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Abstract 

We investigated the potential of the Utah Intracortical Electrode Array (UIEA) to provide signals for a brain-computer interface 
(BCI). The UIEA records from small populations of neurons which have an average signal-to-noise ratio (SNR) of 6:1. We provide 
specific examples that show the activities of these populations of neurons contain sufficient information to perform control tasks. Results 
from a simple stimulus detection task using these signals as inputs confirm that the number of neurons present in a recording is 
significant in determining task performance. Increasing the number of units in a recording decreases the sensitivity of the response to the 
stimulus; decreasing the number of units in the recording, however, increases the variability of the response to the stimulus. We 
conclude that recordings from small populations of neurons, not single units, provide a reliable source of sufficiently stimulus selective 
signals which should be suitable for a BCI. In addition, the potential for simultaneous and proportional control of a large number of 
external devices may be realized through the ability of an array of microelectrodes such as the UIEA to record both spatial and temporal 
patterns of neuronal activation. © 1997 Elsevier Science Ireland Ltd. 
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1. Introduct ion 

There are many circumstances which can result in an 
individual 's  loss of control of skeletal musculature includ- 
ing traumatic injury and degenerative diseases of the cen- 
tral and peripheral nervous system. In extreme cases, the 
extent of these deficits is such that current assistive tech- 
nologies which rely on peripheral muscle control cannot 
operate due to lack of input from the individual. For 

these people, a brain-computer interface (BCI) provides 
the potential for a new means of communicating with 
and controlling external devices. Various investigators 
have built BCIs which use EEG recordings to provide 
real-time information about the relative activity of differ- 
ent regions of the brain (Farwell and Donchin, 1988; 
Pfurtscheller et al., 1992; Wolpaw and McFarland, 
1994). While these experiments have demonstrated the 
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potential for EEGs in a BCI, early experiments using 
recordings taken from a single microelectrode implanted 
in motor cortex have also shown its potential as a source of 
control signals (Humphrey et al., 1970; Schmidt, 1980). 

To control multiple devices or a single device with a 
number of degrees of freedom using individual microelec- 
trode recordings, it would be desirable to implant a large 
number of these recording electrodes into motor cortex 
(Heetderks and Schwartz, 1995; Humphrey and Hochberg, 
1995). The Utah Intracortical Electrode Array (UIEA), a 
silicon-micromachined structure, permits the simultaneous 

implantation of a large number of microelectrodes in a 
small region of cortex (100 electrodes per 16 mm 2 of cor- 
tex). However, unlike the microelectrodes in the experi- 
ments of Humphrey and Schmidt which generally 
recorded the activity of a single neuron, an electrode of 
the UIEA preferentially records from a small population of 
neurons in close proximity to its tip. Due to this funda- 
mental difference in the nature of the recordings, we set 
out to determine if recordings from the UIEA might be 
suitable for potential application in a BCI. 
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Fig. 9. Cross-correlation coefficients and distance. Cross-correlation 
coefficient as a function of distance between pairs of electrodes. Solid 
bars are correlation coefficients relating to simultaneous firing. Line 
filled bars are the correlation coefficients relating to the expected level 
of coincident firing using a 1 ms shift predictor. Values calculated for a 
distance of 0/~m are the autocorrelation coefficients evaluated with a 1 
ms time shift. 

ing the cross-correlation of two activity trains evaluated at 
a zero time shift (measuring the level of coincident activ- 
ity) to the cross-correlation evaluated at a short interval 
shift (1 ms), it is possible to determine the relative con- 
tribution of the common population. If the coincident level 
is greater than would normally be expected due to the 
stimulus evoked nature of the responses, then one could 
conclude that a significant portion of the population of 
recorded neurons is common to two adjacent electrodes. 

Claims by other researchers as to extent of extracellular 
potential spread from cortical neurons (Nelson and Frank, 
1964) confined our interest to a maximum inter-electrode 
distance of three electrodes (1200 #m). Comparisons were 
made not only in the rostral-caudal and medial-temporal 
direction but also along the diagonals. Fig. 9 summarizes 
the cross-correlation coefficients as a function of the dis- 
tance between two electrodes; the squares are for cross- 
correlations evaluated at a 0 ms (within a 1 ms window) 
time shift, the circles are for cross-correlation coefficients 
evaluated at a 1 ms time shift. A statistical analysis of 
these two distributions shows that they are the same 
(P < 0.01). Because the level of coincident activity is 
not statistically greater than would be expected from two 
electrodes which had stimulus-evoked activity present on 
them, we can conclude that there does not exist a signifi- 
cant population of neurons common to adjacent pairs of 
electrodes. 

