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Institut Néel, MCBT, CNRS - 25 avenue des Martyrs, B.P. 166 38042 Grenoble Cedex 09 France and
Institut Laue Langevin - BP 156 38042 Grenoble Cedex France

received 6 February 2007; accepted in final form 11 July 2007
published online 3 August 2007

PACS 75.10.-b – General theory and models of magnetic ordering
PACS 75.50.Pp – Magnetic semiconductors
PACS 75.40.Gb – Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic

scaling, etc.)

Abstract – By using an approach based on the Self-Consistent Local Random Phase Approxima-
tion (SC-LRPA) we calculate the magnetic excitation spectrum in diluted/disordered ferromag-
netic systems. In previous studies, the SC-LRPA was shown to be reliable for the determination
of the Curie temperature. In this letter, we now demonstrate its accuracy and efficiency for the
determination of the magnetic excitation spectrum. For that purpose, we calculate the spin exci-
tations of the widely studied diluted III-V magnetic semiconductor Ga1−xMnxAs. Instead of the
expected broadening of the excitations due to disorder, it is shown that magnons exist only in a
very restricted region of the Brillouin zone. We calculate without adjusting parameters, the spin
stiffness in optimally annealed systems as a function of x and compare it to recent measurements.
We find a very good agreement for well annealed samples and provide a plausible explanation
for the very small values measured in as grown ones. We hope that this study will stimulate new
studies as Ineslatic Neutron Scattering measurements for example.

Copyright c© EPLA, 2007

The understanding of the influence and effects of dis-
order on transport and magnetic properties in magnetic
materials is a key issue from both a fundamental point
of view or in the prospect of possible technological
applications. This requires the necessity to develop new
methods and tools which are able to treat the disorder in
a reliable manner. The word disorder is very general and
includes for example, i) the dilution of magnetic atoms in
a non-magnetic matrix, ii) substitution of a non-magnetic
atom by another one which has a different radius or/and
valency as in manganites A1−xBxMnO3 where A=La,Pr
and B= Sr,Ca,Ba for example, iii) intrinsic defects which
may appear during the growth of the material, for instance
vacancies in “d0” compound as ZrO2, HfO2 or TiO2. By
browsing the literature, one can find several examples
which underline the importance and crucial role of the
disorder. For example, in manganites one can observe
after substitution, metal-insulator phase transition,
formation of nanoscale inhomogeneities, or anomalies in
the magnetic excitation spectrum, see for example [1–4].

(a)E-mail: bouzerar@ill.fr

We can also mention the high Curie temperature reported
in materials which, a priori, do not contain any or at
least a sufficient amount of magnetic impurities [5,6].
The ferromagnetism is attributed to defects which can in
the case of HfO2 appear close to the interface between the
material and the substrate. Another example is the spin
wave ferromagnetic excitation observed after vacancies
are introduced in the cobaltate Na1−x�xCoO2 [7] (the
symbol � corresponds to vacancies), thus the substitution
of Na by a vacancy is more than just a way to vary the
carrier concentration. In diluted magnetic semiconductors
as GaMnAs it is seen that the magnetic moment distribu-
tion and Curie temperature are also very sensitive to the
sample history and thus to the presence of compensating
defects as Mn interstitials and As anti-sites [8].
In this manuscript we focus our attention on the nature

of the magnetic excitation spectrum in dilute ferromag-
netic materials. We will show that the proper and simul-
taneous treatment of both disorder and thermal fluctua-
tions leads to unusual excitation spectrum in comparison
to what is usually observed in non-dilute systems. The
paper is organized as follows. In the first part, we present
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a summary of the formalism based on the Self-Consistent
Local Random Phase Approximation theory (SC-LRPA).
In the second part, using the exchange couplings calcu-
lated within first principle approach (no adjustable para-
meters), we calculate the spectral function, excitation
spectrum and spin stiffness as a function of the impu-
rity concentration in optimally annealed Ga1−xMnxAs.
The term optimally annealed means that the concentra-
tion of compensating defects is negligible. In the last part
we compare our results to available experimental data for
the spin stiffness and explain the large difference observed
between as grown and annealed samples.
The Hamiltonian which describes Nimp interacting

quantum (or classical) spins randomly distributed on a
given lattice of N sites is the dilute Heisenberg model,

