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tial structure that is multifractal in nature. This
property is directly related to the scale-invariant
nature of critical wave functions and has been
examined in great detail by numerical simula-
tions of the single-particle quantum states near
an Anderson transition (8). Multifractal patterns,
which are ubiquitous in nature, are usually de-
scribed by analysis of their self-similarity at dif-
ferent length scales through their singularity
spectrum f(a). Physically, f(a) describes all the
fractal dimensions embedded in a spatial pattern,
such as those associated with a quantum wave
function and its probability distribution. It is cal-
culated by splitting the probability distribution
into sets of locations {ri} that share a common
exponent a, where the distribution scales locally
with distance as |Y(ri)|

2 ~ L−a, and measuring
the fractal dimension of each set (8, 21). Avariety
of techniques have been developed to compute
f (a), which has been used to distinguish between
various models of the Anderson transition (21, 30).
Application of such an analysis to our conductance
maps (Fig. 5D, inset) shows an f (a) spectrum that is
peaked at a value away from 2, which is indica-
tive of anomalous scaling in a two-dimensional
map. The f (a) spectrum also shows a systematic
shift with decreasing doping, indicating a trend
from weak toward strong multifractality with de-
creasing doping. In contrast, these signatures of
multifractal behavior are absent for states deep in
the valence band (gray curve) that, despite the

strong disorder, show scaling consistent with those
expected for extended states.

Our findings suggest that proximity to the
metal-insulator transition and electronic correla-
tions may play a more important role in the un-
derlying mechanism of magnetism of Ga1-xMnxAs
than previously anticipated. Beyond its applica-
tion to understand the nature of states Ga1-xMnxAs,
our experimental approach provides a direct
method to examine critical correlations for other
material systems near a quantum phase transition.
In principle, experiments at the lowest temperatures
for samples closest to the metal-insulator transition
should provide accurate measurements of power-
law characteristics that can be directly compared to
theoretically predicted critical exponents.
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A Coherent Beam Splitter for
Electronic Spin States
J. R. Petta,1* H. Lu,2 A. C. Gossard2

Rapid coherent control of electron spin states is required for implementation of a spin-based
quantum processor. We demonstrated coherent control of electronic spin states in a double quantum
dot by sweeping an initially prepared spin-singlet state through a singlet-triplet anticrossing in the
energy-level spectrum. The anticrossing serves as a beam splitter for the incoming spin-singlet state.
When performed within the spin-dephasing time, consecutive crossings through the beam splitter
result in coherent quantum oscillations between the singlet state and a triplet state. The
all-electrical method for quantum control relies on electron–nuclear spin coupling and drives single-
electron spin rotations on nanosecond time scales.

Energy-level crossings, in which two quan-
tum states cross in energy as a function of
an external parameter, are ubiquitous in

quantum mechanics (1). Coupling of the quantum
states provided by tunnel coupling with strength
D, for example, leads to hybridization of the states
and results in an anticrossing with a minimum
energy splitting 2D (2, 3). Passing a quantum state
through an anticrossing in the level diagram will
result in a sweep-rate–dependent nonadiabatic

transition probability PLZ, commonly known as
the Landau-Zener probability (4). The theory of
Landau-Zener transitions can be applied to a
diverse set of problems, ranging from electronic
transitions in molecular collisions to chemical
reactions to neutrino conversion in the sun (5). We
apply Landau-Zener transition physics to coher-
ently control electronic spin states in a semi-
conductor double quantum dot (DQD).