4. Discussion 

4.1. Multiple electrode recording structures 

Recent advances in the silicon micromanufacturing pro- 
cesses used to fabricate multi-electrode structures now 
allow researchers to place a large number of recording 
electrodes into cortex in a variety of configurations (Kru- 
ger, 1983; Jones et al., 1992; Hoogerwerf and Wise, 1994). 
For any of these structures to be considered as a recording 
substrate for a BCI, it must be shown to be biocompatible. 
While this particular topic has not been investigated here, 
the biocompatibility of silicon-based structures and the 
UIEA in particular have been addressed elsewhere (Sten- 
saas and Stensaas, 1978; Schmidt et al., 1993). These stu- 
dies have shown that the extent of the host reaction with 
silicon structures, in general, is modest and that the 
response to an implanted UIEA was an isolated region of 
gliosis (20-40/~m) in the region of the electrode and the 
formation of a small (<9/zm) fibrous capsule. In addition, 
there were no indicators of a chronic inflammatory 
response or edema. Another way to evaluate the biocom- 
patibility of the UIEA is to examine the stability of record- 
ings obtained over a long period of time. Recording studies 
of chronically implanted electrode arrays in auditory cor- 
tex have shown that it is possible to record auditory evoked 
activity after extended periods of time (Rousche, in pre- 
paration). These anatomical and physiological results sug- 
gest that the UIEA itself is a biocompatible structure. 
Problems with the UIEA in the chronic preparations 
have been attributed to lead failures, tethering forces 
from the lead wires, or electrode insulation failures rather 
than damage to the cortical tissue due to the insertion 
process or presence of the UIEA (Nordhausen and 
Rousche, personal communication). 

4.2. Multi-unit recordings and microelectrode arrays 

One of the fundamental features of recordings obtained 
with microelectrodes is that they generally record from a 
population of neurons. With single microelectrodes or 
arrays of microelectrodes with individually positioned 
electrodes, single unit recordings can be obtained by care- 
fully positioning the electrode close to a neuron. The 
UIEA and other structures with fixed electrodes do not 
have this capacity and, thus, require the use of sophisti- 
cated algorithms to extract single units from the multi-unit 
recording. As the SNR of a recording decreases, these 
algorithms can and do become complex and computation- 
ally intensive. While the neuron represents the smallest 
unit in the nervous system, recent research has shown 
that it is the ensemble activity of groups of neurons that 
results in complex behaviors such as movement. This has 
been shown in a number of experiments conducted in 
motor cortex where population vectors can accurately pre- 
dict a number of movement parameters (Humphrey et al., 
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unit recordings with the low response variability of 
EEGs. 

To test this, a simple task was designed where neural 
responses were used to determine the position of a cat's 
gaze. As described in Methods, a cat's gaze was directed to 
various positions on a tangent screen. A different computer 
then correlated the stimulus position with the evoked 
neural response and attempted to determine the position 
of the cat's gaze. Fig. 7A shows a representative trace of 
the activity used to control this system; it is consistent with 
the type of multi-unit activity generally recorded by the 
electrodes of the UIEA. Fig. 7B,C shows plots of the cat's 
gaze (dark trace) and the computers estimate of its gaze 
(light trace) Experiments were performed for runs where 
the evoked responses were thresholded at increasing 
threshold voltages (7C was highest threshold). The perfor- 
mance of the system at the different thresholds was com- 
pared using the mean squared error (MSE) between the 
known position of the eye and the computed position of 
the eye. As can be seen from these two charts, increasing 
the threshold voltage had the effect of enabling the system 
to better track the position of the eye. Increasing the 
threshold voltage past a certain point, however, does not 
result in continued improvements in system performance. 
This is shown in Fig. 8 which plots normalized MSE for 
runs of the system performed at a number of threshold 
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Fig. 8. Summary of tracker performance. Shows the performance (mea- 
sured in MSE) of the control task for various values of the threshold 
voltage. Normalization of the MSE was performed to permit comparison 
between different populations of neurons. 
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voltages. As is evident from the graph, at very low and 
very high threshold values, the system performs less well 
when compared to intermediate threshold values. 

These results demonstrate that the responses recorded 
by the UIEA, when appropriately thresholded, have the 
properties of high stimulus specificity and low response 
variability. In particular, depending on the desired features 
of the response, the ability to select threshold which results 
in the desired response characteristics is a significant 
advantage over other recordings which contain exclusively 
single unit or EEG-type responses. 

3.4. Recording zone independence 

Technical challenges associated with the fabrication of 
high density electrode arrays and the invasiveness of 
implanting a large number of electrodes into cortex drive 
the desire to implant an optimal number of electrodes into 
the target region of cortex. Optimality can be defined as 
enough electrodes to extract enough information from cor- 
tex to accomplish the control goals. Maximizing the 
amount of information retrieved from the UIEA is not 
only achieved by changing the size of the constituent neu- 
ronal population (through thresholding) but also by elim- 
inating redundant information. Redundancy in this case is 
manifested as evoked responses from the same neuronal 
population being recorded by two adjacent electrodes. 
This is undesirable since it means that the electrodes are 
not being used in the most efficient manner possible. 

There are two means of evaluating whether the electro- 
des of the UIEA record from independent populations. The 
first is to use models of extracellular action potential 
spread in cortical tissues developed by other researchers 
to predict the range at which action potentials could be 
detected. These models, with typical values for parameters 
such as extracellular currents, extracellular resistivity, and 
RMS noise of the UIEA (4.5 ~V) imply that an amplitude 
detection algorithm such as we have used cannot detect 
action potentials much beyond 30 /~m and 70 /zm (Rail, 
1962; Humphrey et al., 1978). This would suggest that two 
electrodes minimally spaced at 400/~m centers, such as is 
the case with the UIEA, cannot record from populations of 
neurons which overlap. 

