, t). This 
can be done easily using eqn. (20) and introducing the Laplace transform 
(L.T.), 

oo 

~(r, u )=  S exp ( - u t ) p ( r ,  t) dt, (22) 
0 

giving 
u~i = pw i - piWi,  (23) 

where we have assumed pi(r, 0)= 0. Using eqn. (23), we get immediately 

(24) 
w h e r e  

v Q= l+,7u+wij 
According to the convolution theorem, the inverse transform of eqn. (24) is 

t 

p(r, t )= ~ Q(t- t ' )p(r ,  t') dt', (26) 
0 

and using this result in eqn. (21) gives 

~p t ~p(r, t') dt', (27) - ~ t = g - ~ E  ! Q( t - t ' )  ~-----f-- 

where the electric field is in the x direction. 
I t  was necessary to derive an equation involving only the total charge 

concentration because now a direct comparison can be made with the equation 
governing the time dependence of P(s, t) in the CTRW. The total charge 
concentration is proportional to P(s, t). One uses the relation between 
~(~, u) and P(~, u) in eqn. (16) and inserts it into eqn. (8) which can be algebrai- 
eally rearranged to yield 

d P  t 
d---/(s, t)= ~ ¢(t-x)E[p($-s')P(s', x)-p(s'-s)P(s,  x)] dx, (28) 

0 

where 
= u ¢ ( u ) / [ 1  - 4;(u)]. (29) 

One recognizes eqn. (28) as a generalized master equation with a relaxation 
~unction ¢(t). An exponential ~b(t) = W exp ( - Wt) yields ¢(t) = 2WS(t), so that  
eqn. (28) reduces to an ordinary master equation which is local in time. A 
non-exponential ¢(t), i.e. a distribution of rates W, leads to the non-local 
dependence on time exhibited by  the generalized master equation. 

One now sees the physical basis for the non-local time dependence in the 
multiple-trapping case. The free carrier concentration p(s, t) at time t has 
contributions from trapped charge which has been immobilized at an earlier 
time and subsequently released. If ~(u) is weakly dependent on u, then 
p(s, t)ocp(s, t). This will occur if u ~ W  i or t>~Wi -1. Thus if the time of 
interest is large compared to all the release times, the multiple-trap case will 
reduce to a local time dependence. If there is only one trap i = 1 then t >~ W1-1, 
otherwise there would be no multiple trapping. Hence, again we see that  the 
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non-locality in time is related to a distribution of rates. In  the trapping ease 
it is a spread in the release rates W i and the spread must extend over the time 
range of observation. 

One more step is now needed to show the equivalence between the multiple 
trapping and the CTRW with an appropriate choice of ¢(t). The form of the 
kinetic equations for the trapping case assume r to be a continuous variable, 
while the CTRW takes place on a discrete lattice. We, therefore, take the 
continuum limit of the generalized master equation and, neglecting diffusion, 
has been shown (Leal Ferreira 1977) to be 

~p t ~p(x, t') dt', (30) ~-~=g-a0A ~ ¢ ( t - t ' )  ~ 
o 

where a 0 is the lattice cell constant, and A is the asymmetry factor in the 
transition probability between cells caused by the electric field. The genera- 
tion term has been included explicitly in eqn. (30). Equating the transforms 
of eqns. (28) and (30) (with P = p) gives 

= (~E/aoA)Q , (31) 

and the relation between ~ and ~ in eqn. (29) leads to 

where T = (aoA/l~E) for convenience. Using eqn. (32), ¢(t) can be calculated in 
terms of the trap parameters {~o i, Wi}, provided the quanti ty T is defined 
independently. 

2.4. Transport mechanisms 

2.4.1. Multiple trapping 
The formal equivalence between multiple trapping and the CTRW model 

has been demonstrated. Another, and perhaps, more physically transparent 
approach to the connection between trapping and the CTRW can be obtained 
by avoiding the continuum limit of the generalized master equation. Instead 
one makes the multiple-trap model discrete in the spatial variable. In fact, 
conventional multiple trapping, into various localized states, of a carrier moving 
in a band state is the simplest transport mode to understand, as the important  
stochastic variable, the release rate, Wi, is a single site quantity.  The carrier 
moves an average d i s t ance /~E  before it is trapped in a particular level with a 
probability ~i- Thus, the lattice constant in the direction of the field a o is set 
equal to ~TE and ¢(t) is simply a weighted sum of the probability per unit 
time to be released from one of the levels to the band, 

~b(t) = ~ ~:iWi exp ( -  Wit ). (33) 
i 

One can cast eqn. (33) into spectral form 

¢(t)= ~ d W p ( W ) W e x p ( - W t ) ,  (34) 
0 

where 
p(W)= ~ ~i~(W- Wi), (35) 

7- 
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is an e//ective spectrum of release rates. The te rm ' e f f e c t i v e '  is used to 
indicate t ha t  each W i in p(W) is weighted by  ~i, the probabil i ty  the carrier 
encounters  the i th  level. 

The ¢(u) produced by the two approaches, (1) taking the cont inuum limit of 
the CTRW and (2) reducing the mult iple- trapping problem to a discrete lattice 
case can now be shown to be the same in the asymptot ic  limit of m a n y  t rapping 
events. F rom eqns. (32), (25) we have 

¢(u)= [1 w,]]-1 (36) 
If  we expand  in powers of u r  and  choose 

= ~ oa¢, (37) 
i 

we obtain a result equal to the L.T. of eqn. (33). Thus in the small u r  o r  
t>> r l imit  the approaches are the  same (in fact if one is not  in t h a t  limit, 
multiple t rapping makes no sense). The sum over i in eqn. (35) can now be 
converted into an integral over all the  variables characterizing the capture 
probabi l i ty  and release rate. A part icular ly  simple example will i l lustrate the 
main point  : oo 

p(W) = S d~ g(~)8(W- W(~))~(~), (38) 
0 

where 

and 

[ 0 ,  ~ < ~m 
g(e) 

N e x p  [ - -  ( ~ - -  e m ) / k T o ] ,  e > E m 

(39) 

W(E) = v exp ( - ~/kT). (40) 

The capture probabil i ty is assumed to be a slowly varying funct ion of E. 
Using eqns. (38)-(40) we obtain 

/ Cm ~/W~(T/To)_I (41) 

with y T ---- P exp ( -  em/kT). Note tha t ,  aside from logarithmic terms, 

p(W)ocW=-l, ~ = T / T  o. (42) 

A p(W) of the form of eqn. (42) leads to a ¢(t)--t  -1-~ and therefore a multiple- 
t rap mechanism with  a if(E) as in eqn. (39) can generate dispersive t ransport .  
An impor tan t  point is t ha t  for this mechanism the ~, as in eqn. (42), is tempera- 
ture dependent. This T-dependent  proper ty  persists with even more elaborate 
t rapping models, provided g(~) falls off sufficiently fast  wi th  c > %~, and is 
related to the fact  t h a t  the spread in W is caused by  a variat ion in t rap  depth  e. 

This proper ty  is physically obvious because the carriers having t ransi t  
t imes appearing in the tail  of I(t) must  have experienced deeper t raps t h a n  the  
carriers traversing the sample earlier. Hence the relative change of ' t a i l '  
t rans i t  t imes with tempera ture  is more rapid and thus  changes the shape of 
/(t). 
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One could have a trapping model where the spread in W is caused by a 
change in v (eqn. (40)). However, the physical interpretation of a spectrum 
of v corresponding to, e.g. one trap depth ~ leads more naturally into a hopping 
model. This consideration leads to the larger question of whether the set of 
numbers {fi, Wi} in eqn. (33), defining the ¢(t), have the specific physical 
meaning of capture and release parameters from a set of isolated trap states or 
does {~i, Wi} generate a particularly convenient mathematical basis to repre- 
sent a ¢(t) ? In other words, the ¢(t) could correspond to a hopping motion 
and be represented by a judicious set of {~i, Wi} parameters. The ¢(t) 
generated by Noolandi using eqn. (33) could have meaning independent of the 
parameters he used to fit a-Se data (Noolandi 1977 a). The form of ¢(t) in 
eqn. (33) facilitates the computation of the pertinent inverse Laplace trans- 
forms in the CTRW, e.g. the spatial transforms 7(k, t) of the propagator of the 
carrier packet, is determined by a set of discrete singularities of the integrand. 
One can thus rapidly generate a packet motion and the current corresponding 
to a general ~b(t) represented by the ' basis set ' in eqn. (33). 

If  one uses a density of states with a finite width (i.e. a maximum trap 
energy), one could generate a spectrum of rates 

p(W)  = c W  ~-1 exp ( -  W~/W), (43) 

which gives rise to a 

~b( t) = 2c( W l/t) (a+ i )/2Ka+ l[ 2 ( w lt )l/~], (44) 

where W z is a minimum release rate which corresponds to the largest trap 
energy A t and K,(x)  is the modified Hankel Function. Now if the density of 
states is peaked around an energy A, the transi~ time could vary as 
tTocex p (A/kT) and tTW ~ can increase with increasing T. Using eqn. (44) one 
can show tha t  for Wit T ~ 1 one has dispersive transport and for Wit T >> 1 non- 
dispersive or Gaussian transport. In addition, if there is a temperature- 
independent contribution to ~, e.g. an energy dependence of v, the ~b(t) generated 
by the p(W) in eqn. (43) can describe a Gaussian to non-Gaussian transition with 
decreasing temperature, with a weakly T-dependent a, and no change in the 
activation energy at the transition. I t  is important  to point out that  the ¢(t) 
in eqn. (44) has an algebraic form only for Wtt< 1. The SM theory is not 
synonymous with the use of a ¢(t) of an algebraic form. I t  should be em- 
phasized that  the form of p(W) in eqn. (43) generates a ¢(t) that  serves as a 
model for a Gaussian to non-Gaussian transition. A different model for ¢(t) 
based on the assumption of three traps has been used to fit the Gaussian to 
non-Gaussian transition in a-Se (Noolandi 1977 a). 