Semiconductor quantum dots have emerged as
promising platforms for quantum control of
charge and spin degrees of freedom (6). Consid-
ering future applications of electron spin qubits in
quantum information processing, the required
elementary building blocks are the exchange gate,
which couples two spins, and single-spin rotations

(7). Extremely fast 200-ps exchange gates have
been demonstrated (6, 8). However, coupling to
the small magnetic moment of the electron (as
required for single-spin rotations) is much more
difficult, leading to relatively long, ~100-ns gate-
operation times in GaAs quantum dots (9). In
addition, the acmagnetic fields required for single-
spin electron spin resonance (ESR) are difficult to
localize on a single quantum dot (~40 nm), hinder-
ing extension of the method to a large number of
quantum dots operating in close proximity. Sev-
eral groups have demonstrated fast optical control
of single spins, but these methods are also difficult
to apply locally (10, 11). In principle, local rota-
tions can be achieved with the use of electrically
driven spin resonance, which requires spin-orbit
coupling and an ac electric field, but the Rabi
frequencies obtained in GaAs quantum dots are
approximately a factor of 2 slower than those ob-
tained using conventional ESR (12, 13). We dem-
onstrate an all-electrical method for driving local
single-spin rotations on nanosecond time scales.

Our method for coherent quantum control of
electron spins is based on two consecutive sweeps
through a singlet-triplet anticrossing in a DQD
energy-level diagram. Coherent oscillations be-
tween the singlet and ms = +1 triplet state, T+,
occur on a nanosecond time scale and are made
possible by the hyperfine interaction between the
trapped electron spins and the nuclear-spin bath
(14–16). The oscillations are controlled by tuning
the external magnetic field BE and the voltage
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pulse profile that sweeps the quantum dot system
through the anticrossing in the energy-level
diagram. Similar sweeps through energy-level
anticrossings in superconducting qubits have been
used to study Landau-Zener interference (17–21).
In addition, deeply bound molecular states have
been generated by transferring weakly bound
Feshbach molecules through a series of anticross-
ings in a molecular energy manifold (22).

In our device (Fig. 1A), depletion gates are
arranged in a triple quantum dot geometry (23). A
DQD is formed using the middle and right dots of
the device. Gate voltages VL and VR are used to
tune the device to the (1,1)-(2,0) charge transition,
whereNL andNR indicate the number of electrons
in the left and right dots, respectively. High-
sensitivity charge sensing is achieved by depleting
gates Q1 and Q2 to form a quantum point contact
(QPC) charge sensor with conductance gQ (8).
Energy-level anticrossings (Fig. 1B) in the DQD
can be used for quantum control in a manner that
is directly analogous to an optical beam splitter
(18–20).

The detuning, e, of the DQD (Fig. 2A) is
adjusted using VL and VR (24). For positive de-
tuning, the ground state is the spin-singlet (2,0)S.
By decreasing the detuning, a single electron can
be transferred from the left dot to the right dot,
forming a (1,1) charge state. Here the possible spin
state configurations are the spin singlet, S, and the
spin triplets T0, T–, and T+ withmS = 0, –1, and
+1 respectively. (2,0)S and S hybridize near e = 0
due to the interdot tunnel coupling Tc. The T+ and
T– states are separated from the T0 state by the
Zeeman energy, EZ = gmB(BE + BN), where mB is
the Bohr magneton, and BN is the Overhauser
field ( Brms

N ∼ 2 mT in the absence of nuclear
polarization; rms, root mean square) (15).
Throughout this work, we take |g| = 0.44, based
on previous experiments (8, 25). We focus on the
boxed region in Fig. 2A, where hyperfine
interactions mix the S and T+ states, resulting in

an anticrossing in the energy-level diagram.
Under appropriate experimental conditions, we
show that this anticrossing functions as a beam
splitter for incoming quantum states (18–20).

We first measure the quantum state transition
dynamics at the S-T+ avoided crossing to verify
the mechanism of Landau-Zener tunneling. The
analytical expression for the nonadiabatic transi-

tion probability is PLZ ¼ e−
2pD2

ℏn (4). Here, ħ is

Planck’s constant divided by 2p, and n is the
energy-level velocity, defined as n = |d(E1 –E2)/dt|,
where E1 and E2 are the energies of the states
involved in the anticrossing. We determine D by
measuring PLZ as a function of the sweep rate
through the S-T+ anticrossing. A (2,0)S state is
first prepared at positive detuning, then a rapid
gate-voltage pulse (~1.1 ns, nonadiabatic with
respect to the S-T+ mixing rate) shifts the system
to negative detuning eS, which preserves the spin
singlet, S. The detuning is then increased during a
ramp time TR, sweeping the system back through
the S-T+ avoided crossing. A QPC charge sensor
determines the final singlet-state probability PS
via spin-to-charge conversion (6).