The second method of verifying recording indepen- 
dence is to analyze the amount of coincident activity pre- 
sent on adjacent pairs of electrodes as a means of 
determining electrode independence. The stimulus evoked 
neural responses on each electrode can be modeled as the 
sum of two random stochastic processes: one which results 
from a unique population of neurons around the electrode 
and another which represents a population of neurons com- 
mon to two electrodes. To isolate the coincident activity 
resulting from a common population of neurons is impos- 
sible without knowledge of the underlying generating pro- 
cesses, but a method exists for the determination of the 
existence of a significant common population. By compar- 
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Fig. 6. Thresholding and orientation specificity. (A) Example of the 
orientation specificity of a single population of neurons as a function 
of threshold level. (B) Summary of orientation specificity. Shows the 
effect of threshold (minimum SNR) on eccentricity (filled bars), coeffi- 
cient of variance (solid circles), and missed passes (solid squares). 
Eccentricities determined for extracted single units and local field poten- 
tials (open bars) are given for comparison. 

3.3. Using thresholded responses as inputs to external 

devices 

T h e s e  results suggest that low thresholded multi-unit 
responses (SNR > 2.0) which have similar characteristics 

to EEG and VEP recordings do not contain very specific 
information about various features of the response (loca- 
tion and orientation) but their responses manifest low 
variability, making them easier to reliably detect. High 
thresholded responses (single units, SNR > 5.0) contain 
very specific information about the stimulus but are quite 
variable for sequential presentations of the same stimulus. 
This would suggest that the reliable signals which a BCI 
would need might be achieved using multi-unit activity 

thresholded at an intermediate value. These signals 
would combine the high stimulus specificity of single 
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olded with a very high threshold (SNR > 7.0). In contrast, 
local field potentials show the same lack of orientation 

selectivity as responses thresholded at low values (Victor 
et al., 1994). These results further suggest that single-unit 

recordings or multi-unit recordings with a high threshold 
provide the most specific information about the orientation 
of the light bar stimulus. 

Fig. 6B also shows the two measures of response varia- 
bility: the coefficient of variance (filled circles) and the 
percentage of passes which did not evoke a detectable 
response (filled squares). Similar to the results with recep- 
tive field size, low thresholded multi-unit activity showed 
the least amount of variability (Cv = 22%; missed passe- 
s = 0%). Results from multi-unit activity thresholded at 
higher levels (SNR > 4.0; Cv = 95%; missed passes 
-43%) were similar to those obtained using single unit 
recordings ( C v = 6 8 % ;  missed passes=41%) .  These 
results suggest, as did the results for receptive field size, 
that multi-unit responses can provide information about 
the stimulus in a reliable fashion. 
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Fig. 7. Tracker performance. (A) Example of neural activity used in the 
eye tracking task. (B) Performance of task for threshold level set to 
accept action potentials with SNR>4.0 (MSE = 9.2°). The dark line is 
the known position of the eye and the light line is the computer's deter- 
mination of eye position from the evoked responses. (C) Performance of 
task for threshold level set to accept action potentials with SNR>8.1 
(MSE = 4.2°). The dark line is the known position of the eye and the 
light line is the computer's determination of eye position from the 
evoked responses. 
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Fig. 5. Thresholding and receptive field size. (A) Traces of a multi-unit 

evoked response thresholded at a number of increasing threshold vol- 
tages. A symbol indicates the detection of a superthreshold event. Sti- 

mulus position is shown in lower graph. (B) Summary of receptive field 
size. The effect of threshold (minimum SNR) on receptive field size 
(filled bars), coefficient of variance (solid circles), and missed passes 

(solid squares). Open bars show similar measures for hand plotted recep- 

tive fields, single unit recordings, and local field potentials (LFP). 

paper). The most reliable response possible would have a 
coefficient of variance of zero and no missed pre- 
sentations. Fig. 5A illustrates the effect of  threshold 
level on the specificity of the evoked response to a parti- 
cular stimulus. The lowest trace shows the position of a 
light bar stimulus as it is moved across the receptive field 
of the electrode being recorded from. At low SNR, there is 
neural activity evoked for all positions of the light making 
it difficult to determine the position of the light based on 
the presence of increased neural activity. However, at high 
thresholds, the presence of a neural response becomes 
localized to specific positions of light. Using the methods 
described above, these responses would be processed to 
compute the mean receptive field size, coefficient of  var- 
iance (Cv), and percentage of missed presentations. 

Fig. 5B is a summary of the results for receptive field 
sizes computed from four separate recording sessions 
using 16 electrodes of the UIEA. At the lowest threshold 
(SNR > 3.0) the mean apparent receptive field size (filled 
bars) is large (-7.5 ° of visual angle). Increasing to the 
highest threshold (SNR > 12,0) results in the receptive 
field size decreasing to 1.2 ° of visual angle. Single units 

extracted from these recordings had receptive field sizes 
averaging 1.5 °. These results can be compared to receptive 
fields sizes measured for local field potentials (LFP) (Vic- 
tor et al., 1994). Local field potentials reflect summated 
activity from a significantly larger populations of neurons 
than those recorded by the UIEA. 

