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BASIC EQUATIONS FOR STATISTICS, RECOMBINATION
PROCESSES, AND PHOTOCONDUCTIVITY IN AMORPHOUS
INSULATORS AND SEMICONDUCTORS

G. W. TAYLOR and J. G. SIMMONS

Electrical Engineering Department, University of Toronto, Toronto, Canada

The original work of Shockley and Read, which described the statistic of a single trapping
level in terms of four simple processes, is applied to insulators and semiconductors con-
taining an arbitrary distribution of trapping levels. These statistics formerly involved
solving an arbitrary number of rate equations; however, by the use of a mathematical
artifice, a simple formal solution is obtained. The solution is also shown to be generally
valid for an arbitrary dependence in energy of the cross sections on(F) and op(F) and to
be independent of the effects of band to band recombination. Using the statistics, ex-
pressions are derived for the rate of recombination and the lifetimes of free carriers in such
systems. Also, the ground rules for photoconductivity in amorphous materials are pre-
sented; these rules are summarized by two general equations. The first is the steady-state
rate equation giving the total net rate of recombination of photoexcited carriers via all the
trapping levels in the energy gap. The second is a general statement of charge neutrality,
which shows that the excess charge contained in trapping levels above Ero (the equilibrium
Fermi level) is equal to the charge that has been removed from trapping levels below Ero.

1. Introduction

Shockley—Read statistics!) have been extremely successful in describing
non-equilibrium steady-state processes in crystalline semiconductors. The
work was concerned with four generation-recombination processes occurring
through a single trapping level. Our object here is to apply these processes to
semiconductors and insulators containing an arbitrary distribution of trapping
levels in their energy gaps, and to determine the recombination statistics and
the ground rules for photoconductivity in such systems.

2. Kinetic processes

The four kinetic processes for a particular trapping level are illustrated in
the fig. 1. G represents the rate of generation of electron-hole pairs, which we
assume is directly proportional to the light intensity.

The four processes are described in terms of the free carrier densities » and
p, the parameters of the trapping level, and the non-equilibrium occupancy
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Fig. 1. Kinetic processes associated with a particular trapping level of a distribution of
trapping levels.

function f. The rate, r,, of capture of electrons by the trapping level is given
b _
g ro=aN( - /), (1

where 7i=vo n, n is the free electron density, v is the thermal velocity, o, is
the capture cross section for electrons, N, is the trapping density of the level
and N,(1—f) is the number of empty states in the trapping level. The rate of
emission r, of electrons from the trap is given by

Iy = enNtfs (2)

where N, fis the fullness of the trap, and e,, is the rate of emission of electrons
from the trap. From detailed balance considerations e, =vo, N, exp [(E,— E,)/
kT, where N, is the effective density of states in the conduction band, and
E, is the energy of the trap level. Equations analogous to (1) and to (2) for the
emission and capture of holes are given by

re=pNS and ry=eN (1~ f), 3)
respectively, where

p=vo,p and e, =vo,N,exp[(E, — E)/kT].

3. Non-equilibrium steady state-statistics

Let us now consider an arbitrary distribution of trapping levels in the band
gap as shown in fig. 1. The rate of change, dn/dr, of free electrons in the
conduction band is

Ee E.

=G_JﬁN(E)(1 —f)dE+JenN(E)de—ﬁ"P- “

E, E,
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The term Bnp is the rate at which free electrons and free holes recombine
directly across the band gap, a process which is normally referred to as
bimolecular recombination. Analogous expressions hold for the rate of
change, dp/dz, of free holes in the valence band; that is

g§=G—JﬁN(E)de+JePN(E)(1—f)dE—[inp ®)
E, E,

In the steady-state condition we have dn/df=0 and dp/d¢=0. The problem
at hand is to extract the occupancy function f from (4) and (5). This is
accomplished 2) by subtracting (5) from (4) and using the steady-state condi-
tions, to obtain

fN(E)[enf—e.,(l—f)—ﬁ(1~—f)+ﬁf]dE=0. ©)

Since this integral is equal to zero for an arbitrary distribution of traps N(E),
then it follows that the factor in the square brackets must be identically equal
to zero; from this relation we obtain the statistic

- r& ™
n+p+e,+e

which is simply the statistic originally derived by Shockley and Read for a
single trap level. However, we have shown that the same statistic is valid for
an arbitrary distribution of trapping levels. It is of some interest now to
discuss several salient features of this statistic, which up until now, have not
been recognized. Let us assume that the capture cross sections o, and g, are
either constant in energy or their ratio g,/0, is equal to a constant, say R.
This condition will define a species of traps. In this case we may define an
energy E,, by the condition e, =7+, or

(8)

o,p + o,n
E, = Epo + kT In [PP—]