PS is plotted in Fig. 2B as a function of TR.
For long ramp times, the initial state should follow
the adiabatic branch during the return sweep
through the S-T+ anticrossing, resulting in a final
state T+, as illustrated in the inset of Fig. 2B. We
measure PS ~ 0.3 at long TR, because of the
limited measurement contrast set by the spin
relaxation time. At short times, PS decays expo-
nentially, as expected from the Landau-Zener
model, with a characteristic time scale of ~180 ns.
Given the detuning pulse amplitude (1.7 mV)
and the conversion between gate voltage and
energy [|d(ES – ET+

)/de| ~ 3.9 meV/mV], we
extract a best fit D = 60 neV (24). In comparison,
time-resolved measurements of the S-T+ spin-
dephasing time yield T2* = 10 ns, corresponding
to an energy scale of 66 neV, which is in good

agreement with the value of D obtained above
(8). In superconducting flux qubits, this tunnel
splitting is set by tunnel junction parameters,
whereas in the S-T+ qubit, D is set by fluctuating
transverse hyperfine fields (15, 18).

Quantum control of the S and T+ states is
achieved by consecutively passing through the
S-T+ avoided crossing in the coherent limit, where
the consecutive crossings take place within the
spin-dephasing time (18–21). The opposite limit,
where TR >> T2*, has been shown to lead to
dynamic nuclear polarization (26). Our pulse
sequence for quantum control is illustrated in
Fig. 3A and is analogous in operation to an optical
interferometer (Fig. 3C, inset). An initially
prepared spin-singlet state is swept through the
S-T+ avoided crossing. During this detuning
sweep, the S-T+ avoided crossing “splits” the
incoming singlet state into a superposition of states
S and T+, with amplitudes AS and AT+

, analogous
to an optical beam splitter. In correspondence with
the Landau-Zener equation, |AS|

2 = PLZ. Spin
angular momentum is conserved during this
process by coupling to the nuclear-spin bath via
the hyperfine interaction, resulting in a small

Fig. 1. (A) Scanning electron microscope
image of a device similar to the one used in
this experiment. Voltages on gates L and R tune
the occupation of the DQD, whereas gates Q1
and Q2 form a QPC with conductance gQ for
single charge sensing. The arrow indicates the
current path for the charge sensor. (B) Energy-level anticrossings can be used to “split” an incoming
quantum state, in direct analogy with an optical beam splitter. The nonadiabatic transition probability
PLZ depends on the level velocity n and the energy splitting at the anticrossing (2D).

Fig. 2. (A) DQD energy-level diagram near the
(1,1)-(2,0) charge transition. Hyperfine fields result
in an anticrossing between the S and T+ states
(dashed box), which serves as a beam splitter for
quantum control. (B) The Landau-Zener transition
probability (PLZ) is measured by preparing (2,0)S at
positive detuning and then converting it to S via a
rapid, ~1.1-ns gate-voltage–detuning pulse from eP′
to eS (here, eP′ is the starting value of detuning). The
detuning is then increased at a constant rate from eS
to eP′ during a time interval TR, and a QPC measures
PS. The data are fit to an exponential decay (solid
line), as expected from the Landau-Zener transition
formula, resulting in a best fit coupling strength D =
60 neV.
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amount of nuclear polarization (16, 26). Detuning
is then maintained at a value eS for the nominal
pulse length tS, which results in a phase accumu-
lation f ¼ 1

ℏ ∫fES½eðtÞ� − ETþ ½eðtÞ�gdt (here, t is
time) that is equivalent to changing the path
length of one leg of an optical interferometer. A
second detuning sweep takes the system back
through the S-T+ anticrossing, resulting in
quantum interference of the two paths. The
singlet-state return probability PS is measured
using the QPC charge sensor.

