Contents

Preface						
1	Poro	us SiC	Preparation, Characterization and Morphology	1		
	1.1		luction	1		
	1.2	Triang	gular Porous Morphology in n-type 4H-SiC	2		
		1.2.1	Crystal Anodization	2		
		1.2.2	Description of the Porous Structure	3		
		1.2.3	Model of the Morphology	9		
	1.3	Nano-	-columnar Pore Formation in 6H-SiC	15		
		1.3.1	Experimental	15		
		1.3.2	Results	16		
		1.3.3	Discussion	18		
	1.4	Summ	ary	26		
	Ackı	nowled	gements	27		
	Refe	rences		27		
2	Processing Porous SiC: Diffusion, Oxidation, Contact Formation 31					
_	2.1 Introduction					
		2.2 Formation of Porous Layer				
	2.3 Diffusion in Porous SiC					
	2.3 Diffusion in Porous SiC2.4 Oxidation					
	2.5	2.5 Contacts to Porous SiC				
	Acknowledgements					
		rences		53		
3	Grov	wth of S	SiC on Porous SiC Buffer Layers	55		
	3.1		luction	55		
	3.2 SiC CVD Growth					

۷i				CONTENTS		
	3.3	Grow	th of 3C-SiC on Porous Si via Cold-Wall			
		Epitax	xy	58		
		3.3.1	Growth on Porous Si Substrates	58		
		3.3.2	Growth on Stabilized Porous Si			
			Substrates	62		
	3.4	Grow	th of 3C-SiC on Porous 3C-SiC	64		
		3.4.1	Growth in LPCVD Cold-wall Reactor	64		
	3.5	Grow	th of 4H-SiC on Porous 4H-SiC	67		
	3.6	Concl	usion	73		
	Ackı	nowled	gements	74		
	Refe	rences		74		
4	Prep	aration	and Properties of Porous GaN Fabricated			
	_		ssisted Electroless Etching	77		
	4.1		luction	77		
	4.2	Creati	on of Porous GaN by Electroless Etching	78		
	4.3	Morp	hology Characterization	80		
		4.3.1	Porous GaN Derived from			
			Unintentionally Doped Films	80		
		4.3.2	Transmission Electron Microscopy			
			(TEM) Characterization	84		
	4.4	Lumin	nescence of Porous GaN	85		
		4.4.1	Cathodoluminescence (CL) of Porous			
			GaN	86		
		4.4.2	Photoluminescence (PL) of Porous GaN	88		
	4.5	Rama	n Spectroscopy of Porous GaN	89		
		4.5.1	Characteristics of Raman scattering in			
			GaN	89		
		4.5.2	Raman Spectra of Porous GaN Excited			
			Below Band Gap	91		
	4.6	Summ	ary and Conclusions	95		
	Ack	nowled	95			
	Refe	References				
5	Gro	wth of	GaN on Porous SiC by Molecular Beam Epita	101 101		
	5.1	.1 Introduction				
	5.2	_	hology and Preparation of Porous SiC			
		Substr		104		
		5.2.1	Porous Substrates	104		
		5.2.2	Hydrogen Etching	105		

CC	ONTE	NTS		vii
	5.3	MBE	Growth of GaN on Porous SiC Substrates	108
		5.3.1	Experimental Details	108
		5.3.2	Film Structure	110
		5.3.3	Film Strain	114
	5.4	Summ	nary	116
	Ackı	nowled	gements	117
	Refe	rences		117
5	GaN	I Latera	al Epitaxy Growth Using Porous SiN _x ,	
	TiN	x and S	iC	121
	6.1	Introd	luction	121
	6.2	Epitas	ky of GaN on Porous SiN_x Network	122
			Three-step Growth Method	123
		6.2.2	Structural and Optical Characterization	128
		6.2.3	Schottky Diodes (SDs) on Undoped GaN	
			Templates	135
		6.2.4	Deep Level Transition Spectrum	138
	6.3	Epitas	kial Lateral Overgrowth of GaN on Porous	
	6.3	TiN		140
		6.3.1	Formation of Porous TiN	140
		6.3.2	Growth of GaN on Porous TiN	142
		6.3.3	Characterization by XRD	146
		6.3.4	Characterization by TEM	146
		6.3.5	Characterization by PL	152
	6.4	Grow	th of GaN on Porous SiC	154
		6.4.1	Fabrication of Porous SiC	156
		6.4.2	GaN Growth on Hydrogen Polished	
			Porous SiC	157
		6.4.3	GaN Growth on Chemical Mechanical	
			Polished Porous SiC	164
	Ackı	167		
	Refe	rences		167
7	HVI	PE Grov	wth of GaN on Porous SiC Substrates	171
	7.1 Introduction			
	7.2	PSC Substrate Fabrication and Properties		
		7.2.1	Formation of Various Types of SPSC	
			Structure	173
		7.2.2	Dense Layer	177
		7.2.3	Monitoring of Anodization Process	178