Fig. 5B also shows the coefficient of variance (CO (filled 
circles) and the percentage of passes which did not evoke a 
detectable response (filled squares). At low thresholds 
(SNR > 3.0), the coefficient of  variance is low 
(C, = 50%) and increases with increasing threshold. The 
coefficient of  variance for extracted single units was nearly 
twice that of the multi-unit responses (C,. = 100%). The 
percentage of  presentations which failed to evoke a mea- 
surable response also increased with the threshold. 
Recordings thresholded at low levels tended to have mea- 
surable responses on all stimulus presentations. Record- 
ings thresholded at higher levels manifested a greater 
number of presentations that failed to evoke a detectable 
response. The percentage of missed presentations for 
extracted single units from these records lay in the middle 
of the range of  the multi-unit responses. 

These results clearly demonstrate that the more selective 
recordings (taken with high thresholds) have the smallest 
receptive field size. However, in most cases, these record- 
ings manifest the highest degree of response variability. In 
contrast, the non-selective recordings (taken with low 
thresholds) have the largest receptive field sizes and the 
lowest coefficient of  variance. For the purposes of predict- 
ing stimulus location based on evoked activity, this would 
suggest that very selective recordings, although they best 
indicate the position of the light, are extremely variable 
and thus have low reliability. 

Fig. 6A shows the effect of  thresholding on the orien- 
ation tuning curve of a multi-unit recording taken from 
feline visual cortex. At low thresholds, no orientation 
preference is manifest in the orientation tuning plot. As the 
threshold increases, the response becomes significantly 
more tuned to bars of light at a particular orientation. 
The eccentricity of this plot (ratio of the highest aver- 
age firing rate to lowest average firing rate) reflects the 
selectivity of the response to the given orientation. Tun- 
ing curves with an eccentricity close to 1.0 respond simi- 
larly to all orientations while higher eccentricities have 
significantly stronger responses in the preferred orienta- 
tion. 

Fig. 6B summarizes the results for orientation selectiv- 
ity. Response eccentricity is computed from ibur recording 
sessions using 16 electrodes of the UIEA. At the lowest 
threshold (SNR > 1.0) the mean eccentricity (filled bars) 
is close to 1 (I.1). Increasing to the highest threshold 
(SNR > 11.0) results in the eccentricity increasing to 
4.0. This result can be compared with the orientation selec- 
tivity of  single units from these records (open bar). Orien- 
tation selectivity measured using these responses 
corresponds closely in size to multi-unit activity thresh- 
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Fig. 3. Typical signals recorded by the UIEA. Traces of recordings taken 
from a UIEA implanted in cat visual cortex showing signals with three 
different signal-to-noise ratios (SNR). Stimulus position is shown for a 
bar of white light moving through a 27.4 ° displacement. 

the energy of  the action potential waveform divided by the 
energy of  the noise. A SNR calculated in this manner is 
generally larger than would result from using peak-to-peak 
values for the action potential and noise. Beneath these 
traces, a small region of each trace has been expanded to 
show the temporal qualities of  the recordings. This figure 
shows that the UIEA generally records from populations 
of  neurons rather than individual neurons and that the SNR 
and temporal resolution of  some recordings permit the 
extraction and identification of  single units. Fig. 4A is a 
histogram which shows the distribution of  action potential 
SNRs for 238 separable units present during two experi- 
ments where a UIEA was implanted in feline visual cortex. 
Action potentials with a SNR less than 2 are not repre- 
sented since the ampli tude-based threshold detection 
scheme becomes saturated quickly as the threshold 
approaches the background. The mean SNR of the action 
potentials recorded by the UIEA is 6.1:1 with the highest 
probabili ty of  occurrence in the range of SNR greater than 
2:1 and less than 6:1. Recordings with SNR above 10, 
while not as common, can be obtained. The average num- 
ber of separable neurons for each electrode of  the UIEA 
was 3.4 (Nordhausen et al., 1996). Each point in Fig. 4B 
represents the number of separable neurons present in 
recordings from the UIEA that have been processed at 
different thresholds. The expected number of neurons in 
a recording at a given threshold level is given by the 
dashed curve in Fig. 4. Although all of the subsequent 
results are reported in terms of  SNR, this can be used to 
approximate the number of units present in the recording. 

3.2. Receptive field characterization and thresholding 

For a neural signal to be considered as an input to a BCI, 
the BCI must be able to identify a particular pattern of  
neural activity with a particular stimulus. The ability to 
do this arises from the specificity of the neural response to 
a stimulus and its reproducibility. In the context of  a BCI, 
information content can then be interpreted as the ability 
of the stimulus to be determined from the evoked neural 
activity. Thus, a response which is evoked only for a par- 
ticular stimuli would have a high information content; if  
that particular stimuli always evoked the same response, it 
would be said to have a high reliability. In a BCI, the most 
desirable signals are those which are both stimulus specific 
and highly reproducible. 

