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Several questions must be addressed to develop the theory of the elec-
tronic structure of single ultrasmall (submicrometer) electron devices
and the band structures of device arrays. The effects of intradevice
Coulombd interactions and correlations on the electronic structure of
individual devices have been studied by use of the multi-electron
effective-mass Schrodinger equation for interacting few-electron
systems confined in a single ultrasmall device. The band structures
for noninteracting electrons in device arrays have been studied by
performing augmented plane wave calculations for two-dimensional arrays
of two-dimensional circular quantum wells and quantum barriers.
Results are presented and the impact on the understanding of the
electronic structure of devices and arrays is discussed.

The electronic structure of a crystal can
be fully understood only if the electronic
structure of the constituent atoms is known and
if the banding of the atomic bound states,
which occurs when the atoms are in a lattice,
is accurately determined. Similarly, the elec-
tronic structure of an array of ultrasmall

(submicrometer dimensions) devices1 3 can be
fully understood only if the electronic struc-
ture of the carriers localized to a single
device and the band structure can be
determined.

For typical surface- or inversion-layer

‘| -
charge densities (~10 0—1012 cm 2), a single

ultrasmall device structure traps only a few
carriers. Thus the electronic structure of a
single ultrasmall device is that of an inter-
acting, few-electron (atomic-like) system,
rather than that of a nearly free electron gas,
and therefore consideration of intradevice Cou-
lomb interactions and correlation is essential.
In an array of devices, the band structure is
determined by the size, shape, and separation
of the device elements and by the geometry of
the lattice. In the fabrication process, all
of these parameters, including the lattice
geometry, could, in principle, be controlled.
Thus there should be tremendous freedom to
control the array band structure; in principle,
more freedom should be allowed for the array
than for other artificially structured materi-
als because the lattice geometry can be
controlled.
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Here we report on initial efforts to under-
stand the electronic structure of devices and
arrays. To keep the calculations tractable, we
have modeled the single ultrasmall devices as
two-dimensional quantum wells and the arrays as
two-dimensional lattices formed from two-
dimensional quantum wells (dot arrays) or quan-
tum barriers (bump lattices); thus the results
we present will illustrate the possibilities
for tailoring the electronic structure of a
two-dimensional electron gas. The electronic
structure of single devices and the band struc-
ture of arrays will be treated separately. The
electronic structure of single ultrasmall
devices will be considered first.

Single ultrasmall devices can trap only a
few carriers. For example, if the inversion-

layer charge density were 10H cm_z, then a

two-dimensional uniform gas in a square struc-
ture 0.1 um wide would contain 10 carriers; in
a structure 0.05 um wide, 2.5 carriers; and in
a structure 0.0% um wide, less than one zar-
rier. These structures must be treated as
finite-particle systems. Few-particle (N S 6)
systems have been studied by solving the multi-
particle effective-mass Schrodinger equation
for a two-dimensional interacting-particle-in-
a-box model. 1In this approach the deviece is
modeled as a strictly-two-dimensional quantum
well. No effects of inversion layer width are
included. The well has infinite barriers and
is rectangular. Thus a basis set of wave func-
tions which are separable in the two dir=sctions
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that define the well can be employed. The one- 20
dimensional (1D)-basis functions are the exact -
single-particle 1D-states (sines and cosines) ¢
for the noninteracting system. The well is E/E . 10 .7
described with material parameters for GaAs i e
(effective mass m = 0.067 m, and dielectric -

constant € = 13.1). il -t - —— - —f— ~ —
The particle interaction is the Coulomb 0

interaction screened by the background dielec- 1.0 T T T

tric constant. The correlations are included N

by use of a configuration interaction approach. N

The multiparticle wave function is expanded in E/E 0.50 - S~ ]

terms of Slater determinants constructed from e ’ SN

the single-particle noninteracting eigenstates. (T TT==

The kinetic energy and interaction matrix ele-

ments are found by use of the Slater determi- 0 | ! L I

nant basis and the Hamiltonian is diagonalized

to find the eigenstates. Because an infinite

barrier model is used, all kinetic-energy

matrix elements scale as 1/L2, and all interac- E/E

tion matrix elements scale as 1/L when the
dimension L of the well is changed without | cee==="T7
changing the well's shape. In all cases the -
matrix elements were calculated for one well 0 L | I
size and scaled to obtain results for other
well sizes. The evaluation of Coulomb matrix 1.0 T ] | T