viii			CONTENTS			
		7.2.4 Vacancy Model of Primary Pore				
		Formation	183			
		7.2.5 Stability of SPSC Under	100			
	7.2	Post-Anodization Treatment	190			
	7.3	1	105			
		Substrates 7.3.1 The Growth and Its Effect on the	195			
		Structure of the PSC Substrate	195			
		7.3.2 Properties of the GaN Films Grown	193			
	7.4	*	206			
		erences	207			
	KCIC	icices	207			
8	Disl	ocation Mechanisms in GaN Films Grown on				
•		213				
	8.1	ous Substrates or Interlayers Introduction	213			
	8.2	Extended Defects in Epitaxially Grown GaN				
		Thin Layers	214			
	8.3	•	217			
		Lateral Epitaxy Overgrowth of GaN	217			
	8.4	Growth of GaN on Porous SiC Substrates	220			
	8.5	Growth of GaN on Porous SiN and TiN	214 217			
		Interlayers	222			
		8.5.1 GaN Growth on a TiN Interlayer	223			
		8.5.2 GaN Growth on a SiN Interlayer	224			
	8.6	Summary	226			
	Ack	nowledgements	227			
	Refe	rences	227			
9	Elec	trical Properties of Porous SiC	231			
		Introduction	231			
	9.2		232			
	9.3	Deep Level Transient Spectroscopy	234			
		9.3.1 Fundamentals of DLTS	234			
		9.3.2 Method of Solving the General Equation	236			
	9.4	Sample Considerations	237			
	9.5	Potential Energy Near a Pore	238			
	9.6					
	Ack	240 243				
	Refe	243				

COI	NTENT	S		1X			
10	Magnetism of Doped GaN Nanostructures 24						
	10.1			245			
	10.2			247			
	10.3	Mn-Do	pped GaN Thin Films _	248			
		10.3.1	Mn-Doped GaN ($11\overline{20}$) Surface	249			
		10.3.2	Mn-Doped GaN ($10\overline{1}0$) Surface	252			
		10.3.3	Mn and C Codoped in GaN $(10\overline{1}0)$				
			Surface	257			
	10.4	Mn- an	d Cr-Doped GaN One-Dimensional				
		Introduction Mn-Doped GaN Crystal Mn-Doped GaN Thin Films 10.3.1 Mn-Doped GaN (11\overline{120}) Surface 10.3.2 Mn-Doped GaN (10\overline{10}) Surface 10.3.3 Mn and C Codoped in GaN (10\overline{10}) Surface Mn- and Cr-Doped GaN One-Dimensional Structures 10.4.1 Mn-Doped GaN Nanowires 10.4.2 Cr-Doped GaN Nanotubes 10.4.3 Cr-Doped GaN Nanohole Arrays N-Doped Mn and Cr Clusters 10.5.1 Giant Magnetic Moments of Mn _x N Clusters 10.5.2 N-induced Magnetic Transition in Small Cr _x N Clusters Summary nowledgements rences Catalysis Technology Introduction Silicon Carbide Support Heat Effects During Reaction Reactions on SiC as Catalytic Supports					
		10.4.1	Mn-Doped GaN Nanowires	259			
		10.4.2	Cr-Doped GaN Nanotubes	262			
		10.4.3	Cr-Doped GaN Nanohole Arrays	265			
	10.5	N-Dop	ed Mn and Cr Clusters	268			
		10.5.1	Giant Magnetic Moments of Mn _x N				
			-	268			
		10.5.2	N-induced Magnetic Transition in				
			<u>c</u>	269			
	10.6	Summary 2					
	Ackn		•	271			
	Refer	ences		271			
4.4	6:0.0	. 1	T. 1. 1	255			
11				275			
				275 276			
		1.2 Silicon Carbide Support					
			278				
	11.5	, ,,	279				
		11.5.1	· · · · · · · · · · · · · · · · · · ·				
				250			
		11.50	e e e e e e e e e e e e e e e e e e e	279			
				280			
		11.5.3	SiC-Supported				
			MoO ₃ -Carbon-Modified Catalyst for	• • •			
		:	the <i>n</i> -Heptane Isomerization	280			
		11.5.4	Selective Oxidation of H ₂ S Over				
			SiC-Supported Iron Catalysts into				
			Elemental Sulfur	281			

Index

311

X			CO	NTENTS
		11.5.5	Partial Oxidation of <i>n</i> -Butane to Maleic Anhydride Using SiC-Mixed and Pd-Modified Vanadyl Pyrophosphate (VPO) Catalysts (Case study)	282
	11.6	Prospec	ets and Conclusions	288
	Refer			289
12	Nano	porous S	iC as a Semi-Permeable Biomembrane	
	for M	ledical U	se: Practical and Theoretical Considerations	291
	12.1	The Ra	tionale for Implantable	
		Semi-Pe	ermeable Materials	291
	12.2	The Bio	ology of Soluble Signaling Proteins in	
		Tissue		292
	12.3	Measur	ring Cytokine Secretion In Living	
		Tissues	and Organs	294
	12.4	Creatin	g a Biocompatible Tissue – Device	
		Interfac	ee: Advantages of SiC	295
	12.5	The Tes	sting of SiC Membranes for	
		Permea	bility of Proteins	296
	12.6	Improv	ing the Structure of SiC Membranes	
		for Bios	sensor Interfaces	299
	12.7	Theoret	tical Considerations: Modeling	
		Diffusio	on through a Porous Membrane	301
		12.7.1	Effective Medium Models for a	
			Porous Membrane	302
		12.7.2	Comparison with Experiment	304
	12.8	Future 1	Development: Marriage of Membrane	
		and Mi	crochip	305
	12.9	Conclus	sions	307
	Acknowledgements			
	Refer	_		308