H=−
∑
i,j

JijSi ·Sj . (1)

The couplings Jij are very general (short or long range),
they are assumed to be given and can eventually depend on
the impurity concentration x=

Nimp
N
. We will come back

to this point in what follows. For a given configuration of
disorder, e.g., the coordinates of the magnetic impurities,
we define the retarded spin Green’s function Gcij(ω) =∫ +∞
−∞ G

c
ij(t)e

iωtdt, where Gcij(t) =−iθ(t)〈[S+i (t), S−j (0)]〉
which describes the transverse spin fluctuations, where
the subscript “c” corresponds to the configuration index.
After performing the Local Random Phase Approximation
decoupling of the higher-order Green’s functions which
appear in the equation of motion of Gcij [9,10], we find

(ωI−Hceff)Gc =D, (2)

where Hceff , G
c and D are Nimp×Nimp matrices. The

index i runs over only the sites occupied by a localized
spin. The effective Hamiltonian matrix elements is
(Hceff)ij =−〈Szi 〉Jij + δij

∑
l〈Szl 〉Jlj and Dij = 2〈Szi 〉δij .

The local magnetization 〈Szi 〉 has to be calculated
self-consistently at each temperature. Note also that the
condition

∑
j(H

c
eff)ij = 0, implies that zero is an eigen-

value of Hceff , the SC-LRPA treatment is consistent with
the Goldstone theorem. Note that although the matrix is
non-Hermitian, in the ferromagnetic phase the spectrum
is real and positive at each temperature. If a negative
eigenvalue appeared, this would indicate an instability
of the ferromagnetic phase. This could be the case in
the presence of frustration. In the following, we will
discuss the case of GaMnAs for which all the couplings
are ferromagnetic, thus such instabilities will not occur.
Because Hceff is non-Hermitian (real non-symetric), we
now precise how the GF is expressed. Hceff , has the
property to be bi-orthogonal [11]. Thus, we define right
and left eigenvectors of Heff denoted respectively |ΨR,cα 〉
and |ΨL,cα 〉, both are associated to the same eigenvalues
ωcα: H

c
eff |ΨR,cα 〉= ωcα|ΨR,cα 〉 and tHceff |ΨL,cα 〉= ωcα|ΨL,cα 〉. In

general, two eigenvectors belonging to the same set L or
R are not orthogonal to each other, but when they are of

different type they fulfill the relation 〈ΨR,cα |ΨL,cα′ 〉= δα,α′ .
After inserting the L, R eigenvectors in eq. (2), the
retarded Green’s function Gcij(ω) can be rewritten,

Gcij(ω) =
∑
α

2〈Szj 〉
ω−ωcα+ iε

〈i|ΨR,cα 〉〈ΨL,cα |j〉. (3)

Although the system is non-translation invari-
ant we define the Fourier transform by Ḡ(q, ω) =
〈 1
Nimp

∑
ij e
iq(ri−rj)Gcij(ω)〉c. The notation 〈. . . .〉c

denotes the average over the disorder configurations. We
now define the dynamical spectral function Ā(q, ω) =
−1

π〈〈Sz〉〉 Im Ḡ(q, ω), where 〈〈Sz〉〉= 1
Nimp

∑
i〈Szi 〉 is the

average magnetization over the impurity sites. The
spectral function Ā(q, ω) is the physical quantity which
provides the direct access to the magnetic excitation
spectrum, it is accessible by Inelastic Neutron Scattering
experiment. It reads,

