axial thermal structure, where

s of low and high numbers of

its correspond to thinner (hotter)
thicker (colder) lithosphere.

nenstiehl et al. (2002, 2003) and

ak et al. (2004a) used hydrophone

ity at the MAR to quantify the
npleteness level of the hydrophone
thquake catalog (magnitude = 2.5)

d the temporal distribution of ridge-

gst aftershock sequences. Location
arisons again demonstrated signifi-
it improvements relative to more

ant land-based seismic monitoring
Bohnenstiehl and Tolstoy, 2003; Pan

nd Dziewonski, 2005).

Dziak et al. (2004b) showed that a
0001 earthquake swarm at Lucky Strike
Seamount (MAR at 37°N) was likely
caused by magma intrusion. Subsequent
submersible observations confirmed
increased venting and microbial activity
at the summit. Goslin et al. (2005)
mented several large earthquake
sequences along the Reykjanes Ridge
south of Iceland. These sequences exhib-
ited spatio-temporal patterns consistent
with involvement of magmatic or hydro-
thermal processes. Escartin et al. (2008)
showed that high rates of hydroacoustic
seismicity at the northern MAR correlate
with the locations of detachment faults
that bring lower crust and upper mantle
rocks to the seafloor and are typically
associated with hydrothermal activity.
Simao et al. (2010) showed that T-phase
earthquakes along the MAR north

and south of the Azores tend to cluster
on mantle Bouguer gravity anomaly
maxima. Most of these clusters seemed
to be caused by magma intrusion and
propagation along the ridge axis. An
array of eight hydrophones is currently
deployed along the equatorial MAR.

The results of this monitoring effort are
expected to provide new insight into
volcano-tectonic processes along this
poorly understood section of the ridge.
Royer et al. (2008) located more than
2,000 T-phase earthquakes during a
16-month deployment of autonomous
hydrophones in the Indian Ocean.
Southeast Indian Ridge seismicity occurs
predominantly along transform faults,
the Southwest Indian Ridge exhibits
some periodicity in earthquake activity
between adjacent ridge segments, and
two large tectono-volcanic earthquake
swarms were observed along the Central

_Indian Ridge near the triple junction.

Autonomous hydrophone arrays also
have been deployed at two back-arc
spreading centers, the Bransfield Strait
in Antarctica (Dziak et al., 2010) and
the Lau Basin in the western Pacific
(Bohnenstiehl et al., 2010). The Bransfield
Strait array detected 3,900 earthquakes
during a two-year deployment, including
eight earthquake swarms located on the
400 km long central rift zone. Only five
months of the Lau Basin data have been
analyzed to date; however, preliminary
results indicate many of the 26,900 earth-
quakes detected so far are focused on the
main transform (Peggy Ridge) and the
large (~ 50 km) overlapping spreading

center in the region.

Additional Cabled and Deployed
Hydroacoustic Arrays

Sohn and Hildebrand (2001) used the
Spinnaker hydrophone array (Figure 3)
in the Arctic Ocean to detect tectonic
earthquakes from the Gakkel Ridge
and further established the effective-
ness of using of T-phases in the Arctic
for long-range earthquake detection

beneath the ice canopy. Schlindwein

et al. (2005) deployed seismometers

on an Arctic iceflow to record the
acoustic phases of volcanic explo-
sions from the Gakkel Ridge. During
11 days, a total of 200 explosions were
located at a large volcanic center, and a
recent lava flow was discovered in 1999
(Edwards et al., 2001).

OHBs also have been used to study
ridge-crest seismicity. Kong et al. (1992)
employed seven OBHs to detect micro-
earthquakes over a three-week period
from the TAG segment of the MAR
at 26°N. The high seismicity levels at
26°N have recently been interpreted
as due to slip on the local detachment
fault (deMartin et al., 2007). Sohn et al.
(1999) recorded microseismicity using
OBHs following a large eruption at Axial
Volcano on the Juan de Fuca Ridge in
1998. These local earthquakes were inter-
preted as either slip along the caldera
rim fault or shear along the volcanos
southeast flank. Haxel et al. (2010) have
maintained an array of four OBHs within
Axial's summit caldera since 2006. The
OBHs have recorded thousands of earth-
quakes annually, which have steadily
increased through time, consistent with
geodetic observations of caldera floor
uplift caused by a renewed influx of
magma (Nooner and Chadwick, 2009)
and leading to discovery of a summit
eruption in April 2011.

