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ABSTRACT

We present first-principles studies of the effect of biaxial (0001)-strain on the electronic
structure of wurtzite GaN, and AIN. We provide accurate predictions of the valence band
splittings as a function of strain, which may facilitate the interpretation of data from strained
samples. The conduction and valence band effective mass tensors for AIN and GaN are also
presented. The computed crystal-field and spin-orbit splittings in unstrained materials as
well as the computed deformation potentials are in accord with available experimental data.
We show that the numerically computed band energies can be excellently represented in
terms of a 6-band k - p model. The present calculations are based on the first-principles
pseudopotential method within the local-density formalism and include the spin-orbit inter-
actions non-perturbatively.

INTRODUCTION

The group-11I nitrides AIN, GaN, and InN have recently attracted much attention as
candidates for short-wavelength optical devices [1]. The stable structure of bulk nitrides is
the wurtzite structure. For these direct gap nitrides, the detailed knowledge of the carrier
spectra in the vicinity of the center of the Brillouin zone is necessary for understanding
and design of optoelectronic devices. Unfortunately, only little is known about the rather
complex structure of the hole spectra. Additionally, the effect of strain on the electronic
structure is appreciable due to the large lattice mismatch in nitride heterostructures.

In this paper, we provide quantitative ab-initio predictions of the electronic structure of
group-I1I nitrides as a function of biaxial strain. The band structure near the band gap and
the major optical transitions across the energy gap are calculated. We have determined the
electron and hole effective mass tensors and the deformation potentials from our ab-initio
calculations. These results permit us to determine the band parameters in terms of a 6x6
k-p Hamiltonian for the valence bands in the wurtzite structure.

The band structures of bulk AIN, GaN, and InN in the wurtzite and zincblende phase
have been studied before extensively [2]. However, few reports have dealt with the details of
the valence band edge and strain effects. First-principles calculations of the effect of biaxial
strain on the electronic structure of the valence band edge in wurtzite nitrides have been
recently presented [3, 4, 5]. Non-relativistic ab-initio calculations of the effective masses in
AIN and GaN have been also performed {4, 6}.

In the wurtzite structure, the top of the valence band at the I" point consists of a doubly
degenerate 'y and two doubly degenerate I'; states. In GaN, the separations between these
states are of the order of 10 meV reflecting the comparable strength of the crystal field and
spin-orbit interactions. The exciton energies corresponding to these split valence edge states
have been recently measured in strained GaN films [7].

Employing the relativistic local density functional pseudopotential method and elasticity
theory, we have analyzed the electronic band energies of three different wurtzite structure
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nitrides as a function of biaxial and hydrostatic strain. It turned out to be crucial to fully
optimize internal structural parameters that are not determined by the symmetry, in order
to ensure reliable and truly quantitative results.

THEORY

First-principles calculations

Our calculations are based on the first-principles total-energy pseudopotential method
within the local-density-functional formalism [8]. We have used norm-conserving separable
pseudopotentials [9, 10] and a preconditioned conjugate gradient algorithm [11] for mini-
mizing the total crystal energy with respect to the electronic as well as the ionic degrees of
freedom. These pseudopotentials are highly transferable, yet sufficiently soft so that a kinetic
energy cutoff of 62 Ry suffices to yield converged total energies. We have used 14 special
points [12] for the k-space integrations. The semicore Ga 3d-electrons are treated as part
of the frozen core, but their considerable overlap with the valence electrons is accounted for
by including the nonlinear core exchange-correlation correction [13]. This procedure yields
lattice constants, atomic positions, and bulk moduli in very good agreement with experi-
ment [5]. In order to realistically account for the interplay between strain and the spin-orbit
interaction, we have taken into account relativistic effects nonperturbatively by using rela-
tivistic pseudopotentials. This method has been shown to predict spin-orbit splittings very
reliably in other I1I-V compounds [14].