To quantify the specificity of the response to a particular 
stimulus, we report the measured receptive field character- 
istic as a function of the number of  units in the response. 
The reliability of  the response is reported as the coefficient 
of variance of the measured receptive field characteristic 
and the percentage of  stimulus presentations which did not 
evoke a response ( 'missed trials '  for the remainder of  this 
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Fig. 4. (A) Single unit SNR distribution. Distribution of the amplitudes 
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separable units on one electrode of the UIEA. These results predict that 
at a SNR of 1.0, there would be 183 neurons recorded from. 
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no more action potentials could be detected. At each 
threshold level, the mean receptive field size and eccen- I 
tricity of  the tuning curve were calculated. The coefficient \ 
of variance (standard deviation divided by the mean) of \ \ 
each of these measurements was also calculated. 

2.5. Single unit classification 

Because of  our interest in comparing the response prop- 
erties of multi-unit to single unit responses, it was neces- 
sary to separate and classify single units in our recordings. 
To extract single-unit activity from the multi-unit record- 
ing, individual action potentials for later classification 
were first extracted from the records of  neural activity 
using the thresholding procedure described above. These 
action potential waveforms were peak-aligned and then 
passed to a template generation program. Templates 
were formed by a user utilizing either time-amplitude 
information or the results of  an iterative 'principle compo- 
nents analysis' (PCA) process (Schmidt, 1984). An action 
potential template consisted of a waveform description and 
a measure of the noise on the electrode for which the 
template was made. After classifying as many action 
potentials as possible and creating templates for them, 
these templates were then used to automatically classify 
the remaining action potential records. An action potential 
classification was accepted if its Euclidean distance from 
the template which it best fit was less than the noise present 
on that electrode. While certainly not the optimal detection 
and classification scheme for neural signals, researchers 
have shown that the difference from optimality is only a 
couple of  dB (Bankman et al., 1993). Once a number of 
single units had been classified, their receptive fields were 
characterized in the same manner as multi-unit responses. 
No attempt was made to extract all possible neurons and 
only readily separable units were used in the analysis. 

2.6. Eye position detection task 

To test the ability of  multi-unit responses to be used as 
input in an external process a task was designed whereby a 
computer would attempt to predict the location of an ani- 
mal subject's gaze using only stimulus-evoked neural 
responses. Fig. 2 shows a block diagram of this system. 
An anesthetized and paralyzed cat has a UIEA (A) 
implanted in visual cortex and is looking at a tangent 
screen on which is projected a bright bar of white light 
(D). Since the eyes are paralyzed and do not move, the 
cat 's gaze can be directed to a known position on the 
screen using a set of mirrors placed between the cat and 
the screen (F). A computer (E) controls the angle of one 
mirror and, thus, can direct the cat 's gaze within a 40 ° arc 
of visual angle on the tangent screen. The position of  the 
light stimulus is controlled by another computer (C) which 
is responsible for rapidly and continuously sweeping the 
light bar across the screen and through the cat's gaze. As 
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Fig. 2. Schematic of eye tracking task. Schematic of a system which uscs 

visually-evoked responses recorded by the UIEA to determine the posi- 
tion of a cat 's  gaze. Cal (A) looks at computer-controlled stimulus (C) 
presented on screen (D). Mirrors (F) control position of cal 's  gaze. 

Computer (B) correlates stimulus information and evoked resp~mses to 

determine position of the gaze. 

the light bar moves through the receptive field of the neu- 
rons from which the recordings are made, the evoked 
responses are recorded by the UIEA. Alter amplification, 
the computer (B) extracts the action potentials based on the 
detection threshold and correlates the activity profile with 
the position of  the stimulus from (C). From this correlation 
and using only the neural responses, the computer (B) 
attempts to determine where computer (E) has positioned 
the eye. The mean square error between the known posi- 
tion, given by (E), and the predicted position, given by (B), 
is computed. The mean square error between these two 
values is used as the figure of merit. 

In the four animals in which receptive field character- 
izations could be made, the eye position determination task 
was performed. This task consisted of the computer (E) 
slowly sweeping the position of the cat's gaze on the tan- 
gent screen while the computer (B) attempted to determine 
the position of the eye based on the evoked responses and 
stimulus position. For each threshold level, the computers 
would be allowed to run in excess of 30 rain which gel)- 
erally resulted in more than 250 determinations of the gaze 
position. Because the responses seemed to lose vigorous- 
hess after many sequential presentations, the stimulus was 
removed for a 30 min period between runs. 

3. Resu l t s  

3.1. Recording capabilities qf the UIEA 

For the UIEA to be a successful candidate recording 
structure for a BCI, it must possess suitable record- 
ing characteristics. Typical stimulus-evoked responses 
from visual cortex with three different SNR are shown in 
Fig. 3. The SNR in this figure is calculated as the ratio of 
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sia assessed using the previously described indicators. 
Breathing rate and minute volume were adjusted to main- 
tain the end tidal CO2 levels between 25-35 mmHg. The 
positions of the optic disks for both eyes were located 
using back projection techniques and the cat was objec- 
tively refracted by bringing the retinal blood vessels into 
focus on a tangent screen using external lenses. 