During 2010, NEPTUNE Canada,

a fiber-optic cabled node of deep-sea
sensors deployed along the northern
Juan de Fuca Ridge, became operational
(Barnes and Tunnicliffe, 2008). The
node’s seismometers and hydrophones
are deployed on and off the ridge axis.
The acoustic phases of hundreds of
earthquakes from the ridge and nearby

transforms have been recorded to date.
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International Monitoring System
During the late 1990s, a global real-time
system of radionuclide, seismic, infra-
sound, and hydroacoustic sensors was
constructed to support a C(_nnprchensivc
Nuclear Test Ban. This infrastructure is
collectively known as the International
Monitoring System (IMS; Figure 3).
The h'};droacousi:‘ic component consists
of five island-based seismic stations

and six cabled hydrophone installa-
tions at Diego Garcia, Cape Lueewin,
and Crozet Island in the Indian Ocean;
Juan Fernandez and Wake Islands in
the Pacific; and Ascension Island in the
Atlantic. Each hydrophone station hosts
a set of three sound-channel moored
sensors deployed as a small-aperture

(~ 2 km) horizontal array, allowing the

direction of incoming acoustic energy to

124 Oceawﬂm}pff/v | Vol. 25, No. 1

be determined and therefore enhancing
the location capabilities afforded by the
relatively sparse network.

Hanson and Bowman (2005) used
T-phases recorded on the IMS stations in
the Indian Ocean to locate 1,146 earth-
quakes from the Central and Southeast
Indian Ridges during a 10-month period
in 2003. The Indian Ocean T-phase seis-
micity clustered at ridge-transform inter-
sections, with several gaps in earthquake
activity occurring within ridge segments.
Other projects have used T-phase seis-
micity to study the diffuse nature of the
plate boundary system along the Indian
Ocean spreading centers and the orga-
nization of transform faults within the
basin (e.g., Bohnenstiehl et al., 2004b;
Yun et al., 2009).

THE FUTURE OF MID-OCEAN
RIDGE MONITORING

It is interesting to speculate upon what
developments will occur in deep-ocean
acoustic monitoring. Recent improve-
ments in autonomous underwater
vehicle (AUV) technology will lead to
the next signiﬁcant advancement in
hydroacoustic monitoring. A recent
example occurred when an ocean glider
capable of satellite data transmission was
flown around an erupting volcano witha
hydrophone in its payload (Matsumoto
et al,, 2011). One can envision a constel-
lation of gliders or autonomous floats
(e.g., Simons et al., 2009) circling large
regions of the world’s MORs, screening
acoustic signals for volcano-tectonic
seismicity and reporting on the latest

eruption or seafloor spreading event.

Figure 5. (Left) Image of
quasi-Eulerian autonomous
hydrophone (Que-phone) float.
The Que-phone self controls
buoyancy and can perform
several ascent/descent cycles
to survey the ocean sound field
from seafloor to sea surface.
('Rigln ) Image of an ocean glider
(Webb Research Inc.) with a
hydrophone and recording
package mounted on the plat-
form (Matsumoto et al, 2011).
The glider is capable of a more
structured survey methodology
and can vertically and later-
ally survey the water column
over a several tens of square
kilometers. Haru Matsumoto is
shown for scale.




the next few years, the
Regional Scale Nodes, a counterpart
he NEPTUNE Canada initiative,
linstrument portions of the Juan de
Ridge. The Axial Volcano node
linclude an array of seafloor seis-
meters and at least one hydrophone
ed in the water column. These
tems will enable real-time, in situ,
o0-acoustic monitoring of ridge-

est volcanic activity, albeit a spatially
imited view of Northeast Pacific
spreading center dynamics.

Ocean glider and AUV technology

yill continue to improve in both physical
naneuverability and the quality and
amount of data collected (Figure 5).
Perhaps future developments will allow
for deployment of a shoal of platforms
with multiple hydrophones, which can
beamform and localize acoustic sources
while at sea. The instruments will then
transmit their findings in real time back
to shore-based researchers via satellite.
Undoubtedly, future military assets

will improve on the capability of the
current SOSUS hydrophone system,

and we optimistically envision a future
military-civilian, dual-use program
where the latest technology will be avail-
able to the ocean science community for

deep-ocean research.

SUMMARY

Over the last 84 years since hydro-
acoustic T-phases were first discovered,
there have been profound advances

in our understanding of the physical
means by which T-phases are gener-
ated, how they propagate, the variety

of volcano-tectonic settings where they
are created, and the hydroacoustic tech-
nologies used to detect them. This paper

focused on the acoustic phases detected

from mid-ocean ridges and how this
information was used to provide insight
into spreading center processes. Given
the expected improvements in global,
deep-ocean monitoring technologies
during the next century, we foresee

a time when even a segment-scale
magmatic or seafloor spreading event
will be detected as it happens anywhere

in the deep ocean.
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