2.4.2. Hopping 

Time-dependent hopping among a random distribution of sites is a difficult 
but exciting theoretical problem. In modelling this problem with a CTRW 
on a lattice we rely on the ergodic nature of the transport process. The carrier 
in transversing the disordered medium samples a wide variety of environments 
(as discussed above). The distribution of hopping times, due to the variation 
in site separations and site energy fluctuations, over the entire medium is 
folded into the hopping time distribution to leave a single site, ¢(t). Let us 
define the probability Q(%, t) for a carrier to s tay on a site s o in the disordered 
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solid. The Q($o, t) decays in t ime due to m a n y  parallel channels to leave the 
site 

dQ (So, t )=  Q(%, t) ~ W(s i -  s o, E i -%) ,  (45) 
dt i 

where W(r, ~) is the t ransi t ion rate  to a site displaced by  r and with a change 
of site energy E. We calculate the configuration average of Q($o, t) and  express 
it  in spectral form, 

oo 

In O( t )= ln  (Q(s o, t)} = - ~ dW [1 - e x p  ( -  Wt)]p(W), (46) 
0 

where 
p(W) =~ de dar g(E)p(r)8[W- W(r, e)], (47) 

p(r)dar is the probabil i ty a site is located in a volume dar centred about  r and  
g(e) is the probabil i ty density of changing the site energy by  e. p(W) is a 
spectrum of rates and from the definition 

dO(t) (48) 
¢(t) = dt ' 

one has 
¢(t) = ~ dW Wp(W) exp ( -  Wt) @(t). (49) 

Thus, for a hopping problem the spectral form of ¢(t) is di//erent from eqn. (34) 
for the multiple-trap case. The difference lies in the fact t ha t  for the t rapping 
problem one can assume a supposition of independent  release rates (weighted by  
the probabil i ty of the carrier being in the level) because there is only one way 
to leave each state.  In  the hopping problem, the carrier can leave the state 
via parallel channels, therefore, the weighting of a specific ' r e l e a s e '  rate 
W exp ( - Wt) must  include the probabil i ty  of whether  the carrier is still in the 
s tate  (O(t)). Hence, the physical in terpre ta t ion  of {~i, Wi} in eqn. (33) for a 
¢(t) applied to a hopping problem could be significantly modified. 

One can calculate ¢(t) for general g(e) and p(r). If  we assume a spat ial ly 
random site distribution, p(r)= N, the site density,  then  one obtains, 

47r I 3g 3~ ~ 7 a = Y  NR°3 L (ln r )~-~-~ In T + ( -k-~J ,  (50) 

where r -  W o exp ( - %/kT)t, and ~, ~2 are the  first and  second moments  of g(E) 
measured with  respect to %, the peak position of g(E). 

One can also include percolation effects in ¢(t) by  introducing a spatial 
cut-off in p(r). 

2.4.3. Trap-controlled hopping 
As discussed above, in general, one can have a carrier hopping through a 

material  and experiencing f luctuat ions in the energy level of the localized site, 
as well as the dispersion in intersite separation. The f luctuat ion in energy 
levels will tend  to increase the dispersion in hopping times and add  tempera ture  
dependence to the effective a, as shown in the  multiple-trap case above. If  the 
carrier is interact ing with hopping sites corresponding to dist inct  sets of energy 
levels, then  the f luctuations can be discrete, as opposed to disorder-induced 
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energy f luctuat ions  in, e.g. impur i ty  hopping conduct ion in semiconductors  
(Scher and Lax  1973). For  definiteness, we will consider two sets of states,  
and we will designate the  sites as h and t,  where the dens i ty  N h is much  larger 
t han  N t. The  carrier can hop f rom h to h with an ac t iva t ion  energy A h and  
from t to h wi th  A t. I f  A t > A h then  the typical hop t ime r t f rom t to  h is 
much greater  t h a n  the typica l  hop t ime "r h f rom h to h. We call this s i tua t ion  
t rap-control led  hopping because there  is a discrete separat ion be tween the  
spec t rum of vh and %. Al though there  are two ac t iva t ion  energies in this 
hopping ease, the  t rans i t  t ime ac t iva t ion  can range from AI~ to A t depending 
on the relat ive densities Nh/N t. For  N h >> N t there  will be a large number  of 
hopping pa ths  t h a t  do not  pass th rough  a t site ; hence, most  of the fastest  
carriers (which de termine  tW) will not  encounter  a hop with A t, As N t increases, 
the number  of pa ths  t h a t  do not  conta in  a t site decreases and  the  ac t iva t ion  
energy A of t w tends  to A t. 

To  recap, in hopping the na tu re  of the  dispersion, as exemplif ied by  ~, and 
the displacement  between events  are correlated. In  t rap-c0ntrol led  hopping 
this correlat ion is not  operat ive.  One can independen t ly  v a r y  the  number  of 
events  and the  dispersion of event  times. The rate-limiting steps are the release 
times ]rom a set o/isolated trapping sites (density Nt), while the dispersion o/the 
release times is determined by the local distribution o/hopping sites (density Nl~ ) 
around the trap, as well as any fluctuation in the trap energy. 

The ¢(t) for  t rap-contro l led  hopping is calculated in the same way  i t  is for  
hopping (§ 2.4.2). However ,  the  mean  spatial  d isplacement  is de termined b y  
the both  Nh, N t and the  electric field E.  

I f  E=O, the  carrier diffuses away isotropically and the  mean spatial  
displacement  between t rapping  events  is ~ Nt -1/3, or the mean  volume swept 
out  by  the carrier is Nt  -1. For  finite E,  the mean  volume is still ~ Nt-1 ; 
however,  the spatial  displacement,  d, is modified. We can define an effective 
area of diffusion ~(E) and 

% (51) a( E) = i( E)' 

for a f ini te value of E. We can assume the  sa tura t ion  (with increasing E)  value 
of a(E)  which is a 0 is propor t ional  to  Nh -2/3 

Hence,  one has for the  t rans i t  t ime 

W' o t T = (Ntap)l/~(L/l(E)p) 1/~ exp  (A/kT), (52) 

where p a ~ N h  -1, p = (4rrNh/3) -1/3, and l(E) is the  mean  spatial  displacement  
a t  each hop. The  main change f rom the  ' pure  ' hopping case is the  reduct ion 
of the  t rans i t ion  ra te  pre-factor  by  the  fac tor  ~ (Nt/Nh) TM and  the re in terpre ta-  
t ion of A, the  ac t iva t ion  energy 

A = A h + At, (53) 

where A h is a hopping energy and A t is the  mean  t rap  energy.  Thus, one can 
relate the observed activation energy to a trap depth, while maintaining a temperature 
independent dispersion. This does not  preclude a small bu t  significant f luctua- 
t ion in the t r ap  energy t h a t  adds to  the  dispersion. 

Trap-contro l led  hopping has been observed in molecular ly  doped organic 
polymers  (Pfister st al. 1976). In  these systems, a po lymer  host  is doped with 

A.P. 2 E 
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molecules known to activate transport. The trap-controlled hopping process 
can be verified by  proper choice of dopant molecules--for hole transport  the 
difference of ionization potential can be identified with the trap dep th- -and  
by proper variation of the concentration of the hopping and trapping sites, (h) 
and (t), respectively. 

2.5. Monte Carlo simulation 

Numerical simulation represents another approach to the s tudy of the 
various transport mechanisms. In addition to the analytic studies of multiple- 
trapping (Pfister and Scher 1977, Schmidlin 1977 b, Noolandi 1977 b), Silver 
and Cohen (1977) have independently shown the equivalence of multiple- 
trapping and CTRW using Monte Carlo techniques. They used a distribution 
of trap-emptying times ¢(t)oc(t 0 + t) -(1+~> and obtained results identical to SM. 
Marshall (1977) has used numerically generated I(t)  results with various trap 
distributions to fit experimental a-Se data of Pfister (1976 a). The fit was less 
successful with a-As~Se 3 data. 

Earlier, Silver et al. (1971) had used numerical simulation of transient 
currents to s tudy the effect of various types of bulk trap distributions and 
surface traps on the shape of I(t). An interesting aspect of these studies was 
the discussion of delayed surface release, i.e. the time scale of release from 
surface traps is large compared to the transit time. Therefore, in this case, 
the shape of I(t)  is controlled by  the spectrum of surface release times. While 
this was not pertinent to the dispersive transient currents we are currently 
investigating, it does have some bearing on the effects of contacts on various 
transient current responses which will be considered in a later section. 

More recently, Silver (1977) has been simulating hopping on a random 
distribution of sites in an a t tempt  to understand the extent of dispersion in this 
transport  mode. He considers a randomly generated set of sites on a plane 
with the site at  the origin occupied at t = 0. In each configuration of sites he 
determines the probability, as a function of time, that  the particle will remain 
within a certain radius R. The configuration average of this probabili ty Q(t) 
is then obtained for a number of different radii R = 1, 2, 2.5 (the unit of length 
is set equal to the mean intersite separation). For R = 1 he finds Q(t) has a 
very slow fall-off with t, Q(t)oct -~ with a___ 0.2. He demonstrates that  for 
R = 2.5 the relative shift, from the R = 1 curve, along the time axis, is substan- 
tial ~ 10~-105. He correctly points out  that  such a large shift is incompatible 
with random walk or ordinary diffusion theory. The traditional predictions 
are based on the result that  the width of the diffusing packet increases as t 1/2. 
However, a CTRW calculation with a ~b(t)oct -(1+~> predicts the width of the 
packet only grows as t -~/~ (Shlesinger 1974) in the absence of an applied bias. 
A calculation based on Shlesinger's (1974) result predicts a shift of ~ 10 ~ for 
R j R I = 2 . 5  and a=0.2 .  This is dramatically confirmed by  the numerical 
simulation work of Silver (1977). 

The simulation work is still incomplete on the larger question of how much 
dispersion can be expected for hopping where the randomness is solely due to 
positional disorder. 

2.6. Percolation approaches 

Percolation theory has been applied to d.c. hopping transport  in amorphous 
solids (Ambegoakar, Halprein and Langer 1971, Pollak 1972). Most notably 
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these treatments have yielded the Mort T -1/4 law. One can obtain the T -1/4 
law in other models of the hopping transport, e.g. that  of Aspley and Hughes 
(1975). 

Pollak (1977) has recently addressed the percolation technique to the 
time-dependent hopping problem on a random medium. He groups sites into 
clusters in which all the intersite transition rates Wii(r ) are less than some 
limiting value Wil(rm) and then assumes that  these clusters may be connected 
with a single spatial link of separation r m. This reduces the time-dependent 
problem to motion along a one-dimensional chain with a series of limiting steps 
each with the same transition rate. 

I t  is not surprising, with such a construction, that  one would obtain 
essentially dispersionless transport. In our opinion, while Pollack (1977) may 
have implicitly pointed to some limitations in the extent of dispersion due 
solely to positional disorder, his t reatment of the problem, at  this point, does 
not substantially demonstrate this limitation. His basic conclusion is that,  
for a carrier, if a site is hard to leave, it is hard to enter. Therefore, the 
hopping carrier avoids all sites which are difficult to enter. This apparent 
difficulty can be overcome if the hopping is among fluctuating energy levels. 
Our view is tha t  the anomalous dispersion can be caused by the relatively few 
long hopping times on the time scale set by the fastest carriers. In other 
words, most of the carriers must experience a wide dispersion of a statistically 
small sampling of long hops in order to have non-Gaussian spreading. Of 
course, the physically isolated site will be avoided but that  type of site is not 
necessary to cause the accumulative spreading in time tha t  we have been 
discussing. 

In fig. 3 of Noolandi (1976) one observes, in the temperature range for 
non-Gaussian transport, e.g. T = 143 K, tha t  the largest transition rate differs 
from the smallest by a factor of 100. However, the ratio of encounter between 
the fastest site and the slowest is comparable ( ~ 25). Hence, one can observe 
in Noolandi's (1976) fit to the a-Se data the need for a judicious small admixture 
of the slow sites. The ~b(t), constructed from these parameters, shown in 
fig. 1 of Noolandi (1977 b), has an algebraic time dependence Nt -(1+~) only 
over a two-decade span of time which includes the transit  time. This feature 
re-emphasizes the fact tha t  anomalous dispersion generated by the behaviour 
of ~b(t) need not have an indefinitely long algebraic tail ! 

