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Several questions must be addressed to develop the theory of the elec- 

tronic structure of single ultrasmall (submicrometer) electron devices 

and the band structures of device arrays. The effects of intradevice 
Coulomb interactions and correlations on the electronic structure of 

individual devices have been studied by use of the multi-electron 

effective-mass Schrodinger equation for interacting few-electron 
systems confined in a single ultrasmall device. The band structures 

for noninteracting electrons in device arrays have been studied by 

performing augmented plane wave calculations for two-dimensional arrays 
of two-dimensional circular quantum wells and quantum barriers. 

Results are presented and the impact on the understanding of the 

electronic structure of devices and arrays is discussed. 

The electronic structure of a crystal can 

be fully understood only if the electronic 
structure of %he constituent atoms is known and 

if the banding of the atomic bound states, 
which occurs when the atoms are in a lattice, 

is accurately determined. Similarly, the elec- 
tronic structure of an array of ultrasmall 

(submicrometer dimensions) devices I-3 can be 

fully understood only if the electronic struc- 

ture of the carriers localized to a single 

device and the band structure can be 

determineC. 

For" typical surface- or inversion-layer 

charge densities (-1010-1012 cm-2), a single 
ultrasmall device structure traps only a few 
carriers. Thus the electronic structure of a 

single ultrasmall device is that of an inter- 

acting, few-electron (atomic-like) system, 
rather than that of a nearly free electron gas, 
and therefore consideration of intradevice Cou- 

lomb interactions and correlation is essential. 
In an array of devices, the band structure is 
determined by the size, shape, and separation 

of the device elements and by the geometry of 
the lattice. In the fabrication process, all 

of these ~arameters, including the lattice 
geometry, could, in principle, be controlled. 
Thus there should be tremendous freedom to 

control the array band structure; in principle, 
more freedom should be allowed for the array 
than for other artificially structured materi- 
als because the lattice geometry can be 
contro] led. 

Here we report on initial efforts to under- 
stand the electronic structure of devices and 

arrays. To keep the calculations tractable, we 
have modeled the single ultrasmall devices as 
two-dimensional quantum wells and the arrays as 

two-dimensional lattices formed from two- 

dimensional quantum wells (dot arrays) or quan- 
tum barriers (bump lattices); thus the results 

we present will illustrate the possibilities 
for tailoring the electronic structure of a 

two-dimensional electron gas. The electronic 

structure of single devices and the band struc- 
ture of arrays will be treated separately. The 

electronic structure of single ultrasmal~ 

devices will be considered first. 

Single ultrasmall devices can trap only a 
few carriers. For example, if the inversion- 

layer charge density were 1011 cm -2, then a 

two-dimensional uniform gas in a square ,~truc- 

ture 0.1 um wide would contain 10 carriers; in 
a structure 0.05 um wide, 2.5 carriers; ~nd in 

a structure 0.01 ~m wide, less than one car- 
rier. These structures must be treated as 
finite-particle systems. Few-particle (N < 6) 

systems have been studied by solving the multi- 
particle effective-mass Schrodinger equation 
for a two-dimensional interacting-particle-in- 
a-box model. In this approach the device is 

modeled as a strictly-two-dimensional quantum 
well. No effects of inversion layer width are 
included. The well has infinite barriers and 
is rectangular. Thus a basis set of waw~ func- 
tions which are separable in the two directions 
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that define the well can be employed. The one- 

dimensional (ID)-basis functions are the exact 
single-particle ID-states (sines and cosines) 

for the noninteracting system. The well is 

described with material parameters for GaAs 

(effective mass m = 0.067 m 0 and dielectric 

constant t = 13.1). 

The particle interaction is the Coulomb 
interaction screened by the background dielec- 

tric constant. The correlations are included 

by use of a configuration interaction approach. 
The multiparticle wave function is expanded in 

terms of Slater determinants constructed from 

the single-particle noninteracting eigenstates. 
The kinetic energy and interaction matrix ele- 

ments are found by use of the Slater determi- 
nant basis and the Hamiltonian is diagonalized 

to find the eigenstates. Because an infinite 

barrier model is used, all kinetic-energy 

matrix elements scale as I/L 2, and all interac- 

tion matrix elements scale as I/L when the 

dimension L of the well is changed without 

changing the well's shape. In all cases the 

matrix elements were calculated for one well 

size and scaled to obtain results for other 

well sizes. The evaluation of Coulomb matrix 

elements is s t r a i g h t f o r w a r d .  4 
The effects of the Coulomb interaction and 

correlation on the ground-state energies and 
charge densities are shown in Figs. I and 2 for 

two-particle systems with even x and y parity 

(the two directions that define the rectangle) 
and zero spin. The effect of the Coulomb in- 

teraction is evident when the energies of the 

noninteracting ~Tound state, Eni, and the state 

frozen into the noninteracting configuration 

but with Coulomb interactions included, Ef, are 

compared with the fully relaxed state, E . The 
r 

Coulomb energy scales as I/L and the kinetic 

energy scales as 1/L 2, t h e r e f o r e  Ef /Eni  s c a l e s  

linearly with L. When the carriers relax, cor- 

relating their positions to minimize their 
interaction, the ground state energies are 

reduced substantially, indicating the impor- 
tance of correlation. Even after the energy 
has been reduced by correlation effects, E is 

r 
still very different from E .. 