We have calculated the unstrained electronic band structures with the experimental
lattice constants ap and ¢o. This is known to yield valence band splittings in GaN that are in
better agreement with experiment than those calculated at the self-consistently determined
theoretical lattice constants [4]. The changes in lattice constants with strain are determined
according to elasticity theory with experimental elastic constants [15, 16]. For a given in-
plane lattice constant a, corresponding to the in-plane strain e, = €, = a/ag — 1, the
lattice constant along the hexagonal axis is given by ¢ = ¢o(1 + aey,), where @ = —2¢13/¢33
for biaxial strain, and a = (c11 + €12 — 2¢13)/{c33 — ¢13) for hydrostatic pressure. The ¢,
strain component equals ae;,. Once the lattice constants are given, we have performed a
full optimization of the atomic positions within the unit cell by calculating the Hellmann-
Feynman forces. The latter determine the distance uc between cation and anion along the
c-axis. This optimization of u has a significant influence on the valence band splittings [4,
5, 6].

Model 6 x 6 k - p Hamiltonian

The valence-band spectrum in the neigborhood of the band edge of wurtzite type mate-
rials can be reproduced by a 6 x 6 matrix k-p Hamiltonian that includes one I'y and two I';
band states [17, 18, 19]. This matrix also includes terms that are linear in the strain tensor.
For biaxial or hydrostatic strain, these strain dependent matrix elements are proportional to
four deformation potentials Dy, Do, D3, D4. Three parameters A;, Aq, and Az describe the
splittings of the valence band maximum (k = 0) and seven parameters A; ... A; determine
the dispersions along different directions in the Brillouin Zone. In the present paper we use
the definition of these valence band parameters and deformation potentials given in Ref.
[19].
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In the absence of the spin-orbit coupling, the Hamiltonian can be diagonalized analyt-
ically. For zero strain, the doubly degenerate energies of the valence band maximum are
conventionally written as

E(ly) = %Al + 4y, (1)
E(l74) = —% (% + Az) + \/(Al—;%r +24%, (2)
s = (5ee) (B35 s

The constants A, and Ajz are spin-orbit Hamiltonian matrix elements, whereas A, is con-
ventionally termed crystal-field splitting. When A; > 0, as is the case in GaN and InN [5,
18], the ordering of these band states is I';- < I'zy < I'g. For Ay < 0, which is the case for
AIN [5, 18], the states form the sequence I';_ < I'g < I'7. The Iy state is always termed
heavy-hole (hh) state and the energy below forms the light-hole state ({h). This is I'7;. for
GaN, and InN and I';_ for AIN. The third eigenvalue defines the crystal field split-off state
(cs). These definitions are kept for k # 0.

The shift of the conduction band edge at I'-point with strain and the band dispersion in
the vicinity of this point is governed by two deformation potentials D;, , and Dy, and two
effective masses (il and mL), respectively,

B2 Rk 4 K2)

E.(k) = E,(0) + o] ml

+ Dice + D2c(5a:x + fzz) . (4)

We measure this strain dependence relative to the center of gravity of the valence band.
RESULTS

Effective masses and valence band splittings

For unstrained wurtzite GaN, the present ab-initio calculations predict Ey,(I'g) - Ein(I'74)
= 6.8 meV (6 meV [20], [21], [22] ) and Eps(Dy) - Ees(T7-) = 33.7 meV (28meV [21], 25meV
[22], 23meV [20]) in fair agreement with experimental data (given in parenthesis) of bulk
GaN and epitaxial GaN films that are believed to be strain free. In InN, the hh — lh and
hh — cs splittings are predicted to be 5 meV and 34 meV, respectively. In AIN, E.(T'7,)
forms the top of the valence band, and the calculations yield the cs—hh and hh—[h splitting
to be equal to 212 meV and 14 meV, respectively.

The calculated components of the effective mass tensor at I' for electrons and holes in
AIN and GaN are given in Table L.

Table I. Electron and hole effective masses (in units of mg)
ml_mg mi, mg ml mg oml, mg
AIN 032 033 352 073 344 0.73 0.26 4.49

GaN 0.18 020 2.09 0.37 0.74 0.39 0.18 0.94

The masses were calculated by numerical differentiation of the dispersion relations obtained
from the present relativistic ab-initio calculations. The calculated conduction band masses
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for GaN are in good agreement with recent optically detected cyclotron resonance data
[23] that givea polaron mass of 0.22mg. The corresponding bare mass is estimated to be
0.20mq [23]. We are not aware of experimental data on the valence band effective masses
in nitrides. The predicted hole masses show a strong anisotropy. We have excluded the
calculated masses of InN from Table I since the LDA calculations grossly underestimate the
energy gap of wurtzite InN (it is only 0.1 eV) and are therefore unlikely to yield reliable
masses.