2.3. Amplification and acquisition 

The equipment to acquire signals from the UIEA per- 
mits the parallel recording of neural activities of a subset 
of 16 electrodes from the available 100 electrodes. These 
16 signals were passed through a 16-channel custom built 
high-gain differential amplifier (AC gain 50000, 4 #V 
peak-to-peak noise, corner frequencies 300 and 9 kHz, 
100 dB/dec roll-off). The conditioned signal from each 
electrode was then sampled in parallel with the other 15 
electrodes to 12-bit resolution at 20 000 samples/s using a 
commercially available data acquisition board (WIN-30D, 
UEI, Cambridge MA) and stored to hard-disk for off-line 
processing. Different sets of 16 electrodes were selected to 
provide recordings from all functioning electrodes. 

2.4. Receptive .field characterizations 

In four feline preparations, two features of the receptive 
fields of neurons in cat striate cortex, size and orientation 
specificity, were characterized as a function of the 
expected number of cells in the recording. Consistent 
with established methods, the visual stimulus was a thin 
bar of bright white light (0.33 ° of visual angle) moved 
through the receptive fields of the cell population being 
recorded (Hubel and Wiesel, 1962). The brightness, orien- 
tation, length, and velocity of the bar could all be adjusted 
by computer control. The brightness of the bar was set at a 
level which produced a vigorous response for each pre- 
sentation of the stimuli. 

Before characterizing the receptive field size, its loca- 
tion was first mapped using a hand-held pantoscope. After 
the general region of the receptive field was located and 
the visual stimulus centered on that position, the bar of 
light would be swept back and forth across the receptive 
field at an optimal velocity for a minimum of 10 passes. To 
control for possible adaptive phenomena in the responses, 
the stimulus was repeated 5 times with a rest period of 5 
min between each presentation. This stimulation was 
repeated for each electrode in the array which had stimulus 
driven responses. The sweep length of the visual stimuli 
was set at 20 ° of visual angle to ensure that it swept the 
entire receptive field. 

The first step in computing the receptive field size of a 
population of neurons was to extract the action potentials 
by thresholding the raw stimulus-evoked activity. The 
action potential waveforms which were saved consisted 
of the 5 data points before and 15 data points after the 

threshold crossing. For a sampling rate of 20000 sam- 
ples/s, this corresponds to a 1 ms window. In addition, 
the position of the visual stimuli when the action potential 
occurred was also recorded and saved. An activity profile 
was produced by correlating the probability of the occur- 
rence of an action potential with the position of the visual 
stimuli an activity profile was produced. This activity pro- 
file was further processed using a moving average filter to 
smooth the response. 

(x -x ' )  2 

f ( x )  = ae  B (1) 

~/B 1 w = 2 . l n ~  (2) 

Eq. 1 was then fitted to the smoothed activity profile 
using the Simplex search algorithm for fitting equations 
with multiple variables. Although the assumption of a uni- 
modal Gaussian distribution for the response profile was 
generally adequate, a closeness-of-fit criteria was used to 
exclude runs where the fitting algorithm failed to con- 
verge. Eq. 1 has three parameters: A describes the peak 
activity, B describes the extent of the activity in terms of 
the position of the stimulus, and x' locates the center of the 
receptive field with respect to stimulus position. From this 
fit, the size of the receptive field was calculated as shown 
in Eq. 2. This equation uses the half-amplitude point of the 
response as delineating the edges of the receptive field and 
most closely resembles the process used for hand-plotting 
visual receptive fields. This process was repeated for each 
presentation of the stimulus in both directions and pro- 
duced at least 20 measurements of the receptive field size. 

Once the receptive field was located and its size deter- 
mined, the orientation of the stimulus was changed in 45 ° 
increments and at each orientation 10 passes of the stimu- 
lus were made in both the left-to-right and right-to-left 
direction (20 presentations at each orientation). Five series 
of presentations were made at each orientation separated 
by 5 min intervals. In computing the orientation tuning of a 
multi-unit response, the magnitude of the response was 
correlated to the orientation of the stimulus. The magni- 
tude of the response for a given stimulus orientation was 
taken to be the number of action potentials which occurred 
in the receptive field normalized by the receptive field size. 
This results in an average measure of the activity while the 
stimulus was in the receptive field. This response magni- 
tude was then plotted in polar fashion and the eccentricity 
of the orientation tuning plot calculated as the ratio of the 
long to short axis of the polar response plot. 

To examine the effect of the size of the cell population 
on the characterizations performed above, the original data 
sets collected were thresholded at a number of succes- 
sively increasing threshold levels starting with a threshold 
level of twice the noise level and stopping at a level where 
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The suitability of  neural recordings for use in a BCI is a 
function of  the ability to extract the desired neural phe- 
nomena and interpret its meaning. EEG-based BCIs typi- 
cally use a component of  EEG recordings called the mu 
wave. These systems control external devices (i.e. cursors 
on a video screen) by detecting changes in the power of  the 
mu wave in the recordings; these changes are interpreted 
as the user's desire to perform some action. A microelec- 
trode-based BCI would detect individual action potentials 
in its recording and determine whether changes in the 
neural activity were indicative of the user's desire to per- 
form an action. Whereas changes in the mu wave result 
from the efforts of the user, proper attribution of changes 
in neural activity patterns to a stimulus (i.e. user's desire) 
in microelectrode recordings is confounded by the inherent 
variability present in trains of action potentials (Dean, 
1981). 