elements is straightforward.u \
The effects of the Coulomb interaction and
correlation on the ground-state energies and AE /Ay 0.50 \
charge densities are shown in Figs. 1 and 2 for \
two-particle systems with even x and y parity N
(the two directions that define the rectangle) 0 ==l L |
and zero spin. The effect of the Coulomb in- 0 0.1 0.2
teraction is evident when the energies of the L (um) Gw
noninteracting ground state, Eni' and the state GP61-0910-7-R

frozen into the noninteracting configuration 1. Effect of the Coulomb interaction and
but with Coulomb interactions included, Ef, are correlation on the ground state and
excitation energies of two particles in

an ultrasmall structure. EF/Eni is the

ratio of the energy of the interacting
/Eni scales system when frozen into the lowest non-
interacting state to the energy of the
noninteracting ground state. Er is the

compared with the fully relaxed state, Er' The
Coulomb energy scales as 1/L and the kinetic

energy scales as l/LZ, therefore Ef

linearly with L. When the carriers relax, cor-
relating their positions to minimize their

interaction, the ground state energies are energy of the fully relaxed state. AE,
reduced substantially, indicating the impor- and AE , are the excitation energies of
tance of correlation. Even after the energy ni

has been reduced by correlation effects, Er is the relaxed and noninteracting systems.

The solid curves are for square struc-

still very different from E ;. tures with dimension L. The long-short

When the interaction effects are dominant, dgshed curve is for a quasi-one-
the particles move as far apart as allowed by dimensional channel (Ly = 0L = L). The
the confining potential. In square structures short dashed curves are for the narrow
they move apart along diagonals with the car- channel after the large kinetic energy
rier density o(r) peaking nearly half way from contribution from confinement in the x-
the center when L = 0.1 um. For structures in direction is eliminated from the
which the confining potential dominates, the energies.

density approaches the free-particle density.
The extent of correlation is shown by the

conditional carrier density, olr,r,) (the den- particles stay as far away from each other as

sity at r of one particle when the other is possible.

fixed at r.). When interactions dominate, the Since Coulomb effects can be significant,
0 single ultrasmall devices should exhibit the

particle motions are not independent, and the same rich variety of electronic structure as
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2. Effect of the Coulomb interaction and
correlation on the single-particle den-
sity, o{r), and the two-particle condi-
tional density, u(r,ro) for two particles

in a square structure. The broken curves
are for noninteracting particles, the
dashed curves for a structure of width

L = 0.0! um and the solid curves for

L = 0.1 ym. The paths in the inserts

def ine the contours on which the densi-
ties are determined. The dot in the
insert and the arrow on the x-axis indi-
cate the position ro. The densities are

scaled for each L so that the densities
of the noninteracting state are independ-
ent of L.

displayed by atoms. There are devices which,
analogous to light atoms, display single par-
ticle effects, while other devices, analogous
to heavy atoms, are highly correlated. For
example, in a device with N = 3 and Lx = Ly =
0.01 um, CToulomb effects are weak; the eigen-
states are formed by filling the single-
particle states. The symmetries (x and y
parity and spin) of the interacting and non-
interacting ground states are the same. The
ground state has a filled core, the lowest
excited states have one particle excited from
the core. The most probable configuration in
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the interacting state is the configuration of
the analogous noninteracting state. When the
same device has a width LX = Ly = 0.2 um, the

Coulomb effects are strong, the energy is mini-
mized by separating particles, the core level
of the ground state is singly occupied, and the
interacting and noninteracting ground states
have different symmetry and spin. The inter-
acting ground state has odd x and y parity and
spin 3/2, while the noninteracting ground state
is degenerate with spin 1/2, even parity in one
direction and odd in the other. The most prob-
able configuration in the interacting state is
still the configuration of the analogous non-
interacting state, but many other configura-
tions contribute as well. Results for dzvices

with N = 4,5 and 6 are similar, with Coulomb
[~
effects sensitive to device dimensions.”

Although intradevice Coulomb effects can be
significant, we have chosen to first perform
simple band structure calculatiors in which the
carriers are noninteracting. Previously,

Iafrate, Ferry and Reich1 used a tight-binding
approach to study the band structue of an
array of devices and Carlsson and Ashor*oftj
used a tight-binding approach to study disorder
effects in such an array. We use the

augmented-plane-wave (APW) approaohn within the
effective-mass approximation to determine the
array band structure. The APW approach should
be much more reliable for nearly free states;
moreover, use of the APW allows us t2 treat the
quantum bump array.