I t  has been shown tha t  the conductivity corresponding to the percolation 
path at  threshold is zero (Kirkpatrick 1973). One must go beyond threshold 
where the topology of the path changes rapidly to obtain finite conductivity. 
There are more interconnections and small cycle loops. The spread in hopping 
times along such a path is not known at present. 

Even with the rather simple path constructed by Pollack (1977), since 
Wij(rm) is the rate-limiting step and one assumes tha t  rm/R o ,,~ 15 (cf. § 3.4), one 
observes tha t  a 30% variation in r m can give rise to a spread of hopping times of 
two orders of magnitude. This would be sufficient to disperse the transit 
time. 

In our opinion the controversy of hopping time dispersion on a spatially 
random distribution of sites reduces to one of degree. The question to be 
answered is a quantitative one : how much dispersion for a given value of 
N Ro3 ? 

2E2 
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§ 3. EXPERIMENTAL RESULTS AND DISCVSSION 

3.1. Sample preparation and experimental technique 
All chalcogenide films described in this  s tudy  were open boat  evaporated 

at a rate of ~ 1 ~m/min  onto a luminium substrates held approximate ly  at the  
temperature of the glass transit ion of the  chalcogenide ( ~ 320 K for a-Se and 

450 K for a-As~Sea). The films were s lowly cooled before transparent top 
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(a) Transient hole current in a-A%S%. L = 5 8  t~m, T =296  K, E = l0 V/t~m. Pulse 
illumination through semi-transparent aluminium (blocking) contact. (b) 
Transient hole current in a-Se. L = 79 ttm, T = 160 K, E = 10 V//xm. Pulse 
illumination through semi-transparent gold contact. Before the application 
of gold a ~ 1 Fm polycarbonate insulating layer was coated onto the selenium 
sample to provide blocking contact. (c) Transient hole current in a-A%S% 
of fig. 2 (a) in units log I versus log t. (d) Transient hole current in a-Se of 
fig. 2 (b) in units log I versus log t. 

e lectrodes were  evapora ted  to  obta in  a sandwich  cell sample  structure.  The 
fi lms typica l ly  were  5 -100  Fm thick.  

Free carriers were generated  by  a 5 ns  l ight f lash derived from a ni trogen 
laser which  impinged  upon  the  top  surface of the  sample.  Neutra l  dens i ty  
filters were inserted into  the  l ight  b e a m  to assure tha t  the  injected carrier 



768 G. Pfister and H. Scher 

density did not exceed ~ 1/10 of C V where C is the sample capacitance (e = 6.4 
for a-Se and 11.2 for a-As2S%) and V the applied voltage. In a typical experi- 
ment the light flash lagged the application of the voltage step by about 1/10 of 
the dielectric relaxation time (%Ep). The current transients were stored in a 
transient digitizer from which plots of log I versus log t were generated on an 
x-y  recorder. The transit times were defined by the intersect of tangents 
approximating log I versus log t for t < t  T and t > t T, respectively (eqn. (1)). 

3.2. Experimental mani/estation o/non-Gaussian and Gaussian transport 

3.2.1. Current shape 
At room temperatures hole transient currents in a-Se reflect a well-defined 

charge transit with little dispersion. As the temperature is lowered, the shape 
of the transient current becomes increasingly featureless, until below ~ 180 K 
dispersive non-Gaussian transport is observed, which exhibits features similar to 
room temperature hole transport in the binary glass a-As2S % (Pfister 1974, 
1976). Examples of non-Gaussian transient hole currents for a-As2Se 3 at room 
temperature and a-Se at 160 K are displayed for the same field conditions in 
fig. 2 (a) and fig. 2 (b), respectively. Clearly both traces deviate strongly 
from the rectangular pulse shape expected for non-dispersive Gaussian trans- 
port. Fig. 2 (c) and fig. 2 (d) show the same current traces displayed in units 
log I versus log t. While in the conventional units I versus t a fiduciary time 
characteristic of the hole transit is difficult to identify, such a time is readily 
obtained from the log I versus log t traces. In  accordance with the predictions 
of eqn. (1), the transient current can be described by two distinct power law 
time dependences where the power exponents can be obtained from the slopes 
of the tangents approximating log I versus log t at early (t <tT) and late 
(t > tT) times of the carrier propagation. Furthermore, the sum of the power 
exponents is approximately - 2 ,  which indicates that  for the chosen experi- 
mental conditions the probability distribution function for both materials exhi- 
bits a power law dependence ¢(t) ~ t -(1+~). From the current traces one derives 
the disorder parameters a ~ 0.62 and a ~ 0.5 for a-Se and a-As2S %, respectively. 

Increasing the applied field results in a parallel shift of log I versus log t 
to shorter times and larger currents, which establishes that  t T is a meaningful 
measure of a carrier transit. Over a wide experimental field range, the logarith- 
mic current plots shift parallel, which confirms tha t  the parameter a indeed is 
insensitive to the time f rame of the experiment (universality of I(t)). This 
feature is best illustrated in a plot where transient currents recorded for a wide 
range of transit times are superimposed by shifting along the logarithmic axes 
to produce a master plot. Examples of master plots are shown in fig. 3 (a) 
for a-A%S% at room temperature and fig. 3 (b) for holes in a-Se at 143 K. 
The dashed lines in fig. 3 (a) indicate the relative spread c~/1 expected for 
Gaussian transport for the longest and shortest transit time. The a values 
obtained from the master plots are ~ 0.45 for a-A%S% and a ~ 0.53 for a-Se. 
Master plots similar to those shown in fig. 3 have been observed for hole 
transport in doped organic polymers (Mort et al. 1976, Pfister et al. 1976, 
Pfister 1977), carbazole polymers (Pfister and Griffiths 1978), the charge 
transfer complex of poly(N-vinylcarbazole) : trinitrofluorenone (Seki 1974) 
and amorphous SiOe (Hughes 1977, McLean et al. 1975). 
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(a) Master plot for transient hole currents in a-A%S%. L = 100 Fm, 30 Fro, T = 296 K. 
Plot was obtained by shifting along the logarithmic axes of individual traces 
recorded at different bias fields. Transit times are listed in the legend. 
The broken lines indicate the relative spread expected for Gaussian transport  
in which case (~/l~tT -1/~ (after Pfister and Scher 1977 a). (b) Master plot 
for transient hole currents in a-Se. L = 79 Fm, T = 143 K. Plot was obtained 
by shifting along the logarithmic axes of individual traces recorded at different 
bias fields. Transit  times are listed in the legend (after Pfister 1976 a). 

The algebraic  t ime  dependence  of the  t r ans ien t  cur rent  I(t) given in eqn. 
(1) a p p r o x i m a t e s  the  expe r imen ta l  cur rent  t races  in the  t ime  range  ~ 0.1t T to  
10t  w. At m u c h  shor ter  t imes  the  cur ren t  typ ica l ly  falls off fas te r  t h a n  predic ted  
for ¢(t)oct -(1+~). There  are m a n y  possible exp lana t ions  for  this  behaviour .  
For  one thing,  a t  these ear ly  t imes  of the  t r ans i t  the  carriers dr i f ted over  a 
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distance much less than the sample thickness and the development of the 
dispersion may be dominated by surface effects which are believed to play a 
role in chMcogenides. Another possibility is that the time dependence of the 
distribution function cannot be described by a simple power law with constant 



Dispersive (non-Gaussian) transient transport in disordered solids 77 l 

exponent  over many  orders of magni tude of t T. As will be discussed later, hole 
transients in a-Se indeed reflect the l imited t ime range over which ¢(t) oct -(1+~). 

The shape of the t ransient  current for a-As2Se a is remarkably  stable with 
respect to temperature .  This is demons t ra ted  in fig. 4 (a), where current  
traces recorded over a wide range of temperatures  are shown in normalized 
t ime units. In  contrast  with this behaviour,  the  hole traces for a-Se shown in 
fig. 4 (b) show a progressive increase of the dispersion as the temperature  is 
lowered. Both  these observations will have implications on the underlying 
microscopic t ranspor t  mechanisms (§ 4). 

3.2.2. Thickness dependence 

For  t rans ient  t ranspor t  with Gaussian dispersion, the drif t  mobil i ty is well 
defined, hence the t ransi t  t ime increases in proport ion to the sample length. 
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transit time t T for hole transport in a-Se at l0 V/~m at various temperatures 
(after Pfister 1976 a). 
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This is not the case for non-Gaussian transport,  where the drift velocity 
decreases with time. The resulting superlinear thickness dependence of the 
transit t ime is clearly manifested in fig. 5 (a) for hole transport in a-As2S % at 
room temperature. Using the theoretical prediction, eqn. (2), one obtains 
from fig. 5 (a) a ~ 0.55 which is in remarkable agreement with the value obtained 
from the shape of the transient current. For holes in a-Se the superlinear 
thickness dependence is observed at lower temperatures where transport  
becomes non-Gaussian (fig. 5 (b)). At higher temperatures ( T >  180 K), the 
transit time scales with thickness as is expected for a well-defined drift mobility. 

The ramnifications of the thickness dependence clearly are that  in the region 
of dispersive transient transport, a conventional definition of the mobility is 
not possible. Hence, any correlation of steady-state dark conductivity, aac, 
and transient measurement is not obvious. Indeed, it will be shown in the 
next paragraph that at low fields ado and t w display distinctly different field 
dependences which further demonstrates the implications of non-Gaussian 
transport. 

3.2.3. Field dependence 

Whereas the thickness dependence of t w is rigorously determined by  the 
statistics of the transport process, the field dependence cannot be obtained 
without further assumption. This amounts to a more detailed description of 
the field dependence of the mean displacement l(E) between events. To a first 
approximation one can reasonably assume 1 oc E in which case eqn. (2) reduces to 

t T ~ exp (A/kT). (54) 

Higher order terms in the expansion of l(E) can be introduced to obtain 
stronger field dependences. For instance, assuming an exponential field 
dependence of the transition probabilities between successive events in the case 
of hopping transport leads to (Pfister 1977 a, b) 

tT,..L 1/a [s inh / e p E ~ ]  -1/~ \2 - -~ /A  exp (Ao/kT), (55) 

where p is the average distance between hopping site of density N h 
(p~-(3Nh/47r) -l/a) and A o is the activation energy at E = 0 .  At low fields, 
eEp/2kT~  1, eqn. (55) approaches the earlier result, eqn. (54). At high fields, 
epE/2lcT>> 1, hence 

( t T ",~L 1/a exp (A0)/cT) exp 2 a k T / '  (56) 

i.e. the activation energy approximates a linear field dependence 

A = A 0 -  epE/2ka 

which is determined by the hopping site distance and the disorder parameter a. 
The high field approximation in eqn. (56) is identical' to a t reatment of transport  
in one dimension in the presence of fluctuating potential barriers (Funabashi 
and Rao 1976). At low fields, however, the one-dimensional t reatment predicts 
t w o c E ,  implying field independent transport, whereas the formula based on the 
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three-dimensional t reatment of SM predicts the power law field dependence, 
eqn. (54). Thus disorder prevents transient transport from becoming field- 
independent even at the lower fields as long as ¢(t)oct -<1+~) is a good approxi- 
mation to the probability distribution function. 
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Range of sample thicknesses 2.2-100 t~m. Field range 2-10 V//xm (after 
Pfister and Scher 1977 a). 