In this paper, we compare the ability of small popula- 
tions of  neurons recorded by electrodes of  the UIEA to 
reliably convey information from single neurons and 
large populations of  neurons. Visual receptive field proper- 
ties of  neural populations in the striate cortex of cats are 
characterized as a function of the number of neurons 
recorded in the population. Further, a simple task is 
described which uses the responses of these neuronal 
populations to detect the position of  a visual stimulus. 
Based on the results of these experiments and the ability 
of  the UIEA to simultaneously sample neural activity from 
a large number of  spatially distinct neuronal populations, 
we believe that further investigation in the use of the UIEA 
as a recording substrate for a BCI is warranted. 

2. Methods 

2.1. The Utah lntracortical Electrode Array 

The micromanufacturing processes used to build the 

Fig. 1. SEM of the Utah Intracortical Electrode Array. Structure is 4.2 
mm on a side and the electrodes are 1.2 mm in length. 

UIEAs in these experiments have been described in detail 
elsewhere (Jones et al., 1992; Nordhausen et al., 1994). 
However, a brief physical description of the array is 
given below. The UIEA is built from a single 0.2 mm 
thick silicon substrate that measures 4.2 mm on a side. 
One-hundred electrically isolated needles arranged in a 
10 by 10 grid project out from this substrate (Fig. 1). 
Each needle is 1.2 mm long and is chemically etched to 
produce a sharp tip. Layering platinum, titanium-tungsten 
and platinum provides an electrical interface between the 
electrode and the surrounding tissues. The electrodes are 
coated with polyimide and the tips exposed to provide the 
desired electrode impedance (80-150 k~). For these 
experiments, the length of the exposed surface of each 
electrode was fixed at approximately 50 txm. Finally, 
gold contact pads on the back of the array provide elec- 
trical access to each electrode. 

2.2. Animal preparation and anesthesia 

To minimize acute cerebral edema, the cat was subcu- 
taneously injected with lcc of dexamethasone (4 mg/ml, 
American Regent Laboratories) one day prior to the 
experiment and intravenously the morning of the experi- 
ment. At this time, a 1 cc injection of atropine (1 mg/ml, 
Elkins-Sinn) was administered to assist in the maintenance 
of a clear air passage. Anesthesia was induced with a 1 cc 
intramuscular injection of  ketamine (10 mg/kg, Ketalar, 
Parke-Davis) and maintained with Halothane. Throughout 
the entire experiment, the status of the animal was mon- 
itored using EKG, end tidal CO2, and eye and ear twitch 
response to mechanical stimulation. 

To prepare the cortex for implantation of the array, a 
small craniotomy was performed using a rotary burring 
tool (Dremel). After removal of  the bone, the dura was 
reflected and the cortex exposed. The area 17/18 boundary 
of  visual cortex was identified using various anatomical 
landmarks rather than by probing with a wire electrode 
(this would result in unnecessary damage to cortex). 
After positioning, the UIEA was pneumatically inserted 
into cortex as described by Rousche (Rousche and Nor- 
mann, 1992). A Pt/Ir reference electrode (2 mm exposed 
length) was placed in an adjacent gyms and the cat 
grounded through a needle placed in the neck muscles. 

Final preparation of the animal consisted of covering of 
exposed cortex with a thin plastic fihn to prevent cortical 
dehydration. Zero correction contact lenses were used to 
prevent dehydration of the corneas. After the stability and 
depth of  anesthesia had been established, typically after 6 -  
8 h, and immediately prior to the initiation of experiments. 
the cat was paralyzed by IV injection of  pancuronium 
bromide (1 mg/ml, Gensia Laboratories) and the head 
mechanically immobilized. Paralysis was maintained by 
periodic injection (-0.2 mg/h) of the paralytic agent. To 
verify adequate anesthesia, the cat would periodically be 
allowed to recover from paralysis and the depth of anesthe- 
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1970; Humphrey, 1972; Georgopolous et al., 1992a; Geor- 
gopolous et al., 1992b; Schwartz, 1993). Based on this, one 
must begin to question the need for expending significant 
efforts to extract single unit activities from these multi-unit 
recordings. 

The results in this paper show that the judicious selec- 
tion of the thresholding voltage used to extract superthres- 
hold events from a recording of multi-unit neural activity 
can result in response features (stimulus selectivity and 
variability) which are consistent with single unit derived 
results; without the need for complex extraction and clas- 
sification algorithms (Hubel and Wiesel, 1962; Duysens et 
al., 1982; Jones and Palmer, 1987; Lohmann and Reit- 
boeck, 1988). These results also highlight one significant 
problem with single unit activity: its inherent variability. 
The design constraints for a BCI require that the signals 
used contain specific information and convey it in a reli- 
able fashion, this argues against the use of single unit 
activity records. We have shown, through an analysis of 
receptive field characteristics and a detection task, that 
suitably thresholded multi-unit activity can provide the 
requisite qualities of information content and reliability. 