The consecutive sweeps through the S-T+

anticrossing and the intermediate phase accumu-
lation f can be treated as unitary operations
(Fig. 3B) that act on the initially prepared spin-
singlet state (4, 27, 28). For the ideal case of
PLZ = 1/2, the S-T+ anticrossing functions as a

50:50 beam splitter resulting in the unitary
operatorU1 ¼ 1ffiffi

2
p ðsX − sZÞ, which is equivalent

to a Hadamard gate (here, sX and sZ are the Pauli
matrices). Phase accumulation (f) during the
detuning pulse results in a sZ rotation, U2 ¼
exp −i

2 fsZ
� �

, whereas the return sweep back
through the S-T+ anticrossing in the limit PLZ =
1/2 results in a third unitary operation U3 ¼
1ffiffi
2

p ðsX − sZÞ. Functional forms for the unitary
operators under general driving conditions are
given in the supporting online material (24).

The measured PS shows clear Stückelberg
oscillations between S and T+ as a function of tS
and eS (4, 5). At negative detunings, far from the
avoided crossing, the oscillation period is set by
ES – ET+

= EZ. For BE = 100 mT, the Zeeman
energy corresponds to a period of 1.6 ns, assuming

|g| = 0.44, in good agreement with the ~1.5-ns
period observed in the data for eS = –1.7 mV. The
curvature of the interference pattern is partially
due to the voltage pulse profile, which is smoothed
to maintain some degree of adiabaticity during the
sweep through the S-T+ anticrossing. In these data
(Fig. 3C), the first bright interference fringe
corresponds to the condition where the detuning
pulse exactly reaches the S-T+ anticrossing. The
second bright interference fringe corresponds to a
configuration in which U2 gives a 2p pulse about
the z axis of the Bloch sphere.

Singlet-state probability as a function of pulse
lengthPS(tS) is plotted in Fig. 3D for two different
values of detuning. The oscillation visibility
ranges from 15 to 30% for these data and is a
function of detuning, as the spin relaxation time

Fig. 4. (A) The accumulated phase f is controlled by tuning BE for a
fixed set of voltage pulse parameters. A reduction in BE shifts the position
of the S-T+ anticrossing to more negative values of e and reduces ES-ET+.

(B to D) Measured Landau-Zener interference patterns for BE = 90, 70,
and 50 mT, respectively. (Insets) Calculated interference patterns (see
text).

Fig. 3. (A) (Left to right) An initially prepared (2,0)S state is swept through the
S-T+ anticrossing, resulting in a superposition of states S and T+, with amplitudes
AS and AT+, analogous to an optical beam splitter. The energy difference between
these two states results in relative phase accumulation f, which can be
controlled by tuning BE and the gate-voltage pulse profile. A return sweep
through the S-T+ anticrossing results in quantum interference, and the final
state is determined with spin-to-charge conversion. (B) Bloch sphere
representation of the unitary rotations for specific sweep conditions resulting
in PLZ = 1/2 and f = p. (C) PS displays coherent oscillations as a function of
separation detuning (eS) and pulse length (tS), due to Landau-Zener
interference. (Inset) The experiment is equivalent to an optical interferometer,

where a change in path length of one of the interferometer arms results in
interference fringes as observed by a detector (Det.). (D) Singlet-state
probability as a function of pulse length PS(tS), extracted from the data in (C)
for two different values of eS.
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and PLZ are detuning-dependent (6). Higher-
visibility oscillations are obtained when the level
velocity n is small at the S-T+ anticrossing (Fig.
3D, insets). Maximum visibility would be obtained
for PLZ = 1/2 (the limit of a perfect 50:50 beam
splitter). To achieve this, detuning ramp times on
the order of 160 ns >> T2* are required, which is
no longer in the coherent limit. These data suggest
that active pulse shaping with subnanosecond res-
olution could be used to increase the fidelity of the
gate operations by lowering the level velocity only
in the vicinity of the S-T+ anticrossing.