nl 

When the interaction effects are dominant, 

the particles move as far apart as allowed by 
the confining potential. In square structures 
they move apart along diagonals with the car- 

rier density o(r) peaking nearly half way from 
the center when L = 0.1 ~m. For structures in 
which the confining potential dominates, the 

density approaches the free-particle density. 
The extent of correlation is shown by the 

conditional carrier density, o(r,r 0) (the den- 

sity at r of one particle when the other is 
fixed at to). When interactions dominate, the 

particle motions are not independent, and the 
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Effect of the CoulOmb interaction and 

correlation on the ground state and 

excitation energies of two particles in 

an ultrasmall structure. Ef/Ent is the 

ratio of the energy of the interacting 

system when frozen into the lowest non- 

interacting state to the energy of the 

noninteraeting ground state. E is the 
r 

energy of the fully relaxed state. AE 
r 

and AEni are the excitation energies of 

the relaxed and nonlnteracting systems. 
The solid curves are for square struc- 
tures with dimension L. The long-short 

dashed curve is for a quasi-one- 

dimensional channel (Ly = IOL x - L). The 

short dashed curves are for the narrow 
channel after the large kinetic energy 
contribution frOm confinement in the x- 
direction is eliminated frOm the 

energies. 

particles stay as far away from each other as 

possible. 
Since Coulomb effects can be significant, 

single ultrasmall devices should exhibit the 
same rich variety of electronic structure as 
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2. Effect of the Coulomb interaction and 

correlation on the single-partlcle den- 

sity, ~(r), and the two-partlcle condi- 

tlonal density, o(r,r O) for two particles 

in a square structure. The b~oken curves 

are for noninteracting particles, the 

dashed curves for a structure of width 

L = O.O1 ~m and the solid curves for 

L = 0.1 ~m. The paths in the inserts 

define the contours on which the densi- 

ties are determined. The dot in the 

insert and the arrow on the x-axis indi- 

cate the position r O. The densities are 

scaled for each L so that the densities 

of the noninteracting state are independ- 

ent of L. 

displayed by atoms. There are devices which, 

analogous to light atoms, display single par- 

ticle effects, while other devices, analogous 

to heavy atoms, are highly correlated. For 

example, Jn a device with N = 3 and L = L 
x y 

0.01 ~m, Coulomb effects are weak; the eigen- 
states ar( formed by filling the single- 

particle states. The symmetries (x and y 

parity and spin) of the interacting and non- 

interacting ground states are the same. The 

ground state ~as a filled core, the lowest 

excited states have one particle excited from 

the core. The most probable configuration in 

the interacting state is the configuratiDn of 

the analogous noninteracting state. When the 

same device has a width L = L = 0.2 um, the 
x y 

Coulomb effects are strong, the energy is mini- 

mized by separating particles, the core level 

of the ground state is singly occupied, and the 

interacting and noninteracting ground states 

have different symmetry and spin. The inter- 

acting ground state has odd x and y parity and 

spin 3/2, while the noninteracting ground state 

is degenerate with spin I/2, even parity in one 

direction and odd in the other. The most prob- 

able configuration in the interacting state is 

still the configuration of the analDgous non- 

interacting state, but many other configura- 

tions contribute as well. Results for" d,vices 

with N : 4,5 and 6 are similar, with Oou]omb 

• J 

effects sensitive to device dlmens~ons. 

Although intradevice Coulomb effects can be 

significant, we have chosen to firs~ perform 

simple band structure calculations in which the 

carriers are noninteraeting. Previously, 

lafrate, Ferry and Reich I used a tight-binding 

approach to study the band structure of an 

array of devices and Carlsson and Asheroft j 

used a tight-binding approach to study d aorder 

effects in such an array. We use th~ 

augmented-plane-wave (APW) approach' within the 

effective-mass approximation to determine the 

array band structure. The APW approach should 

be much more reliable for nearly fr~e states; 

moreover, use of the APW allows us ~ r ~ treat the 

quantum bump array. 