O.hg

where E, is the equilibrium Fermi level and n, and p, are the dark carrier
concentrations. It then follows from (7) and (8) that for levels above Eg, (e,
<7, p, e,), the electron occupancy is given by the modulated Fermi-Dirac
function

_ Rn 1 9
/= Rn+p {1 + exp [(E, — Em)/kT]}’ ©
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centered about the energy E,,, as shown in fig. 2. E, is designated the quasi-
Fermi level for trapped electrons; this is because below E,, the occupancy of
the levels is essentially constant and equal to Rn/(Rn+p). (Note that E,
never coincides with the quasi-Fermi level for free electrons and also that the
levels are never fully occupied; for example, if R=1 and n=p the occupancy
of the levels is 1). On the other hand, traps above E,, are occupied according
to Boltzmann statistics. Thus the occupancy is quite low and decays expo-
nentially with increasing energy above E,,,. Similar considerations hold in the
lower half of the band gap (e, <7, p, e,) for trapped holes. In this case it can
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Fig. 2. Non-equilibrium statistics of occupancy for an arbitrary distribution of trapping
levels belonging to a particular species R = gn(E)/op(E).

be shown that the occupancy of the levels with holes (1 —f) is given by a
modulated Fermi-Dirac function

I-f= Rn+p {1 + exp[(E, — Et)/kT]}’ (19

centered about the energy E,, (quasi-Fermi level for trapped holes) defined
by e,=7+p, or

on+o
E,=Ep—kTIn [J] (11)

Gpp 0

The significant feature of the statistic is that between the energy levels E,, and
E,, the occupancy of the levels with electrons is constant and equal to
Rn/(Rn+p). Furthermore, it will be apparent from (8) and (11) that with
increasing light intensity the energies E,, and E,, approach the band edges
E, and E, respectively.
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4. Charge neutrality considerations

The condition for charge neutrality is

Ec

Ap—An=JN(E)[ﬂ—]dE

At+p+e,+e,
E.
— | N(E){1 + exp[(Ero — E)/KT]} ™" dE,  (12)

v

E,

where An=n—n, and Ap=p—p,. The first term on the right in (12) is the
number of electrons in traps in the steady state; the second term is the
number of electrons in traps in thermal equilibrium. Generally speaking, in
insulators and amorphous semiconductors the excess free electrons are many
orders of magnitude less than the trapped electrons. Thus the two terms on
the right side may be equated and with appropriate manipulation we have

En Ero
JN(E)(r%;)dE= j N(E)(%ﬁ)dE. (13)
Ero Ewp

This equation is the statement of charge neutrality for amorphous semi-
conductors and insulators.

5. Net rate of recombination

The net rate of recombination U of electron-hole pairs in the steady state
is equal to the generation rate of electron-hole pairs G. Thus, substituting
(7) into (4) we obtain the net recombination rate,

Ec
N(E)apdE
veg=| NEVPIE
(A+p+e,+e,)

Ey

(14

In obtaining (14) we have neglected the contribution of bimolecular recom-
bination, which is important only at extremely high levels of illumination.

The factor N(E) 7p/(7i +5 +e, +e,) [the integrand of (14)] represents the
efficacy of a particular level in the recombination process. For the case of a
slowly varying distribution of trapping levels, fig. 3 shows the efficacy of the
recombination process as a function of energy for constant values of ¢, and
o,. The interesting feature of this curve is that it is only those levels positioned
between the E,, and E, that are effective in the recombination process. In
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Fig. 3. Efficacy of recombination for a slowly varying distribution of trapping levels with
constant values of an and gy for all levels.

this region the efficacy is constant and given by p/(7i+p). Hence (14) may
be written as

Etn
G="2_ j N (E) dE. (15)
A+p
Ep

6. Free carrier lifetimes

The lifetimes for electrons and holes are defined by 7, =An/G and 7,=Ap/G
respectively. Under the steady state conditions in insulators »> ny and p> p,.
Thus by solving (13), (15) and (16) the case of constant capture cross sections
o, and o, yields the following simple expressions for the lifetimes:

En Ero

1,,=<ua,, f N(E)dE)“, rp=<uap f N(E)dE)“. (17)

Ero tp
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The interesting features of (17) is that the integral in (17) are just the number
of traps between Eg, and E,, and between E,, and Ef, respectively, as shown
in fig. 3.

7. Photocurrent
The photocurrent I, is defined by
I, = q(uAn + p,Ap) &, (18)

where ¢ is the unit of electronic charge, u, and y, are the mobilities of the
excess electron and holes respectively, and & is the electric field strength.
Substituting (21) and (22) into (27), and using (17), we have, for constant
capture cross sections

Ein Efpo
G& -1 !
S o] enfe Jroa] | oo
EFo Ewp
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