The low-field approximation, eqn. (54), lends itself to a direct comparison 
with the experiment. That is, a plot of log t w v e r s u s  log (ELL) should yield a 
straight line of slope 1/a which is independent of sample thickness and applied 
field (low enough for eqn. (54) to hold). The result is shown in fig. 6 for 
a-A%Se s at room temperature for samples ranging in thickness from 2.2/xm to 
100t~m. The different data produce a master curve which has an average 
slope of -1 -85  yielding a~0-55. This value agrees remarkably well with 
earlier estimates (fig. 5 (a), fig. 3 (a)). The linear t w v e r s u s  E/L expected for 
the Gaussian transport for the extreme sample thicknesses is indicated to 
illustrate the clear deviation from the conventional case. 
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Fig. 7 
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Field dependence of hole mobility in 10 ffm thick a-As2S % sample at various tempera- 
tures. The lines were calculated from eqn. (55) using the parameters listed 
in the figure (after Pfister 1977 b). 

At higher fields the field dependence of t T becomes stronger than E -I/~. 
Fig. 7 shows data for a-As2Se a over a wide field and temperature. The fitted 
lines represent eqn. (55) calculated for the parameters listed in t h e  figure. 
Again the disorder parameter agrees well with earlier estimates. The applica- 
tion of eqn. (55) to the hole transport data for a-As2Sea implies a hopping 
mechanism, a subject which will be dealt with in § 4. The hopping distance for 
various samples ranged between N 4-5 nm which yields a hopping site density 
N h ,-,- 1018_1019 cm-a. 

3.2.4. Temperature dependence 

Transient hole transport in a-As~Se a is thermally activated with well-defined 
activation energy which at low fields has the average value ~ 0.62 eV (Fisher 
et al. 1976, Pfister and Scher 1977). This large value indicates that  the prop- 
agating hole packet interacts with a density of localized state located several 
tenths of an eV below the hopping transport states. The resulting transport 
mechanism has been termed ' trap-controlled hopping'  (§ 3; Pfister et al. 
1976, Pfister and Scher 1977). Early experiments on thin films of a-As~Sea 
yielded an activation energy of 0-45 eV which was interpreted to indicate the 
existence of a second less deep hole trapping level (Marshall and Owen 1971). 
I t  was argued that  for thin films and correspondingly short transit times 
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( < 0.1 ms), the holes interact only with the shallower level at ~ 0.45 eV and 
that  the superlinear thickness dependence of the transit time arises because for 
thicker samples the carriers interact with progressively deeper-lying traps 
(Fisher et al. 1976). 
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Low field activation energy for hole transport in a-A%Se a for various sample thickness 
and electrodes (after Pfister and Scher 1977 a). 

We do not concur with this explanation for the observed transit time disper- 
sion and associated non-Gaussian behaviour of the pulse shape and transport 
parameters. While it is true that  the activation energy for hole transport in 
a-As2Se a drops as the evaporated films become thinner (fig. 8), the dispersion 
of the pulse shape and the superlinear thickness dependence of the transit time 
persists for L > 10 t~m, where the activation energy approaches a constant value. 
I t  is also seen from fig. 4 (a) that  the current at  early times of the transient 
exhibits the same temperature dependence as the post-tr'ansit time current 
which would not be expected if the carriers were to interact with progressively 
deeper-lying traps as they penetrate the bulk of the sample. 

I t  is interesting to note from fig. 8 that  the activation energy measured 
with Au as an illuminated electrode is smaller than with A1. Dark current 
injection measurements have established that  Au is capable of injecting more 
charge into a-As2Se 3 than A1 (Abkowitz and Seher 1977) and the dark d.c. 
level measured with Au exceeds that  measured with Al by about one order of 
magnitude. Since Au is more injecting than A1, it is possible tha t  the dark 
Fermi level in the former lies closer to the transport states. If the Fermi level 
lies close to the 0.62 eV trapping level and the screening length is of the order 
of the sample thickness, the observed variation of the activation energy with 
the metal contact and sample thickness could indeed be rationalized. More 
detailed studies of this effect with different contact material would be desirable. 
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An interesting explanation for a thickness-dependent activation energy is 
offered by the non-Gaussian transport  theory. As discussed in § 2.2, the 
dispersion parameter a becomes temperature-dependent if the carriers interact 
with traps that  are distributed in energy. Combining eqns. (54) and (50) 
leads to 

A~  Ao +kT o In (L/Lo) ; (57) 

hence a temperature-dependent dispersion generates a thickness dependent 
activation energy. For a-As2Se a da=dT/To<O'15 for d T ~ 1 0 0 K ,  hence 
To> 670 K. With these values, one estimates tha t  the activation energy for a 
100/xm thick sample is ~ 0-2 eV larger than tha t  for a 2/zm thick sample. 
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Temperature dependence of hole velocity in a-Se at different fields. Several repre- 
sentative current traces are shown for 10 V//~m (after Pfister 1976 a). 

With respect to a-A%S%, hole transport in a-Se exhibits some novel features. 
As shown in fig. 4 (b), the current shape, which at room temperature is typical 
of a well-defined charge drift becomes progressively dispersive as the tempera- 
ture is lowered and below ~ 180 K exhibits the signature characteristic of 
non-Gaussian transport. Fig. 9 shows tha t  this transition from non- 
dispersive to dispersive transport is not accompanied by a change of the 
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ac t iva t ion  energy  which indicates t ha t  the same basic t r anspor t  mechanism 
prevails  over  the  ent ire  t empera tu re  range (Pfister 1976). The  deviat ion f rom 
the  Arrhenius t empe ra tu r e  dependence a t  ~ 250 K is bel ieved to be associated 
wi th  the glass t rans i t ion  tempera ture .  In  fact ,  ex tending the t empera tu re  
range to ~ 320 K demons t ra tes  t ha t  the hole mobi l i ty  becomes t empera tu re -  
independent  above  ~ 300 K and does no t  reflect  a T -n behaviour  (Abkowitz 
and Pai  1978). 

3.2.5. Correlations between tT(E , L) and I(t) 

The dispersion of the  t rans ient  cur ren t  and the  disorder- induced thickness 
and  field dependence  of the  t ransi t  t ime are corre la ted via the  pa ramete r  a of 
eqns. (1) and (2). Tha t  correlat ion cons t i tu tes  an  i m p o r t a n t  test  of the non- 
Gaussian t r anspor t  model  and can readi ly  be s tudied for hole t r anspor t  in a-Se. 

Figure  10 shows the dispersion pa rame te r  a as a funct ion of tempera ture ,  a n 
was de te rmined  f rom the  thickness dependence of t w (fig. 5 (b)). a i and  a~ 
were de te rmined  from the  slopes of the pulse shape at  t imes t < t  w and t > tw, 
respect ively  (fig. 4 (b)). In  terms of these parameters ,  the Gaussian r~gime can 
be character ized b y  a L = a i = 1 and af >> 1 while non-Gaussian t r anspor t  governed 
by  ~h(t)oct -(1+~) can be described by  0 < C ~ L = a i : a f < I .  Figure  10 clearly 
demonst ra tes  the  approach  f rom Gaussian to non-Gaussian behaviour  in te rms 
of these paramete rs  in the t empera tu re  range 140 -160K.  Below 1 4 0 K  
a L_~ a i ~ 0.55 whereas a~ rap id ly  falls off to approach  a value of ~ 0.15. The 
t empera tu re  dependence  of a and the  different  behaviour  of ai, a~ and  a L 

suggests t ha t  ¢(t) 's were more complicated t h a n  originally suggested b y  SM 
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mus t  be used to  explain these t r anspor t  data .  Such ¢(t)'s have recent ly  been 
obta ined  from a fit of a parametr ized  mul t ip le- t rap  analysis (Noolandi 1977, 
see § 4). 

Unlike a-Se, for a-A%Se 3 a t empe ra t u r e  var ia t ion  cannot  be uti l ized to 
establish the predic ted  correlations. However ,  these correlat ions could be 
established by  comparing the power exponen t  obta ined f rom the field depen- 
dence of tT( = 1/aE) and the average a-value, de te rmined  from the current  shape, 
a i = l / 2 ( a i + a j ) .  Again, for the non-Gaussian case where ¢(t)oct -(t+~) one 
expects  a s = a I = a L. Figures 2 (c), 3 (a), 4 (a), 5 (a) and 6 indeed establish this 
correlation.  A more detai led tes t  could be per formed following the  observat ion  
t h a t  the field dependence of the t rans i t  t ime var ied among various samples 
a l though they  were prepared  under  identical  evapora t ion  conditions. As is 
shown in fig. 11, the var ia t ion of a E is corre la ted with a var ia t ion  of o( I .  

Fig. 11 
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Correlation between current shape and field dependence for hole transport in a-As~S% 
at room temperature. (a i )  is average a-value determined from current shape, 
a E is determined from field dependence of transit time (after Pfister 1976 b). 

3.3. Dark d.c. conductivity and contacts 

The field and t empera tu re  dependence  of the  d~rk d.c. conduc t iv i ty  in m a n y  
disordered systems can be explained b y  the  empirical form (Marshall and 
Miller 1973, Fisher  et al. 1976) 

~dc(T) = % exp ( -- A0/]cT ) exp  (ea(T)E/kT).  (58) 

Indeed  dark  conduc t iv i ty  measurements  on a-As2Se 3 with gold contacts  confirm 
this  expression over a wide field and t empera tu re  range. Since adc is ob ta ined  
f rom a s teady-s ta te  measurement ,  the mobi l i ty  t~= a/ne is well defined and  
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Fig. 12 
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should not exhibit the field a~d thickness dependence of the mobility derived 
from the non-Gaussian transient current. In  agreement with this prediction, 
aac is found to be an intrinsic variable (independent of sample thickness). 
Furthermore, as shown in fig. 12, the field dependence of aac at low fields is 
much weaker than the field dependence of the transient conductivity. The 
different behaviour of the steady-state and transient conduetivities then 
constitutes a beautiful example to demonstrate the relation between the distri- 
bution of statistical event  times and the observation time. Interestingly,  at  
high fields both ad~ and ~d, operationally defined as L]tTE, approach the  same 
exponential field dependence exp (eaE]kT), where the coefficient a is approxi- 
mately the same for both measurements (fig. 12). While this could mean that  
disordered induced fluctuations are overcome in the presence of strong fields, 
the field independence of a does not  support this view. 