We confirm that the interference fringes are
caused by consecutive sweeps through the S-T+
beam splitter by varying BE. Landau-Zener inter-
ference patterns are plotted in Fig. 4, B to D, for
BE = 90, 70, and 50mT, respectively. A reduction
in field results in two major differences: (i) The
first oscillation shifts to more negative eS, and (ii)
the oscillation frequency decreases. Both observa-
tions are consistent with the level diagram shown
in Fig. 4A.

To quantitatively model the data, we calculate
the probability to return to the spin-singlet state PS
by considering the action of the unitary operations
(Fig. 3B) on the initially prepared spin-singlet
state. Neglecting relaxation and dephasing, we
find PS ¼ 1− 2PLZð1−PLZÞ½1þ cosðf− 2f̃SÞ�,
where f̃S is related to the Stoke’s phase (19, 24).
We calculate f by combining our knowledge of
the voltage pulse profile with the measured
ES(e) –ET+

(e), as determined by energy-level spec-
troscopy (24). The visibility of the calculated os-
cillations (Fig. 4, B to D, insets) is 15% and is set
by PLZ = 0.96, as determined for these sweep con-
ditions using the data in Fig. 2B. Overall, the ob-

served and calculated Landau-Zener interference
patterns are in very good agreement. The decay of
the oscillations as a function of tS is most likely
due to fluctuations in the Overhauser field (8).

Whereas commonly used single-spin rotation
mechanisms rely on gigahertz frequency mag-
netic fields, the coherent rotations between S and
T+ demonstrated here occur on a nanosecond
time scale set by the Zeeman energy and are
solely driven with local gate-voltage pulses. As a
result, it will be feasible to scale this quantum
control method to a large number of spin qubits
operating in close proximity. In addition, it is
possible that the spin-flip mechanism employed
here, which relies on coupling to the nuclear-spin
bath, could be harnessed under the appropriate
conditions to create a nuclear-spin memory (29).
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Water Freezes Differently on Positively
and Negatively Charged Surfaces
of Pyroelectric Materials
David Ehre, Etay Lavert, Meir Lahav, Igor Lubomirsky*

Although ice melts and water freezes under equilibrium conditions at 0°C, water can be
supercooled under homogeneous conditions in a clean environment down to –40°C without
freezing. The influence of the electric field on the freezing temperature of supercooled water
(electrofreezing) is of topical importance in the living and inanimate worlds. We report that
positively charged surfaces of pyroelectric LiTaO3 crystals and SrTiO3 thin films promote ice
nucleation, whereas the same surfaces when negatively charged reduce the freezing temperature.
Accordingly, droplets of water cooled down on a negatively charged LiTaO3 surface and
remaining liquid at –11°C freeze immediately when this surface is heated to –8°C, as a result
of the replacement of the negative surface charge by a positive one. Furthermore, powder x-ray
diffraction studies demonstrated that the freezing on the positively charged surface starts at
the solid/water interface, whereas on a negatively charged surface, ice nucleation starts at the
air/water interface.

The ability to control the freezing temper-
ature of supercooled water with auxiliaries,
which promote or suppress ice nucleation,

provides a critical factor in a variety of areas

such as the survival of ectothermic animals, cryo-
preservation of cells and tissues, prevention of
the freezing of crops, cloud seeding, and snow-
making, to mention but a few (1). There are a

number of studies, dating back to 1861 (2, 3),
indicating that the local electric field near charged
surfaces may enhance the freezing of super-
cooled water (SCW), so-called electrofreezing.
This effect is attributed to the ability of the elec-
tric field to induce the formation of icelike nuclei.
Electrofreezing of ice has been reported near
charged metallic electrodes (4, 5) or dielectric
surfaces charged by mechanical friction (6, 7), or
within the crevices of polar crystals (8). X-ray
specular reflectivity measurements (9) and vi-
brational spectroscopic methods such as sum-
frequency generation (SFG) (10, 11), supported
by statistical computer simulation studies (12–16),
have proposed that water molecules near surfaces
in general, and near charged surfaces in particular,
form clusters that are structurally different from
those present in bulk water.

Studies performedwith chargedmetallic elec-
trodes cannot isolate the net effect of the electric
field because SCW freezes at noncharged me-
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