SRR R 45 LA 7

RIE (P NRILMEZERGE) e, BRme
DN E R, DREHIERRRNIER,
{222 s BT A AT 50 127 S48

FH P L A58 ) SCRRA% 38 45 0 R T A8 R 553 SR Sc k4
I, AR T AN SRR FAE R, (URTF /D BTk
FH P R VST VR P sE , sr R e
FCRREBA AR, BESKIME. WEBEEEE
3R SCHR AL B8 SR B AR SOk, 0 AT R e 2
BT EERARGEE, FTEAH AR R

4 SR B B A A A P B SR T S R AR R
A ERAE T, A AR 4 W B 1% P P B SR
fEihiER.



Spin relaxation of two-dimensional electrons in
noncentrosymmetric semiconductors

M. |. D’'yakonov and V. Yu. Kachorovskil

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad

(Submitted July 17, 1985; accepted for publication August 1, 1985)
Fiz. Tekh. Poluprovodn. 20, 178-181 (January 1986)

An effective mechanism of spin relaxation of elec-
trons associated with the spin—orbit splitting of the con-
duction band is active in centrosymmetric semiconduc—
tors.! In crystals with the zinc-blende structure the
splitting is proportional to the cube of the electron
momentum. In the case of III-V semiconductors, for
which spin relaxation has been investigated in detail
experimentally,2 this mechanism is frequently the domi-
nant one.

We shall report a study of spin relaxation of two-
dimensional electrons in GaAs-type semiconductors due
to this mechanism. This is of interest in view of experi-
mental investigations of the magnetoresistance of thin
films3? and optical orientation of electrons in quantum-
well heterostructures.®

The specific feature of the two-dimensional case
is that the projection g of the electron momentum along
the normal to the film (layer) plane is much greater
than the two-dimensional momentum k in this plane:
g~h/a>k, where a is the film thickness. Averaging
of the spin—orbit splitting along the motion of an electron
in the direction perpendicular to the film has the effect
that the splitting of a two-dimensional size-quantiza-
tion band is proportional to g*k. Therefore, in contrast
to the three-dimensional case, the splitting is a linear
function of the momentum k. For a given electron energy
¢ the splitting in the two-dimensional case is greater
than in three dimensions and the differenceis a factor of
#2/ (ma’e »1, where m is the effective mass (the energy
of two-dimensional electrons is measured from the
lowest size-quantization level).

This splitting of the conduction band can be described
as the result of action on the electron spin of an effective
magnetic field of intensity and direction governed by the
magnitude and direction of the momentum. Spin preces-
sion around this field in the intervals between collisions
gives rise to spin relaxation, In the case of frequent
collisons the rate of relaxation is proportional to
the square of the effective field. It follows from
the above that in the two-dimensional case the effective
magnetic field is considerably greater than in the three-
dimensional case and the spin relaxation rate increases
by a factor 62/ mae)®. Here £ ~T or £ ~ ey applies to
nondegenerate or degenerate electrons, respectively (T
is the temperature in energy units and £f is the Fermi
energy).

We shall also show that in the two-dimensional case
the various components of the electron spin relax at
different rates and the nature of such relaxation depends
on the orientation of the film relative to the crystallo-
graphic axes, This spin relaxation anisotropy appears
also in the three-dimensional case when a crystal is
subjected to uniaxial deformation.?
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The Hamiltonian déscribing an electron in the con-
duction band of GaAs-type semiconductors is

2 h
Bt i) W

where
_ ar (2)
am'l (z[gy)‘/z ’
tg== Pz (P — PI)s *y™ Py (p2— P2, ;= P, (P%— Py 3)

Here, m is the effective mass; p is the electron
momentum; o are the Pauli matrices; Eg is the band gap;
o is a numerical coefficient governing the spin splitting
of the conduction band (in the case of GaAs, we have =
0.072 In Eq. (3), the quantities px, py, and py are the
projections of the momentum along the principal axes of
a crystal.

Going over to the two-dimensional case, we shall
write down the Hamiltonian in the form

2
H:%{-;—L(o-w) (4)
where k is a two-dimensional momentum in the film
plane, The smallness of the spin—orbit term in the
Hamiltonian (1) makes it possible to obtain an expression
for & if we average the value of @ along the motion of
an electron in a direction perpendicular to the film: @w=
(@).. We shall do this by writing down p=q +k, where
g=nx(p'n), k-n=0, and n is a unit vector along the nor-
mal to the film plane. Obviously, we have

Cap> =0, <q;g;>=<g>nmn; <2:4;90=0. (5)

The quantity {¢®) is governed by the shape of the poten-
tial well which confines the motion of an electron to a
direction perpendicular to the film. In the case of a
deep rectangular well of width a, we have (@®) =(rTi /a)?.
1t follows from Eqgs. (3) and (5) that

Crp> e @ (20 (m ey — nig) 4 (ng— nd) ksl ®6)

The quantities (wy) and (n;) are obtained from Eq. (6)
by eyclic transposition of the indices. Equation (6) is
simplified by dropping small terms of the order of k®,
since in the case of two-dimensional electrons we have
@® > 2.