An interesting consequence follows from the fact that  the steady-state and 
transient conduetivities exhibit the same field dependence above some limiting 
field (~  10 V/Fm for a-As~Se 3 at room temperature). An exponential field 
dependence at high fields is indeed predicted for the transient conductivity 
(eqn. (55)). An exponential high field dependence is also predicted for the 
steady-state conductivity from a one-dimensional analysis of carriers hopping 
over fluctuating barriers (Funabashi and Rao 1976). In fact, the predicted 
exponential field dependences are formally equivalent if one equates c~= 1Is 

A.P. 2 F 
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where a is the disorder parameter in the SM transport  theory and s is a measure 
of the fluctuation of the potential barriers between localized sites. Now, a 
describes the time evolution of the propagating carrier packet and itself is time 
dependent (eqn. (50)). 

The parameter s, on the other hand, describes a steady-state situation and 
therefore is time independent. I t  remains a challenge for future theoretical 
work to explain why at high fields both transient and steady-state conduetivi- 
ties approach the same field dependence with a__l/s. The formula of 
~'unabashi and Rao (1976) predicts tha t  the field dependence of the d.c. 
conductivity sets in when epEs/2kT > 1. Note that  the deviation from the 
power law field dependence of the transit time, E TM, is expected to occur at  a 
higher field since the parameter a does not enter the argument of the sinh func- 
tion of eqn. (55). This is supported by  the experimental data shown in fig. 12. 

Some additional remarks are appropriate in the discussion of d.c. dark 
currents in highly insulating solids. The important  role the contact may  play 
in these measurements is well appreciated when dealing with crystalline semi- 
conductors but  they have received little attention in characterizing the electrical 
properties of disordered solids. Ideally, the contact used for d.c. measurements 
should be invisible (i.e. ' ohmic ') such tha t  the d.c. current flowing through the 
sample for a fixed external field is determined only by  the transport  parameters 
of the solid. Most often ohmic contacts are difficult to realize and b y  using 
the technique of four-probe measurements the non-ohmicity of the contacts can 
be circumvented. However, for highly insulating solids or solids with appreci- 
able surface conductivity, this technique can lead to erroneous results and one 
has to rely on bulk conductivity measurements performed on thin sample films 
which are provided with electrodes on both sides (sandwich cell configuration). 
To be able to interpret this type  of data which typically consists of a family of 
plots of d.c. current versus applied field, j versus E, one first has to establish 
the nature of the contact. This may b e  complicated by  the additional problem 
that  the contact may change its properties as a function of time following the 
application of the external field. In the following some procedures are 
outlined that  should enable one to distinguish among ohmic and non-ohmic 
(emission-limited) contacts. 

An ohmic contact must satisfy two stringent conditions. The first is 
contact invisibility when the applied field is sufficiently low such that  any 
excess injected carrier is neutralized before it completes the transit across the 
film. Under these conditions, the resident carrier density, n, is presumed to 
be unperturbed by  the contact and only under these conditions can a d.c. 
current be interpreted as j = <rE, where a = enlx. Ix is the microscopic mobility. 
The second condition is that  when the field is high enough such that  any excess 
injected carrier completes the transit before it is neutralized, the ohmic contact 
behaves like a" perfect injector with an unlimited carrier reservoir to supply a 
space-charge-limited current (SCLC). The transition between the high and low 
field behaviour is expected to occur at fields for which the transit time t T = L/IxE 
approaches the dielectric relaxation time (Maxwell time) • = %ep, where p is the 
unperturbed bulk  resistivity and E the dielectric permittivity. Taking a-As~S% 
as an example, the transition into space-charge-limited conditions is expected 
for fields E~L/p%el~~0"l V//xm for a 100/xm thick sample film assuming 
pN 10 TM ~ cm, e=  11.2 and /x~  10 -5 cm~/V s. 
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Consider the schematical j - E  plot in fig. 13, which consists of a linear part  
j oc E at low fields E < E 0 and a superlinear part  j oc E n at fields E > E o. j - E  
plots of the type  shown are typically found in dark conductivity measurements 
in disordered solids, of which a-As2Se a represents a well-known example. If 
the increased field dependence for E > E 0 is due to space-charge limitation, 
the critical field E 0 increases in proportion to the sample thickness L. (The 
transition to SCL occurs when t T,~ -r = pc%, i.e. E o,.,L/tx~-. ) Hence, changing 
the sample thickness provides a straightforward method to check the ohmicity 
of the contact  and the origin of the superlinear field dependence (dashed 
line in fig. 13). If, however, the j - E  plots for different sample thicknesses 
scale in units of j versus E, one has to resort to alternative techniques to 
determine the properties of the contact. If the contact  is ohmic and the 
current for E > E 0 is not  space-charge-limited, the j - E  curve reflects a field- 
dependence d.c. conductivity, a(E). If the contact is emission-limited, the 
d.c. current level is determined by the rate the contact  can supply carriers 
and, therefore, the j - E  curve represents the field dependence of the carrier 
supply. Ohmic contacts can be distinguished from emission-limited contacts 

A.P. 2 G 
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by  examining the  t ime evolution following the  applicat ion of a s tep-vol tage 
(Scher et al. 1971). 

I f  the contac t  is ohmic, the  t ime to establish current  equil ibrium following 
the  applicat ion of an external  field is de te rmined  b y  the dielectric re laxa t ion  
t ime, ~ = %ep, or the RC t ime of the  electronic circuit if /~C > ~ (compare the 
schematic  cur ren t  responses in fig. 13). I f  for E > E 0 the  d.c. cur ren t  shows the  
thickness dependence characterist ic  for space-charge l imited currents,  t h e n  the 
cur rent  response following a field step E > E o should exhibi t  the  cusp well known 
f rom t rans ient  space-charge-l imited currents .  However ,  unlike the photo-  
induced t rans ien t  current  which approaches  zero (i.e. dark  level) for t > tT, the 
cur rent  induced b y  the step field should a sympto t e  to  the space-charge-limi'ted 
dark  current .  I f  nei ther  of the  current  responses i l lustrated in fig. 13 for ohmic 
conditions is observed, the  contac t  has to  be emission-limited. For  ~ > t T i t  
takes  a t rans i t  t ime to  establish the (emission-limited) d.c. current  and  
therefore,  as shown in fig. 13, the cur rent  response is a ramp of width  t T. 
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Time-dependent behaviour of gold/phenoxy contact on a-As2Se a following the 
application of the applied field at t = 0. Region I : emission-limited contact ; 
Region I I  : contact characteristic of gold (after Tutihasi 1976). 

The contac t  may  change its character is t ics  as a funct ion of t ime following 
the  applicat ion of the  step field or as a func t ion  of the  field s t rength.  F igure  14 
depicts as an example  the t ime dependence  of the dark  current  for a-As2S % for 
the  electrode configurat ion shown in the  insert  (Tutihasi  1976). The cur rent  
exhibi ts  a dist inct  S-shape t ime dependence  wi th  a rap id  rise occurring at  
t o ~ 250 min. The characterist ic  t ime t o decreases with increasing field and 
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temperature. A similar S-shape time-dependence is observed if the sample is 
photoexcited with strongly absorbed light. The detailed examination of this 
time-dependence indicates that  the gold/phenoxy contact changes from an 
emission-limited contact of very low injection efficiency (--blocking) to a 
contact characteristic of gold on a-As2S %. The transition between the two 
r6gimes occurs when the electric field across the phenoxy layer due to the 
electrons trapped at the phenoxy/a-As~S% interface is sufficiently intense to 
promote hole tunnelling from gold into a-A%S%. I t  is suggested that  similar 
electrode effects are important for the time-dependence of the photocurrent 
observed in a-A%S% and other chalcogenide glasses provided with aluminium 
or SnOe contacts (Kolomiets et al. 1973). 

The techniques described in fig. 13 to determine the properties of contacts 
have been successfully applied in a s tudy of the behaviour of gold on a-As2Se a 
(Abkowitz and Scher 1977, Abkowitz and Scharfe 1977). Gold is most 
commonly used in j - E  measurements and the results have been interpreted in 
terms of j = a E  which implies that  the gold contact is ohmic (see for instance, 
Hurst  and Davis 1974). Paradoxically, using the same contact, time-resolved 
photoinduced hole transients can be observed in a-As2S%, which implies that  the 
contact exhibits non-ohmic behaviour. The hole transients can be excited 
after the  dark current equilibrium has been established, precluding any possi- 
bility of the contact relaxing from initially blocking to finally ohmic after the 
onset of the field. The step-field experiments confirm the perception obtained 
from time-of-flight experiments that  gold forms not an ohmic but  an emission 
limited contact, at least for fields where time-of-flight experiments can be 
performed ( >~ 1 × 10 ~ V/cm at room temperature). The time evolution of the 
current following the application of the field is initiated by  the transit of a 
finite charge stored at the gold contaets/a-As2S % interface. Under steady- 
state conditions, the charge reservoir at the interface becomes depleted and the 
current value is determined by  the rate carriers are emitted from the gold 
contact (Abkowitz and Scher 1977). Interestingly this rate appears to reflect 
bulk transport properties determined from time-of-flight measurements. The 
correlation of the field and composition dependence of the drift mobility and 
dark d.c. conductivity in a-As-Se alloys at high fields is well recognized and, 
initially, led to the presumption that the dark current in these systems is 
ohmic in the sense that  j = entrE. The step-field experiments indicate that  
the relationship between d.c. current and bulk transport parameters is more 
complicated and needs further investigation. 

Typical current responses following the application of a voltage step are 
shown in fig. 15 for a variety of experimental conditions. The time t m of the 
current maximum exhibits the field and temperature dependence of the transit 
time t w determined from time-of41ight experiments. The various experi- 
mental conditions were chosen to demonstrate that  the surface charge reservoir 
is depletable, depends upon the interface and can be res tored  by  surface- 
absorbed light. The detailed time-dependence of the current response at 
t,,~t m can be accounted for by  a model that  convolutes a time-dependent 
depletable surface charge reservoir with the stochastic (non-Gaussian) transport 
properties described in § 2 (Abkowitz and Scher 1977). In addition, this model 
accounts for the offset in value of the transit time determined by time-oLflight 
and by  the response to a step in voltage. 

2G2 
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Fig. 15 
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Current response to a 500 V voltage step of a gold/a-As~S% sandwich cell L = 100 ~m, 
at room temperature, for various resting periods following the application of 
the field. The field was on for 60 s and then off for 5 min after which trace (1) 
was recorded. Following a 5 rain rest the field was on for 60 s and then off 
for 15 s after which trace (2) was recorded. This sequence was repeated for 
30 s, 60 s and 120 s resting periods, trace 3, 4 and 5, respectively. The 
sequence 3-5 demonstrates the relaxation of the depleted contact (2) towards 
the relaxed contact (1) (after Abkowitz and Scher 1977). 