The independence of the population of neurons recorded 
by each electrode of the UIEA is also important in max- 
imizing the amount of information extracted from the pat- 
terns of activity. This independence is a function not only 
of the propagation of action potential waveforms through 
cortex but also the size and spacing of cortical efferent 
columns in motor cortex. Researchers have determined 
the size of these cortical efferent pathways (comprising 
the corticospinal tract) to have diameters between 300 
~tm and 1.0 mm (Asanuma, 1975; Murray and Coulter, 
1981) and a separation spacing between 500/zm and 1.0 
mm (Jones and Wise, 1977). Minimum feature sizes, the 
size of a region where all penetrations evoke an identical 
motor activity for a given level of injected current, were 
determined to be 500 gm to 2.0 mm (Kwan et al., 1978). 
Using these anatomically and functionally derived values, 
proper electrode spacing would place one electrode in each 
cortical efferent column: this would suggest an electrode 
spacing on the order of 500 /xm. Placing the electrodes 
closer would not necessarily increase the number of inde- 
pendent control channels since it has been shown that the 
neurons present in one of these columns are all related to 
the performance of a particular task. 

4.3. Validity of  sensory corticies as models for  motor 
cortex 

The results presented in this paper were derived from a 
UIEA implanted in feline visual cortex. To apply these 
results to the development of a BCI, it is necessary to 
validate that these results would be consistent with a 
UIEA implanted in motor cortex. This assumption can 
be justified from the standpoint of the anatomy of motor 
cortex and the recordings themselves. 

Functionally, the visual and motor corticies perform 
widely different roles. Visual cortex is a sensory structure 
and thus is primarily concerned with inputs to the brain. 
Motor cortex, on the other hand is primarily an output 
structure. This fundamental difference has its effects on 
two anatomical features of these corticies: the types and 
densities of cells and the lamellar structure of the neocor- 
tex. Visual cortex is much more densely packed than 
motor cortex, and by some estimates contains nearly 5 
times the cell density as motor cortex in primates 
(Cragg, 1967; Beaulieu and Colonnier, 1989). The distri- 
bution of cell types in feline visual and motor cortex are 
identical (Winfield et al., 1980). For these two reasons, we 
would expect recordings from motor cortex to have fewer 
separable cells but these units would have larger ampli- 
tudes. Because visual cortex receives most of its input 
from the thalamus, it has a larger layer IV than motor 
cortex. The efferent nature of motor cortex results in a 
larger layer V structure where a majority of the pyramidal 
cells reside. 

Neither of these two features has the effect of changing 
the results of this study. A larger layer V can be compen- 
sated in the UIEA by increasing the length of the indivi- 
dual electrodes without changing the recording 
characteristics. Likewise, these electrodes will still record 
multi-unit activity which will have all of the same char- 
acteristics as responses from visual cortex. The use of a 
sensory cortex for this study was chosen to greatly facil- 
itate the experimental methods. Primarily, the advantage 
of a sensory cortex is that it is easy to correlate the neural 
activity with a particular stimulus and it avoids the neces- 
sity of complex behavioral training paradigms. 

Another reason we can expect multi-unit recordings 
from visual cortex to be similar to those from motor cortex 
is that multi-unit activity represents a type of temporal and 
spatial integration. In cortex, neurons near to each other 
have significant relationships in their response to a given 
stimulus. Since each neuron present in a multi-unit res- 
ponse processes the stimulus in a subtly different manner; 
the combined response of a large number of neurons is 
functionally independent of slight differences in stimulus 
characteristics. This was seen as a reduction in the 
response specificity to bars of a particular orientation 
with decreasing threshold and a decrease in the response 
variability. As more neurons were recruited into the 
response by lowering the threshold, more integration of 
the stimulus was performed. Multi-unit activity in motor 
cortex can be expected to have the same characteristics, 
except that the stimulus is no longer visual or auditory but 
the volitional intent to perform a motor movement. This 
integration could prove to be greatly beneficial in that the 
user will not be required to develop extremely stereotyped 
strategies for generating specific patterns of activity relat- 
ing to a command. Further, this integration may mitigate 
the ef-fects of plastic changes in the functional organiza- 
tion of motor cortex which may result from use of a BCI. 
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The development of a BCI based on recordings from 
implanted microelectrode arrays will involve significant 
research in a number of areas. While this paper has demon- 
strated that the UIEA might provide a suitable platform for 
implementation in a BCI, it has not addressed the process 
of associating a pattern of activity with a desired com- 
mand. We have shown that the signals recorded by the 
UIEA can be used to perform a simple task, to extrapol- 
ate this result into a functional assistive technology will 
require a better understanding of the temporal and spatial 
organization of information processing in motor cortex. 

Although there is currently substantial interest in the 
development of EEG-based BCI systems for individuals 
with severe motor impairments, we believe that the future 
of this technology lies with arrays of electrodes which 
penetrate into motor cortex, such as the UIEA. We look 
forward to additional studies that will explore the two- 
dimensional space and time representations of primary 
motor cortex. These studies will provide further design 
specifications for future generations of multielectrode 
arrays which will be even better suited for use as a BCI. 
In spite of the invasiveness of the UIEA compared to an 
EEG lead, it is a biocompatible structure and it is capable 
of acquiring a great deal more information about volitional 
motor intent than an EEG. This increased amount of in~br- 
mation should result in the ability of individuals to control 
multiple external devices with great precision. 
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