It therefore follows that the effective magnetic field
acting on an electron spin {proportional in the two-di-
mensional case to the vector w ~ (®)) is linear in respect
of the two-dimensional momentum k and depends strongly
on the orientation of the film relative to the axes of a
crystal.

An equation describing spin relaxation can be de-
rived in a manner fully analogous to that used in the
three-dimensional case.! This equation is

ds,./dt=—-§ Ty ;85 )
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where S is the average spin of an electron and the relaxa-
tion tensor is described by the formula
[ de (aF[9e) © (=) (0%,
0

;T “"""J‘)

de (0 F]0¢) @)

cimug

Here F(¢) is the distribution function of the electron

energies g£; 7(¢) is the momentum relaxation time; the bar

in the above formula denotes averaging over the direction
of the two-dimensional momentum k. Such averaging

can be carried out using the relationship

) k%2, 9)

J

= (30— non

In the derivation of Egs. (7) and (8) it is assumed (as
in the three-dimensional case) that wt <« 1 and the energy
relaxation time is much longer than the momentum relax-
ation time, but much shorter than the spin relaxation
time. Moreover, in the case when the electrons are de-
generate, their average spin is assumed to be small.

The formula (8) differs from the corresponding
formula for the three-dimensional case because of the
reblacement of Q@ and w. It is important to note that the
tensor T'jj no longer reduces to a scalar, in contrast to
the three-dimensional case, where 2485 =<SijS2/3.

Using Egs. (6), (8), and (9), we obtain

ro’j=1;1 (F.,»jTI‘ B—B.’j); (10)
where
‘Y deet (e) 0F joe
A e ) (11)
T 2miE, @ :

§ deoFjoe
B :

A symmetric tensor B is governed by the orientation of
the two-dimensional film or layer relative to the prin-
cipal axes of a crystal, In a coordinate system linked
to these axes, the components of the tensor B become

B (n} — n2)* 4 dn} (n} + n3) — 9n} (n) — n3). (12a)

Bry= —Z’LGy (nk + n;) - anny (”’3 — n}) (n}—n3). (12h)

The remaining components of B can be obtained by cyeclic
transposition of the indices x, y, and z.

In the case of nondegenerate electrons, Eq. (11) bhe-
comes

1 2T (13)
T, 2n'miE, °

where T is the average relaxation time governing the
mobility p =er/m. In the degenerate case, Eq. (13) should
be modified by replacing the temperature T with the
Fermi energy ep.

Equations (7), (10), (12), and (13) represent the solu-
tion of the problem formulated above for an arbitrary
orientation of a two~dimensional film or layer. We shall
now consider the most interesting special cases,

a) (001) orientation. The projections of the vector
of the normal along the crystal axes are ny =n, =0 and
n,=1, It then follows from Eqs, (10) and (12) that the
nonzero components of the tensor T are Fyx=Tyy=
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I'z2/2=75'. Therefore, the relaxation rate of the spin
components parallel to the film or layer is governed by
the time 7)) =7g. The rate of relaxation perpendicular

to the film is twice as fast: 7, = 75/2. This difference
between the relaxation rates is due to the fact that, for a
given orientation of the film, we can see from Eq. (6) that
(«AZ)=O, i.e., the effective magnetic field varying ran-
domly with time remains parallel to the film.

b) (111) orientation. In this case we have nx =ny =
n,=3""/% Ty =Tyy =T, = 16/(97g), and T'yy =T'x; =Ty, =
4/(97g). Reducing the tensor I' to the principal axes,
we obtain T =27J_=3'rs/4. As in the preceding case, the
effective field is parallel to the film.

c¢) (110) orientation, We now have nx =ny = 2~/2
=0, Txx =Tyy =T ,,/2=—Txy =(875)7}, and 'y, =Ty, =
0. Hence, we find that T =4Tg and 7, = », Therefore,
the spin component perpendicular to the film does not
relax. This, at first sight, surprising result is explained
by the fact that —as can be seen from Eq. (6) — the
effective magnetic field is always parallel to the vector
of the normal to the two-dimensional film. When the
electron momentum changes because of collisions, only
the intensity and sign of this field are affected, In fact,
the slow relaxation of the perpendicular component of
the spin does occur. We can obtain the finite value of the
time 7, if we include the small terms of the order of k3
dropped from Eq. (6). When such terms are included, it
is found that <, /x, ~("2/ma%)? > 1,