3.4. Dispersive transport in disordered solids other than chalcogenide glasses 

3.4. I. Organic disordered solids 

Non-Gaussian transport is not specific to chalcogenide glasses but has been 
observed in a broad range of disordered solids, both inorganic and organic. 
The organic solids offer the enormous experimental advantages tha t  the states 
involved in transport can easily be controlled by materials preparation. Thus 
hopping transport which prevails in all organic disordered materials studied so 
far can readily be identified on the basis of the exponential dependence of the 
transit time on the average distance between localized sites which can be 
controlled chemically. Hence a s tudy of the organic disordered solids such as 
carbazole polymers (Gill 1972, Pfister and Griffiths 1978), molecularly doped 
polymers (Montroll 1976, Pfister et al. 1976, Pfister 1977 a) and organic 
amorphous glasses (Gill 1974) should provide some detailed information on the 
mechanisms underlying the charge transfer between localized states. In the 
following a brief survey of experimental data pertinent to non-Gaussian 
transport will be presented. Emphasis will be on the fact that  the transport 
properties of these systems and the ehalcogenide glasses are very much alike, 
and thus provide unique models of hopping transport against which modes of 
transport proposed for the chalcogenide glasses can be compared and analysed. 

Dispersive transient hole and electron transport has been observed for the 
charge transfer complex of poly(N-vinylcarbazole) with trinitrofluorenone 
(Gill 1972) and, like for a-As2S %, a plot of log I versus log t showed the univer- 
sality behaviour characteristic of non-Gaussian transport (Seki 1973). Similar 
master plots could be produced from transient hole current in molecularly doped 
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polymers (Mort et al. 1976, Pfister 1977 a). A specific example for a solid 
solution of N-isopropylcarbazole in polycarbonate is shown in fig. 16. 

Transport in the disordered organic systems occurs via hopping among 
localized sites associated with the dopant molecule. Most commonly charge 
transport is unipolar with hole transport  prevailing when the dopant molecule 
is donor-like, while electron transport is more common for acceptor molecules. 
On a molecular level, charge transfer can be viewed as a redox process in which 
a neutral molecule transfers an electron to a neighbouring molecular cation 

Fig. 16 
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Master plot for hole transient current in molecularly doped polymer N-isopropyl- 

carbazole/polycarbonate NIPC/Lexan (after Mort etal. 1976). 

(hole transport) or from an anion to a neighbouring neutral molecule (electron 
transport). Hence, the transit time measured as a function of field, tempera- 
ture, molecule concentration and kind should yield information on the 
mechanisms involved in the exchange of charge between neighbouring localized 
sites (dopant molecules). Figure 17 shows the concentration dependence of the 
drift mobility for a number of molecularly doped systems. The exponential 
decrease of the mobility with increasing average intersite distance p is taken as 
evidence that  transport indeed involves hopping. The slope 7 of the log 
versus p plot gives a measure of the decay of the wave function outside the 
transport active molecules. Hence, from the transit time data, information 
on a microscopic quant i ty  is obtained ! 

Similar to hole transport in a-Se a transition from Gaussian to non-Gaussian 
transport is observed for hole transport in poly(N-vinylcarbazole), PVK. On 
the other hand, as shown in fig. 18 hole transport in brominated PVK, where 
the Br substitution occurs at the 3 or 6 position on the carbazole ring, remains 
dispersive over the entire experimental temperature range in a fashion similar 
to a-A%Se a (Pfister and Griffiths 1978). Hence, PVK and 3Br-PVK constitute 
model systems for hopping transport which show features similar to the model 
ehaleogenide glasses. 

The different temperature behaviour of the dispersion in the two, polymers 
might be connected to subtle differences in their morphology. Unsubsti tuted 
PVK undergoes ' crystallization ' to produce.folded chain paracrystals (Griffiths 
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Fig. 17 
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Dependence of drift mobility on distance between localized site for various organic 
disordered solids ((a) after Gill 1972, (b) Mort et al. 1976 and (c) Pfister 1977 a). 

1975). In a projection down the chain axis of these crystals, the carbazole 
groups appear to have a regular trigonal symmetry about this axis. Although 
the interchain carbazole symmetry is lost in amorphous PVK, the intraehain 
carbazole symmetry and a considerable degree of chain ~parallelism are probably 
maintained. On the other hand, for the bromine-substituted PVK the chain 
parallelism characteristic of unsubsti tuted PVK is not present and the polymer 
does not crystallize (Griffiths et al. 1977). The random substitution of the 
bromine in either the 3 or 6 position (identical in the monomer but  not in the 
polymer) can lead to random polarization of the carbazole group and random 
steric complications which override the van der Waats interactions that  lead 
to chain parallelism in unbrominated PVK. This results in a considerably 
greater randomness in interchain carbazole-carbazole distances and orientations 
in 3Br -PVK and, furthermore, suggests a change in the intrachain carbazole 
symmetry and interactions. I t  is proposed that  the different degree of ordering 
present in PVK and 3Br-PVK is reflected in the different temperature 
behaviour of the dispersion of carrier propagation. Specifically, the increased 
randomness among the bromine substituted carbazole groups might be the 
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origin of the large relatively temperature-independent dispersion of transit hole 
transport in this carbazole polymer. 

Trap-controlled hopping (§ 2) is proposed as novel transport mechanism 
that  should be observable in a wide range of disordered solids. Unambiguous 

Fig. 18 

T(K) 
500450 400 350 300 

l o ~ r  _ , , , , 

1 6  4 

1 6  5 

"~ 1G6 

E 
U 

::1. 

l o - 7  

l e t  8 

l o - 9  

H 

100,us 

j ~ . ~ o  K 

~,J X , ~ 2 4  K 

100ps 

" h ~ 1 4  K 

250 
'20V/,um 
L=12.Sum 

PVK 

H 2ms 

~s 

334 K 

•Om$ 

H 

ls 

2.0 3.0 
I/T (10-3K -1) 

400ms 

4.0  

Temperature dependence of hole transport PVK and 3Br-PVK. Representative 
current traces are shown (after Pfister and Griffiths 1978). 

evidence for this transport process has first been established for a molecularly 
doped polymers. In the specific example, hole transport in the solid solutions 
of polycarbonate, N-isopropyl carbazole (NIPC) and triphenylamine (TPA) was 
studied. Since the ionization potential of TPA is smaller than for NIPC, it 
was expected that  TPA, at low concentrations, acts as a hole trap for holes 
hopping among the higher occupied molecular orbitals of the NIPC. Figure 19 
summarizes the results of the time-of-flight experiments conducted at room 
temperature and with an applied field of 50 V/Fm (Pfister et al. 1976). Plot ted 
along the ordinate is the drift velocity L/tT, where L is the sample thickness and 
t T is the transit time determined from the logarithmic current-versus-time plots. 
I t  should be pointed out that  at t T about 10-15% of the injected carriers 
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t r a n s i t e d  the  sample.  P lo t t ed  along the  abscissa  is the  T P A  concent ra t ion ,  
nTPA, in uni t s  of molecules per  cm a. Concent ra t ions  were calcula ted f rom the  
weight  ra t io  of d o p a n t  molecule to L e x a n  wi th  1.16 g /cm a as an average  densi ty .  

Two sets of samples  were measured .  I n  one set  the  N I P C  concen t ra t ion  
was zero and  the  T P A  concent ra t ion  was varied.  The  hole velocities measu red  
for  these  samples  are shown as solid circles in fig. 19. Wi th  use of the  same  
a r g u m e n t  appl ied  to  establ ish hopping  t r a n s p o r t  in N I P C - d o p e d  L e x a n  (Mort 
et al. 1976), the  s t rong concent ra t ion  dependence  of Li t  T shown in fig. 19 also 
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confirms this  t r a n s p o r t  mechan i sm for the  T P A / L e x a n  system.  Thus  a t  f ixed 
t e m p e r a t u r e  a n d  field, the  drif t  ve loc i ty  is control led b y  the over lap  of the wave  
funct ions  localized a t  ne ighbour ing  T P A  molecules wi th  average  inters i te  

dis tance P T P A  N n T P A  - 1 / a .  

I n  the o ther  series of samples,  L e x a n  was doped  with  N I P C  molecules (with 
nNiPC = 1 × l02] cm -3) and  the  T P A  concent ra t ion  was varied,  nwp A was kep t  
below ~ 3  × 1020 cm -3 to  ensure t h a t  the  average  inters i te  d is tance  
P N 1 P C ~  (nNiPC)  -1/a  a m o n g  the  N I P C  molecules was not  changed b y  the  T P A  
molecules.  The  dr i f t -veloci ty  resul ts  a t  50 V/Fm are shown in fig. I9 as the  
open circles. For  nTp A = 0 (arrow), t r a n s p o r t  occurs via  hopping  a m o n g  N I P C  
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molecules. Fo r  the same concentra t ion of ~ 1 x 10 21 em -a t r anspor t  via TP A  
molecules exceeds t ha t  via N I P C  molecules by  more than  one order of magni-  
tude.  

The addi t ion of T P A  reduces the  drif t  veloci ty  f rom the value a t  nTp A = 0 in 
a manner  which, for nTpA~ 101S--102° cm -a, is approx ima te ly  proport ional  to  
nTpA -1 Wi th  fur ther  increasing T P A  concentra t ion,  the veloci ty  goes th rough  
a min imum at  ~ 2 x  10 20 cm -a and  begins to  rise again, approaching,  a t  
~ 3 x 10 20 cm -3, the  value obta ined with films of the first sample series, which 
contained no NIPC.  Samples with nTp A > 4 x 10 20 em -a cannot  be prepared  
wi thout  changing the average intersite distance among N I P C  molecules. Also 
for to ta l  concentra t ions  in excess of 2 x 10 21 cm -a crystal l izat ion effects became 
apparent .  

F r o m  these concent ra t ion  studies alone, it  is possible to explain the general 
features  of the  observat ions in a re la t ively  simple way. For  nTp ~ = 0, the  hole 
t r anspor t  occurs via hopping among the  N I P C  molecules present  in a f ixed 
concentrat ion.  As T P A  molecules are in t roduced  at  low concentrat ions,  
carriers occasionally become localized on a T P A  molecule which, because its 
ionization potent ia l  is lower than  NIPC ,  acts as a t r ap  for holes. Since the 
overlap between T P A  molecules is so small a t  these concentrat ions,  fu r ther  
drif t  of the charge localized on T P A  must  awai t  the rmal  exci ta t ion  back to an 
N I P C  molecule. The da ta  points  for nTpA<2 x 10 20 cm -3 per ta in  to  this 
mechanism. At  sufficiently high T P A  concentrat ions,  the overlap among the 
T P A  molecules becomes sufficiently large t h a t  T P A - T P A  hopping begins to 
compete  with the  hopping among N I P C - N I P C  and  T P A - N I P C  pairs observed 
at  low T P A  loading. This process causes the  drif t  veloci ty  to rise for 
nTpA~>2 X 1020 cm-a ;  and  it  appears  f rom the da ta  shown in fig. 17 t h a t  a t  
nTp A ~ 4 × 1020 hopping among T P A  complete ly  dominates  the  charge t ranspor t .  