Ā(q, ω) =

〈∑
α

Acα(q)δ(ω−ωcα)
〉
c

, (4)

where Acα(q) =
1

Nimp

∑
ij λj〈i|ΨR,cα 〉〈ΨL,cα |j〉eiq(ri−rj), we

have introduced the temperature-dependent local para-

meter λj =
〈Szj 〉
〈〈Sz〉〉 . In the following we will calculate

directly Ā(q, ω). However, it is also interesting to define
the moments associated to it,

mn(q) =

∫ +∞
−∞

ωnĀ(q, ω)dω=〈
1

Nimp

∑
ij

∑
α

(ωcα)
nλj〈i|ΨR,cα 〉〈ΨL,cα |j〉eiq(ri−rj)

〉
c

.

(5)

We now make some general remarks. It is straight-
forward to see that the first moment can be re-
writtenm1(q) = J̃(0)− J̃(q), where J̃(q) = 〈〈Sz〉〉〈 1

Nimp
×∑

ij λjλiJije
iq(ri−rj)〉c. This expression is interesting and

shows that the magnon excitation spectrum depends
on the renormalized temperature-dependent couplings
Jeffij (T ) = Jijλjλi. Since λi are fluctuating from site to
site, the previous expression indicates that the excitation
spectrum will have a more complex temperature depen-
dence than that obtained in the non-dilute case (x= 1

and λi = 1) for which ωsw(T ) =
〈〈Sz〉〉
S
ωsw(T = 0).

In the limit of q→ 0, we immediately find that
m1(q)≈D1q2, where the effective stiffness (in the
following we will clarify the use of “effective”) is
D1 = 〈〈Sz〉〉 〈 1

2Nimp

∑
ij λjλiJij(ri− rj)2〉c.

Note that, at low temperature where all spins are
polarized, this expression can be simplified and does
not depend on the nature of the eigenstates of the
effective Hamiltonian. If we assume that all couplings are
ferromagnetic (as in GaMnAs) then we get,

D1(x) = xD1(x= 1), (6)
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where D1 =
S
2N

∑
ij Jij(ri− rj)2, where the double sum

runs now over all sites. This expression indicates that the
spin stiffness extracted from the first moment calculation
reduces only to the virtual crystal expression. The conse-
quence of this is the following. First D1(x) overestimates
the real spin stiffness. Additionally, at sufficiently low dilu-
tion, one expects that below the percolation threshold
both TC and the spin stiffness should vanish. This expres-
sion is finite below the percolation threshold and does not
know about it. Thus D1 does not correspond to the real
spin stiffness. In the following we will explain how to eval-
uate it properly.
The other interesting quantity is the effective linewidth

γ(q) =
√
m2(q)−m21(q), it measures the broadening of

the magnetic excitations due to the disorder (dilution) and
thermal fluctuations. In the long-wavelength limit, we can
show that γ(q) =Cq. The linewidth is larger than the exci-
tation energy. Similar results were reported in the study of
the disordered double-exchange model (nearest-neighbor
coupling) relevant for manganite compounds (x= 1) [12].
Then, one would naively be tempted to conclude that
there is no well-defined magnetic excitations. As will be
seen in the following, even though the magnon excita-
tions are incoherent, they appear as well defined peak in
A(q, ω). In other words, the energy and width of the exci-
tations calculated with the moments of the spectral func-
tion do not correspond to the peak position and linewidth
of the excitations directly calculated with the full spectral
function.
In the following section and to illustrate our theory we

calculate the magnetic excitation spectrum in the III-V
dilute magnetic semiconductor Ga1−xMnxAs as a function
of the Mn2+ concentration and at T = 0K. In this case,
λi = 1, the matrix Heff is real symetric and thus L and R
eigenvectors are identical. We present a detailed analysis of
the excitation spectrum as a function of the Mn2+ concen-
tration. In addition, in order to allow a quantitative study
with no fitting parameters and a direct comparison with
the experimental measurements, the magnetic exchange
couplings we use were calculated from the first-principle
Tight-Binding Linear-Muffin-Tin-Orbital approach. The
same couplings were used successfully for example in
refs. [9,10] to calculate the Curie temperature. We stress
that the used exchange couplings extend over 62 shells.
In fig. 1 we have plotted Ā(q, ω) for Ga1−xMnxAs as