This study considers two-dimensional square
lattices of quantum devices. In the quantum
dot case, the devices are circular, Lwo-
dimensional wells of GaAs surrounded by
Ga}_XAles. In the quantum-bump case, tne

devices are circular, two-dimensional barrier
regions of GangAlXAs surrounded by GaAs. The

material parameters used are m, = .067 m
Gahs 0
L (0.067 + 0.083x) my and conduction

band discontinuity, V = 0.75 x eV {(as derived
using the 60-40 rule).

The band structures of dot and bump arrays
are shown in Figs. 3a and 3b. Ir each case the
lattice constants are AX = Ay = 10 nm, tne

alloy composition is x = 0.2; and three wJell
(barrier) sizes are considered: R = O (free
electrons), 1 nm and 2 nm. The isolated well
has s-bound states at -0.000005 eV when R = !
nm and at -0.012 eV when R = 2 nm. No bound
states occur for higher angular momentum. Inly
results for nearly free electrons with wave
vectors in the first Brillouln zone in the
(10)-direction are shown.

As R Increases, the free-electron bands
become substantially distorted. In the dot
array, the bands flatten out and the lowest
free-electron band is pulled into the band of
states localized to the wells. For R = 't nm,
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3. The band structure of the nearly free
states in the first Brillouin zone along
the (10) direction of quantum dot (a) and
bump (b) arrays. The lattice constants
are Ax = Ay = 10 nm; while R = 0 nm for

free electrons (solid curves), R = 1 nm
(dashed curves), and R = 2 nm (dash-dot
curves). The alloy composition is x =
0.2. The zero of energy is the bottom of
the conduction band of Ga, Al As (GaAs)

for the dot (bump) array.

states with k along the (1,0) and (1,1) direc-
tions have similar dispersion. For R = 2 nm,
all states in the lowest band, except those in
pockets around the (1,1) directions and near
the Brillouin zone edge, are localized to the
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wells. For larger R, even more severe distor-

tions of the bands occur. Iafrate1 studied the
banding of the isolated well bound states.
Those states remained well localized when the
wells were placed in an array. Iafrate's
results complement our results for the nearly
free states.

In the bump array, the lowest band of
states has energies below the bump barrier;
therefore the states are resonantly trapped
between the bumps. Significant flattening of
the lowest band also occurs in the bump arrays
even though the states are not truly localized.
However, this flattening does not occur in all
directions. States with wave vectors along
directions where the bumps are widely spaced
[for example, (1,3)] have much greater disper-
sion than states for k along (1,0) and (1,1).
Other arrays with different dimensions show
similar trends but on different length and

energy scales.7

In summary, Coulomb interactions and cor-
relations are important in our theory of single
ultrasmall devices. Such devices exhibit a
wide range of electronic structures--nearly
free~electron or highly correlated, filled or
unfilled (magnetic) cores--just as atoms do.

In fact, the importance of Coulomb interac~
tions, especially for very small structures, is
underestimated in our theory, because the in-
finite barrier model overestimates the compet-
ing kinetic energy effects. Carriers in real
devices with dimensions L < 0.01 um are ex-

pected to be much less like noninteracting
electrons than electrons in infinite barrier
devices of the same size are. Difficulty is
expected in pairing electrons in very small
real structures because of the presence of
Coulomb repulsion and the finiteness of confin-
ing barriers.

The results for the band structures of
quantum dot and bump arrays indicate that the
free-electron band structure can be severely
modified, even for noninteracting electrons, by
the presence of the array potential. Calcula-
tions of the band structure for interacting
systems will be much more difficult. Intra-
device interaction effects will have to be
included in the calculations when devices are
so small (L ~ 1-10 nm) that real barriers must
be used to realistically model the intradevice
interaction effects. Interdevice interactions
will also have to be included in the calcula-
tions. Just as the electrons in single devices
(L ~0.1-1 pm) can be highly correlated, device
arrays that have an active area with dimensions
L ~0.1-1 um can be highly correlated. The
possibility of charge instabilities in quantum

well arrays has been previously explored1'8 by
use of a dielectric response approach. Our
complementary approach suggests the same pos-
sibility and re-emphasizes that the electronic
structure of ultrasmall gquantum arrays will not
be simple to model.
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