T P A  in low concentra t ions  inhibits  hole t r anspor t  th rough  N I P C  because 
its ionizat ion potent ia l  is lower. I t  follows then  tha t ,  in the  converse case, 
charge t r anspor t  th rough  T P A  should not  be inf luenced b y  N I P C  as long as the 
intersi te  distance (nTPA) -1/a remains constant .  This is exper imenta l ly  con- 
f i rmed in fig. 19 by  the coincidence of the velocities measured  for nTp ± ~ 4 × l020 
en1-3 for bo th  sample series and by  the point  ident if ied b y  an asterisk which 
per ta ins  to a sample with the loadings nNiPC , , ~  2 x 10 20 cm -a and nTp A ~ 8"5 × 10 20 
c m  - 3 .  

These exper iments  clearly demons t ra te  the  s t rength  of the molecular ly 
doped systems for the in te rpre ta t ion  of t r anspor t  da ta  on a microscopic level. 
In  chaleogenide glasses, the  identif icat ion of t r anspor t  mechanisms has to rely 
upon numerical  arguments .  For  the organic systems, the  abi l i ty  to control  the 
densities and species of the localized state  produces unambiguous  evidence for 
the under lying microscopic t r anspor t  processes. 

3.4.2. a-SiO 2 

Trans ient  hole t r anspor t  in a-SiO 2 provides a fu r the r  interest ing example  
where non-dispersive and  dispersive t ranspor t  can be observed on the same 
sample. Unlike for a-Se or P V K  where the  t ransi t ion between the two 
statistics occurs as a funct ion of t empera tu re  and involves the same under lying 
t r anspor t  mechanism, in a-SiO 2 the t rans i t ion can be observed as a funct ion of 
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time and involves two different transport  processes, viz. the early time 
' in t r ins ic '  and the late time ' ex t r ins ic '  transport. Both these transport  
processes are believed to be hopping (Hughes 1977). In the experiments the 
charge carriers are generated in the bulk by  an X-ray pulse of half width of 
-~ 3 ns~ The electron mobility in a-SiO~ is so high that  they are swept out  of 
the sample bulk within a few pico-seconds and therefore the current following 
the X-ray pulse at times >~5 ns is due to hole motion (Hughes 1975, 1977). 
Following Hughes (1977), the holes created by  ionizing radiation at a random 
site in the bulk of the SiO~ film initially are transported by hopping among the 
2p orbitals of neighbouring oxygen atoms. At these early times, the hole is 
expected to form a small polaron by  distorting the lattice positions of nearby 
ions. The initial polaron hopping has been termed ' in t r ins ic '  transport  
process. The hole lifetime is of the order of 100 ns, after which it becomes 
trapped and proceeds its transport via hopping among structural defects 
(' extrinsic '  transport). The extrinsic process exhibits all the features of a 
non-Gaussian transport governed by  a algebraic hopping time distribution 
function, cqn. (54), where a = const. The dispersion depends upon the prepara- 
tion of the oxide films and its corresponding a values range from ~ 0.14 (McLean 
et al. 1975)to ~0.3 (Hughes 1977). 

The hole transport dispersion in a-SiO 2 is remarkably stable with tempera- 
ture. Figure 20 shows a composite of transient voltage responses of a metal/ 
SiO2/Si MOS device (McLean et al. ]977). The composite recovery curve has 
been constructed from individual recovery traces measured at various tempera- 
tures. The individual traces were then shifted along the temperature axis by  an 
amount calculated from the activation energy and the difference of experimental 
and reference temperature (297 K, top axis ; 87 K bot tom axis). The solid line 
was calculated using the CTRW result for ¢ ( t )~ t  -(t+=) where a = const. = 0.22 

Fig. 20 
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for the temperature range 87-377 K !  Note also the enormous time range 
over which the theoretical fit approximates the data (McLean et al. 1975). 

The extrinsic hole mobility in a-SiO 2 is activated with ~ 0.37 eV and the 
hopping site density is ~ l019 cm -a. Interestingly, this value is of the same 
order as the hopping site density estimated for hole transport in a-AseSe 3 
(§4.3). 

§ 4. INTERPRETATION OF TRANSPORT MECHANISMS 

4.1. Introduction 

The theoretical concept of CTRW introduced in § 2.2 is generally applicable 
to any microscopic transport  mechanism, whether hopping transport or trans- 
port in extended states. In fact, the mathematical equivalence between the 
formation of CTI~W (Scher and Montroll 1975) and the generalized multiple- 
trapping formalism (Noolandi 1977, Sehmidlin 1977)has been demonstrated in 
§ 2.3. Hence, the analytical t reatment of a specific transport mechanism will 
centre on the calculation of the event time distribution function ¢(t) and specify 
its dependence on the microscopic transport parameters. Even if such a 
calculation were possible, the experimental verification of the assumed micro- 
scopic transport  mechanism is exceedingly difficult and often ambiguous if 
the transit time dispersion and its temperature dependence are the only 
experimental inputs. This is the situation for amorphous chaleogenides, and 
the identification of the underlying mechanism of charge transport remains 
somewhat ambiguous. We believe that  transport in these systems, a-Se and 
a-As2Se 3, occurs via a hopping process and we provide the reasoning in the next 
paragraphs. 

For doped organic polymers the situation is much clearer, since the kind and 
density of the transport states can be changed by  materials preparation in a 
controlled and predictable manner. The dependence of the transit time upon 
the concentration of the dopant molecules clearly establishes hopping as 
underlying transport mechanism (fig. 17). Hence, these systems provide 
unique models for the s tudy of dispersive and non-dispersive (fig. 18) hopping 
transport in disordered solids. Hopping in disordered systems is not synony- 
mous with dispersive transport. The transition to non-dispersive transport at 
higher temperatures observed in PVK and the relative temperature insensitivity 
of the transit time dispersion in the related carbazole polymer 3Br-PVK (fig. 18) 
are clear evidence that  the observation of a transit time dispersion depends on 
subtle differences in sample morphology, viz. the microscopic transport 
parameters. 

4.2. Doped polymers 

The key observable parameters of transport in doped polymers are ~,, the 
empirical quanti ty describing the localization of the charge at the hopping site 
(fig. 17), and the activation energy A, the energy required to transfer the charge 
carrier between neighbouring localized sites. At room temperature and 
50 V/t~m applied field, these parameters have the typical values of ~ ~ 1-2 × l0 s 
cm -1 and A ~ 0.3-0.6 eV. No calculation of the overlap integral and activation 
energy associated with transfer of charge between localized sites is available for 
the doped organic system. 
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I t  is generally found that  the overlap term, exp ( - 7 p ) ,  depends upon 
temperature and field (Pfister 1977 a) and that  the activation energy depends on 
field (Gill 1972, Pfister 1977 a) and hopping distance (Pfister 1977 a). In 
dealing with these issues, one has to take into account that  the picture of a 
charge transfer between localized sites is very simplified. In particular, 
positional disorder (hopping site distances) and a distribution of energy levels 
(activation energy) cannot obviously be separated. The hopping distance 
calculated from the dopant concentration assuming point-like molecules is 
indeed of the same order as the geometrical dimensions of the molecules them- 
selves. Hence, the relative orientation of the molecules becomes an important  
factor for the transfer of the charge carrier, since the overlap term is extremely 
sensitive to the local morphology. A calculation of the overlap integral 
between the highest occupied molecular orbital of neighbouring NIPC molecules 
in vacuum shows tha t - -as  a function of the relative orientation at fixed distance 
between the centres of mass-- this  quant i ty  varies by  about seven orders o f  
magnitude (Slowik and Chen 1977). 

The strong dependence of the overlap on the relative orientation of neigh- 
bouring molecules may have some interesting consequences regarding the 
interpretation of the transport activation energy. 

Given the fact that  the overlap term can be maximized by relative rota- 
tional motion of neighbouring molecules, a carrier may await such an event 
before hopping to its neighbour. In such a case the electronic transport 
activation energy contains a term that  describes the activation over rotational 
or librational barriers of pertinent groups of the dopant molecule. The 
observation of a temperature-dependent overlap term might indeed indicate 
tha t  molecular motion plays an important role in electronic transport.  The 
observation of trap-controlled hopping in mixed doped polymer systems (fig. 19) 
suggests that  traps provide an additional source for the activation energy. 
Specifically, impurities with an ionization potential less than that  of the dopant 
molecule may constitute traps for hole transport. Hence, the activation 
energy is expected to involve four terms, namely, A,, A d, A t, Ar. Ap is the 
polaron binding energy which includes polarization of the polymer host matrix, 
A d is the site-to-site fluctuation of the electronic transport levels, A t is the 
energy difference between the transport levels of trapping molecules and 
hopping states and A r is the activation energy for rotational or librational 
molecular motion. 

The temperature dependence of the hole hopping mobility and transit time 
dispersion in poly(N-vinylcarbazole) is qualitatively very similar to that  for 
hole transport in a-Se (figs. 9 and 18). Of particular interest is the observation 
of a transition from dispersive to non-dispersive transport as the temperature is 
raised which is not associated with a detectable change of the activation energy. 
Inspection of the current traces as a function of temperature shows that  the 
hopping time distribution function ¢(t) can be approximated by  the power time 
dependence t -(1+~), over a temperature range of ~315-355 K. At lower 
temperatures ~ < a i whereas at higher temperatures a~ > 1 and ~i--~l (Pfister 
and Griffiths 1978). With respect to PVK, the dispersion of hole transport  
for the bromine-substituted polymer, 3Br-PVK, is much less temperature 
sensitive and remains dispersive at the highest experimental temperature. In 
this case ¢( t )~ t  -(1+~) is a good approximation in the temperature range 
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345-395 K. At lower temperatures ~ < ai and at higher temperatures af > 1 
and ai--*0.8 (Pfister and Griffiths 1978). 

The data for hole hopping transport in 1)VK and 3Br-PVK thus demonstrate 
that  the Scher-Montroll approximation of a hopping time distribution 
¢( t )~ t  (1+~) is a good approximation over some temperature range, but  that  
more complicated ~b(t)'s are necessary to account for the data for all tempera- 
tures. The temperature dependence of the dispersion indicates that  fluctua- 
tions of the various activation energies involved in charge transport (A t, A d, A~) 
play an important  role in the observed transit time dispersion. Finally, the 
different temperature dependence of the dispersion of hole hopping in the two 
closely related polymers demonstrates the subtle role played by sample 
morphology (§ 3.4). 

4.3. a-As2Se 8 

The key features of transient hole transport in a-As2Se a are its broad 
non-Gaussian dispersion which is strikingly temperature insensitive (fig. 4 (a)) 
and its high activation energy ( ~ 0.6 eV). Over the experimental temperatures 
and field range, the algebraic time dependence of ¢(t) proposed by Scher and 
Montroll (1975), ¢(t),,,t-(l+~), provides a good consistent description for all 
experimental results. 