Biaxial strain effects

Very recently, free exciton lines at I have been measured in epitaxial GaN films. In
the same samples, the amount of strain could be directly measured by X-rays [7]. These
data allow us to directly compare theory with experiment, as depicted in Fig. 1. We have
increased all valence to conduction band transition energies by a rigid, strain-independent
self energy of 1.209 eV. In this way, the calculated ik to conduction-band transition energy
for zero pressure coincides with the observed exciton transition energy of 3.4745 eV measured
for bulk GaN [21]. Fig. 1 shows excellent agreement between theory and experiment for all
other transition energies. This may help to determine the actual strain in epitaxial films
from the measured optical excitonic spectra. We notice that for a tensile strain of about
0.2% the light-hole band becomes the top of the valence band.
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Figure 1: Comparison of experimental free exciton ener-
gies of strained GaN from Ref. 7, and unstrained GaN [21]
(full dots, squares, and triangles denote energies of A, B,
and C exciton lines, respectively) with present theoretical
calculations (lines). The theoretically calculated energies
were rigidly shifted by 1.209 eV. This energy shift includes
the self-energy correction to the LDA gaps and the exciton
binding energy.
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Valence band parameters and deformation potentials

From the calculated band structures, we have determined all parameters in the 6 x 6
k-p Hamiltonian, following the notation of Ref.{19]. In order to determine A; independently
from A, and Aj, we have also performed nonrelativistic calculations. From the relativistic
bands, we can deduce A; and Az. The parameters A, ... As can easily be determined from
the effective masses parallel and transverse to the hexagonal axis. Since the masses are
independent of Ag, it is difficult to determine this parameter from the eigenvalues at small
k. Therefore, we have used the quasicubic model that gives Ag = (A3+44s)/v/2. Finally, Ay
can be determined from the spin splittings of the bands along the direction orthogonal to the
hexagonal axis. In order to determine the valence (D3 and D,) and conduction deformation

890



potentials (D;, and D,.), we have computed the derivative (dF;/dezy)|e=0, ¢ = valence and
conduction band, for two different strain tensors.

The complete sets of k-p parameters for AIN and GaN are summarized in Tables II. The
conduction band deformation potentials Dy, and D, are equal to -10.23 eV and -9.65 eV
for AIN, and -9.47 eV, -7.17 eV for GaN, respectively.

Table II. Valence band parameters of the 6 x 6 k - p model for AIN and GaN. A;, A,, and
Aj are given in meV, all other parameters in eV.
A1 Ay A3 A Ay Ay Ay As Ag Ay D; Dy
AIN -219 6.6 6.7 -3.82 -0.22 3.54 -1.16 -1.33 -1.25 0.00 9.02 -3.99
GaN 24 54 6.8 -6.40 -080 593 -1.96 -2.32 -3.02 -0.026 6.26 -3.29

In Fig. 2, we depict the calculated valence band edge structure of wurtzite GaN perpen-
dicular to the hexagonal axis (I' = M) for three different biaxial strains. The discrepancies
between the full diagonalization of the Hamiltonian and the 6-band k- p model are negligible
up to wave vectors of the order of 0.15 A~1.

004 T [ T [T ]
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= b hh ) .
2, .0.04— =
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Figure 2: Valence-band dispersions along the transverse axes for biaxially strained and unstrained wurtzite
GaN. The full dots denote the present ab-initio results, whereas the lines represent the solutions of the 6 x
6 k - p model Hamiltonian with the parameters from Table II.

CONCLUSIONS

In summary, we have predicted the hole effective mass tensor for AIN and GaN. We have
determined the parameters of 6-band model Hamiltonian that very accurately reproduces
the hole spectra near the valence band edge in biaxially strained AIN and GaN.
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