This study considers two-dimensiona] square 

lattices of quantum devices. In th.e quantum 

dot case, the devices are circular, T~wo- 

dimensional wells of GaAs surrounded by 

Ga1_xAlx As" In the quantum-bump ease, tm 

devices are circular, two-dimensional barrier 

regions ot ~ Ga1_xilxAS surrounded by ]aAs. The 

material parameters used are mGaAs = 3 c 7 m0 ' 

mGaAiAs : (0.067 + 0.083x) m 0 and condu<tion 

band discontinuity, V = 0.75 x eV (as Jerived 

using the 60-40 rule). 

The band structures of dot and bump arrays 

are shown in Figs. 3a and 3b. In e~ch ease the 

lattice constants are A = A : !0 rim, tqe 
x y 

alloy composition is x = 0.2; and three ~el! 

(barrier) sizes are considered: R = 3 (free 

electrons), I nm and 2 nm. The isolated wetl 

has s-bound states at -0.000005 eV w~en R : ] 

nm and at -0.012 eV when R = 2 nm. No br;und 

states oceur for higher angular moment, urn. 3niy 

results for nearly free electrons with w~ve 

vectors in the first Brillouin znne in ti~ 

(10)-direction are shown. 

As R increases, the free-electron bands 

become substantially distorted. In the dot 

array, the bands flatten out and the lowest 

free-electron band is pulled into the band of 

states localized to the wells. For R = !nm, 
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3- The band s t r u c t u r e  o f  the nearly f r e e  
states in the first Brillouin zone along 

the (I0) direction of quantum dot (a) and 
bump (b) arrays. The lattice constants 

are A = A = 10 nm;' while R = 0 nm for 
x y 

free electrons (solid curves), R = I nm 
(dashed curves), and R = 2 nm (dash-dot 

curves). The alloy composition is x = 
0.2. The zero of energy is the bottom of 

the conduction band of Ga1_xAlxAS (GaAs) 

for the dot (bump) array. 

states with k along the (1,0) and (1,1) direc- 
tions have similar dispersion. For R = 2 nm, 
all states in the lowest band, except those in 
pockets around the (1,1) directions and near 
the Brillouin zone edge, are localized to the 

wells. For larger R, even more severe distor- 

tions of the bands occur. Iafrate I studied the 

banding of the isolated well bound states. 

Those states remained well localized when the 
wells were placed in an array. Iafrate's 

results complement our results for the nearly 
free states. 

In the bump array, the lowest band of 

states has energies below the bump barrier; 

therefore the states are resonantly trapped 

between the bumps. Significant flattening of 

the lowest band also occurs in the bump arrays 

even though the states are not truly localized. 
However, this flattening does not occur in all 

directions. States with wave vectors along 

directions where the bumps are widely spaced 

[for example, (1,3)] have much greater disper- 
sion than states for k along (1,0) and (1,1). 

Other arrays with different dimensions show 

similar trends but on different length and 

energy scales. 7 

In summary, Coulomb interactions and cor- 
relations are important in our theory of single 
ultrasmall devices. Such devices exhibit a 
wide range of electronic structures--nearly 

free-electron or highly correlated, filled or 

unfilled (magnetic) cores--just as atoms do. 

In fact, the importance of Coulomb interac- 

tions, especially for very small structures, is 
underestimated in our theory, because the in- 

finite barrier model overestimates the compet- 
ing kinetic energy effects. Carriers in real 
devices with dimensions L < 0.01 ~m are ex- 

pected to be much less like noninteracting 
electrons than electrons in infinite barrier 
devices of the same size are. Difficulty is 

expected in pairing electrons in very small 

real structures because of the presence of 
Coulomb repulsion and the finiteness of confin- 

ing barriers. 

The results for the band structures of 

quantum dot and bump arrays indicate that the 

free-electron band structure can be severely 

modified, even for noninteracting electrons, by 
the presence of the array potential. Calcula- 
tions of the band structure for interacting 
systems will be much more difficult. Intra- 

device interaction effects will have to be 

included in the calculations when devices are 
so small (L - 1-10 nm) that real barriers must 

be used to realistically model the intradevice 

interaction effects. Interdevice interactions 
will also have to be included in the calcula- 

tions. Just as the electrons in single devices 
(L -0.1-I ~m) can be highly correlated, device 

arrays that have an active area with dimensions 
L - 0.I-I um can be highly correlated. The 
possibility of charge instabilities in quantum 

well arrays has been previously explored 1'8 by 

use of a dielectric response approach. Our 
complementary approach suggests the same pos- 
sibility and re-emphasizes that the electronic 
structure of ultrasmall quantum arrays will not 
be simple to model. 
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