If the potential well in which size quantization takes
place is not symmetric, then the Hamiltonian (4) should
be supplemented by an additional term?” of the type V=
Bo[kxn|. Splitting of the conduction band, which is due
to this term, also results in spin relaxation. If the
c’i\ominant role is played by the interaction V, the tensor
T should be of the same form as in the case of the (001)
orientation considered above, but Eqs. (11) and (13)
should be modified by the substitution

a®{g®?  4mp? (14)

2EmiE, TRt

The spin splitting for two-dimensional electrons in
a GaAs—GaAlAs heterostructure was investigated ex-
perimentally by Stein, von Klitzing, and Weimann.® An
estimate obtained in Ref, 9 indicates that the spin—orbit
interaction described by the Hamiltonian (4), but with-
out the correction V, predicts splitting of the order of
that found experimentally. Therefore, it is possible
that in the case of n-type GaAs the role of the interaction
V is small even in the case of a strongly asymmetric po-
tentiaél well of the kind found in the experiments of Stein
et al,

We shall conclude by noting that a distinguishing
feature of the mechanism discussed here is a strong
dependence of the nature of spin relaxation on the orien-
tation of a two-dimensional film or layer relative to the
crystal axes.

We are grateful to T, A. Polyanskaya for very valu-
able discussions,
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Trapping levels, which in contrast to recombination
centers, trap for a time carriers of just one sign, can
have a considerable influence on photoconductivity re-
laxation.! As a rule, the presence of trapping levels is
manifested by a strong dependence of the kinetics of re-

' combination processes on continuous illumination which
partly fills these levels and, therefore, reduces their
influence. A nondestructive contactless microwave
method,? based on determination of the form of relaxa-
tion curves from the change in the microwave conduc-
tivity, makes it possible to study the kinetics of recom-
bination processes in which trapping levels are mani-
fested most fully. In the interpretation of the microwave
relaxometry data we need to calculate the change in the
density of nonequilibrium carriers due to the presence of
traps. We shall report a numerical solution to the rele-
vant equations and compare the results with the experi-
mental curves obtained for test samples. Our samples
were silicon wafers annealed in an argon atmosphere at
1150°C. This treatment was selected because, firstly,
annealing most probably alters only the bulk character-
istics and, secondly, the nature of the recombination
curves now differs greatly from the characteristic curves
of the original silicon.

The original samples were polished wafers of sili-
con of the KDB-10 grade; they were 380 u thick and their
surfaces were subjected to the usual treatments employed
in microelectronic technology (after these treatments of
the surface recombination velocity was of the order of
3.10% cm/sec on the working side and 9-+10% cm/sec on
the reverse side?). A control sample 1 was not sub-
jected to any additional treatment, whereas samples 2
and 3 were annealed for 10 and 30 min, respectively.
Preliminary measurements indicated that the surface
recombination velocities and the characteristics of the
bulk recombination centers were not affected signifi-
cantly by annealing for these durations. Generation of
nonequilibrium carriers occurred approximately homo-
geneously across the thickness of a wafer under the in-
fluence of an array of infrared light-emitting diodes gen-
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erating pulses of 0.5 usec duration (the wavelength was
of the order of 0.9 u); an analog signal representing the
photoconductivity decay was stored and recorded with a
boxcar integrator.

The photoconductivity relaxation curve of sample 1
was exponential with a characteristic decay time of 3.5
usec, which corresponded — after allowance for the dif-
fusion and recombination processes on the surface’— to
the bulk lifetime of ~20 usec. The experimental kinetic
curves for samples 2 and 3 are shown in Fig. 1. Each
of them was close to a sum of two exponential functions
with very different characteristic times and weights, and
the weight of an exponential function with the longer de-
cay time decreased under the influence of continuous
illumination (Fig. 1b),

The system of levels was proposed in Ref. 1 for
the transition to and thermal release from trappinglevels
located close to the top of the band gap and also the
dropping of an electron to the valence band via a deep re-

T usec
a
b
x
-
35 psec

[

FIG, 1. Relaxation curves of the nonequilibrium conductivity of samples
2 (a, ¢) and 3 (d), and also of sample 2 in the presence of continuous
illumination (b).
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