The transport  data for a-As2Se a are best interpreted iI~. terms of a trap- 
controlled hopping mechanism since, on the one hand, the constancy of the 
dispersion with respect to temperature cannot be reconciled with a multiple 
trapping model that  has the trap depth as dominant random variable that  
produces all of the dispersion and, on the other hand, the activation energy is 
too large for conventional hopping transport. The analysis of hole transport in 
a-As2Se a in terms of a generalized multiple-trapping model leads to the con- 
clusion that  both hopping and extended state motion are compatible with the 
experimental results but  the most plausible view is (trap-controlled) hopping 
transport (Schmidlin 1977 b). 

We propose that  holes in a-As2Se a hop through a density of localized 
transport states Nh, and achieve local thermal equilibrium with a trapping 
density AT t ~ Nl~. The activation energy is associated with the hop from the 
trapping site (t) to the transport site (h) and the dispersion of the carrier packet 
is dominated by  the randomness of the (t) (h) site separation (which is the same 
as that  of the (h)-(h) sites). I t  is likely that  fluctuating trap energy levels also 
contribute to the transit time dispersion. A consistent interpretation of the 
numerics yields for a-As2Se a : N h ~< 1019 cm -a, N t >~ 1016 cm -a (Pfister and 
Scher 1977 a). 

The trapping states in the trap-controlled hopping process might be 
associated with the recently proposed ' in t r ins ic '  gap states in chalcogenide 
glasses (Mort et al. 1975, Kastner et al. 1976). I t  is argued that it is energeti- 
cally favourable for the lowest energy neutral defects to pair-wise swap 
electrons, resulting in the reaction 2D-+D + + D-.  This reaction is proposed 
to be exothermic due to strong electron-phonon coupling that  is evident from 
the enormous Stokes shift of the photoluminescence (Street 1976). The charged 
defect states are spin-paired and hence could provide an explanation for the 
absence of E.S.R. in chalcogenide glasses. Kastner  et al. (1976) described the 
formation of charged defects in terms of valence alternation. The lowest 
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energy defects, threefold coordinated chalcogen atoms (C8°), undergo a bond 
alternation to form a valence alternation pair in which one of the chalcogen 
atoms is singly coordinated negatively charged (C1-) and the other is threefold 
coordinated positively charged (C3+). These charged defect models have gone 
a long way to explaining luminescence (Street 1976, Street et al. 1974), non- 
radiative recombination and photoinduced structural changes (Street 1977) 
and photoinduced E.S.R. and midgap absorption (Bishop st al. 1975). 
Applying this model to the proposed trap-controlled hopping transport, one 
would predict that  the holes hop through a set of localized states and interact 
with the higher lying D- (or C1- ) level. The occupation of the D-  level induces 
a rearrangement of the polarization of the environment of the trap which results 
in an upwards shift in energy to the D level. The net effect is that  the carrier 
becomes trapped at the depth A t of the D-  level but the reactivation into the 
transport states requires the additional energy such that  the observed activa- 
tion energy is composed of at least two terms A = A t + A(D-D-). An estimated 
upper limit of A(D-D-) is ~ 0.3 eV which yields A t ~ 0.3 eV. This value for A t 
is not unreasonable. 

No correlation between electronic transport, photoinduced E.S.R. and 
absorption, all measurements that  probe the density of gap states, has been 
reported to date. According to the Mort and Street model, such a correlation 
should exist since it associates the luminescence centre and the hole trap with 
the same defect D- (or C1- ). However, current measurements indicate tha t  
such a correlation is doubtful. By sample preparation techniques or doping, 
the drift mobility in a-As~S% can be changed by more than three orders of 
magnitude, but neither the intensity of the photoluminescence nor photoinduced 
E.S.R. changes in any correlated manner (Pfister and Taylor et al. 1978). 
For instance, alloying a-As2S % with Asi a (0.5 wt. °/o I) improves the hole 
mobility by at least a factor of 20, while alloying with 0.1 wt. ~o thallium 
reduces the mobility by more than two decades (Pfister et al. 1977, Pfister and 
Taylor et al. 1978). In both cases no change of the transport activation 
energy or transit time dispersion was observed. In terms of the proposed 
model, one would argue that  iodine reduces and thallium enhances the nega- 
tively charged density, D- (or C1- ) as a result of charge compensation. That  
these density changes are not manifested in the spectroscopic measurements 
indicates either that  the luminescence centre is not charged, as has been pre- 
sumed (Street 1976) (or at least is not the D-) or that  the law of mass action 
cannot be applied in its proposed form. Certainly the defect chemistry of 
chalcogenide glasses is far from being understood and many more experiments 
on chemically modified glasses are necessary to obtain a more fundamental  
understanding of the gap states. 

4.4. a-Se 

The activation energy for hole transport in a-Se is ~ 0.27 eV at 10 V//~m, 
which remains constant throughout the entire temperature range of the 
transition and down to at least ~ 120 K (fig. 9). I t  is possible that  at tempera- 
tures higher than 240 K, a transition to a lower activation energy is indicated 
in the log L/t  w versus 1/T  plot (fig. 9) but, due to the overall deviation from the 
Arrhenius temperature dependence in the neighbourhood of the glass transition, 
the experimental data cannot establish such a transition with certainty. The 
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observation of a transition from Gaussian to non-Gaussian transport  at -~ 180 K 
and the strikingly well defined single activation energy below ~ 240 K poses 
some restrictions on the choice of microscopic transport models. Certainly 
conventional hopping with temperature-independent hopping density and 
fixed hopping energy can be ruled out. Also, one would expect that  a multiple 
trapping model using a non-peaked density of gap states would contradict the 
observed constancy of the activation energy. 

Apart from these minor limitations, all transport mechanisms discussed in 
§ 2.4 are, in principle, compatible with the experimental results. A detailed 
computer analysis using the multiple-trap formulation showed that  the entire 
temperature and thickness dependence of the hole current shape and transit 
time can be explained in terms of three traps with different but  temperature- 
dependent capture cross-section and release rate (Noolandi 1977 a). Within 
experimental error, the depth of all three traps is ~ 0.3 eV. Obviously, such a 
trap distribution needs some further physical justification. In any case, these 
results suggest that  the distribution of release rates from the traps arises 
entirely from variations of the pre-exponential factor which strongly supports 
trap-controlled hopping as transport mechanism. Hence the prefactors of the 
release rates can be interpreted as representing the distribution of the overlap 
integrals (hopping site distances). 

§ 5. CONCLUDING REMARKS 

There is unambiguous experimental evidence that,  for a large number of 
disordered solids, transient electronic transport as observed in time-of-flight 
measurements reflects the existence of a significant fluctuation of microscopic 
event times. In fact, the results shown for transient hole transport in a-Se 
and carbazole polymers suggest that  under appropriate experimental conditions, 
most likely determined by an upper value of the temperature, all disordered 
solids will exhibit a broad dispersion of carrier transit times. These features 
are independent of the transport mechanism and simply reflect the fact that  the 
microscopic transport events are characterized by  exponentials exp (x) where 
the random Variable x (for instance A/kT, ~p) is much larger than unity, such 
that trivial fluctuations in x induce large fluctuations in the event times. The 
resulting event time distribution can be sufficiently broad that  the experimental 
transit time becomes part  of the distribution. Under these circumstances, the 
broadening of the propagating carrier packet-- injected into the solid, for 
instance, by  a pulse of strongly absorbed l ight--no longer can be described in 
terms of Gaussian statistical spreading. 

On the experimental side, there appears little dispute that  the time-of-flight 
current pulses exhibit features incompatible with a conventional statistical 
analysis that  assumes Gaussian broadening of the carrier packet. There might 
be some disagreement about  the actual pulse shapes observed in various 
samples, as has recently been pointed out by  Godson and Hirsch (1977) for the 
case of electron transport in PVK : TNF, but  we do not feel that  such observa- 
tions challenge the overall validity of the concept of non-Gaussian transport 
put  forward in this review. I t  is well known that  transient pulse shapes are 
distorted by  the presence of surface traps and non-uniform fields, e.g. as shown 
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in Pfister and Scher (1977 a). Furthermore one has to bear in mind that the 
power law time dependence assumed for the event time distribution function 
¢(t) presents only one example of non-Gaussian transport. Other distribution 
functions leading to different time dependences of the transient current can be 
chosen to model non-Gaussian behaviour. The selected ¢(t) represents an ideal 
case since the equations of a CTI~W based on this distribution function can be 
analytically solved. 

The observation of non-Gaussian transport itself does not specify the 
transport  mechanism. While for the organic material transport undoubtedly 
occurs by  hopping, the issue of whether holes in the inorganic solids proceed in 
extended states or in a hopping channel is not resolved and, until appropriate 
materials modification is available, can very likely not  be solved to everybody's  
satisfaction. Indeed, models of extended state-transport have been proposed 
that  explain the overall features of transient hole transport in chalcogenide 
glasses as well as does hopping transport  (Fisher et al. 1976, Marshall 1977). 
We believe, however, that  the values of the parameters obtained from these 
analyses are more compatible with hopping transport (Pfister and Scher 
1977 a, Noolandi 1977 a, Schmidlin 1977 b). 

The framework of CTRW was initially introduced to give a model for 
hopping transport and for simplicity of discussion and calculation. SM chose 
to deal with a fixed hopping energy in a random network. I t  is apparent 
that  this framework is more general and can model any kind of transport  
mechanism. This has been conclusively demonstrated by  the mathematical 
equivalence between the multiple-trapping formalism and CTI~W (Schmidlin 
1977 a, b, Noolandi 1977 b). 

There is general agreement that  any kind of transport in the presence of 
sufficiently fluctuating energy levels can give rise to non-Gaussian behaviour 
and that  the associated distribution function is temperature dependent--as  
observed for holes in a-Se or PVK. However, the issue has recently been 
raised as to whether hopping transport through random sites but  fixed activa- 
tion energy is compatible with non-Gaussian statistics, implying that  under 
these circumstances transport is always well defined (Pollak 1977, Silver 
1977). Theoretics011y, the situation is unclear since an analytically satisfactory 
proof of these arguments has not been produced so far (cf. § 2.6). Experi- 
mentally one would look for a clearly defined hopping system which shows non- 
Gaussian transport with a temperature-independent dispersion--at least over a 
sufficiently wide temperature range that  fluctuating energy levels can be 
safely excluded. However, this approach has been unsuccessful so far, since all 
systems undergo a transition to non-dispersive behaviour with increasing 
temperature. Hence for all known hopping systems, fluctuating energy levels 
have to be considered in the mathematical analysis. I t  is indeed suggested 
that ,  at least for disordered organic solids where the separation and spatial 
dimension of the hopping sites are comparable, disorder in hopping distance 
and activation energy cannot be separated. 

In our opinion only the most global features of dispersive non-Gaussian 
transport  have been covered by  experiment and theory. The next improve- 
ments will have to deal with issues more microscopic in origin. Dispersive 
current shapes for well-defined systems that  exhibit hopping or extended-state 
transport  will have to be compared with experimental dependences predicted 
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from theories tha t  are built on detailed microscopic models. Thus non- 
Gaussian transport  is expected to remain an area of active interest which 
continues to offer a challenge to both theory and experimental work. 
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