a function of energy for different values of the momen-
tum q in the (1,0,0) direction. We remind that GaAs has
a zincblend structure, thus the magnetic impurities are
distributed randomly on the fcc sublattice of Ga. In addi-
tion, periodic boundary conditions have been used. The
calculations were performed on a system which contains
4× (32)3 sites, the average over disorder was performed
over 50 configurations. Note that for x= 0.03 the system
contains approximately Nimp = 4000 impurities. In all
cases, we have checked that the number of disorder config-
urations was sufficient to provide accurate results. Indeed,
for example for the 4× (16)3 system, it was found that the
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Fig. 1: (Color on-line) Spectral function for Ga1−xMnxAs as a
function of the energy ω (in kelvin) in the (1, 0, 0) direction for
different values of qx, with x= 0.03. In the inset, are plotted
the first moment, the effective linewidth and the position
of the peak in A(q, ω) as a function of qx/π (in units of a

−1
0 )

and the y-axis is in kelvin.

average over 50 configurations is already sufficient. Even if
we increase the number of configurations Ā(q, ω) remains
almost unaffected.
In fig. 1 we can observe well-defined excitations for

only relatively small values of the momentum. As the
momentum q increases the peak becomes broader and the
well-defined excitation is then replaced by a very broad
structure. In the inset we have plotted the first moment
m1(q), the linewidth γ(q) and the position of the peak
which we denote as ω(q) as a function of the momentum
q. It is clearly seen that at low q both m1(q)≈D1q2
and ω(q)≈Dq2. However, the “effective stiffness” D1
appears to be larger than D, typically in this case we
find D1/D≈ 2. This is in agreement with the previous
discussion that D1 overestimates the real spin stiffness,
especially as we approach the regime of percolation. The
main consequence of this is that the accurate determi-
nation of the spin stiffness should be done by directly
plotting the energy of the peak as a function of the
momentum instead of using the first moment dispersion.
As mentioned in the previous section, we indeed observe
that the effective linewidth γ(q) is linear in q, but it
does not correspond to the real linewidth of the peak
observed in Ā(q, ω). The second moment is inappropriate
to evaluate the real linewidth of the magnetic excitation,
this is reflected by the fact that the peak observed
in fig. 1 are non Gaussian-like and very asymmetric.
In fact, asymmetric peaks in the magnetic excitation
spectrum were observed in the diluted antiferromagnet
MnxZn1−xF2 [13]. It was observed that as we approach
the percolation threshold xc = 0.25 the line shape of the
low magnetic excitation peaks becomes strongly asym-
metric and develops a long tail extending towards higher
energy. This is clearly seen in fig. 1. It was shown that the
peaks can be fitted by a two component structure: a sharp
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Fig. 2: (Color on-line) Spectral function Ā(q, ω) in
Ga1−xMnxAs in the (q, ω)-plane (x= 0.03). The energy axis
(y-axis) is in kelvin.

Gaussian peak which describes the magnon excitation
(its energy is q-dependent) and a broad localized mode
(weakly q-dependent). The observed increase of asym-
metry of the peak as we increase the momentum corres-
ponds to a cross over from propagating low-energy
excitations to localized excitations (fractons) [14,15].
In the next figure, fig. 2, we have plotted the spectral

function in the (q, ω)-plane. As in the previous figure the
density of magnetic impurity is x= 0.03. In contrast to
what is usually observed in weakly disordered magnetic
systems as in manganites well-defined excitations exist
in the dilute case only in a restricted region of the
Brillouin zone centered around the Γ-point (q= (0, 0, 0)).
This unusual feature shows that the nature of ferromag-
netism in the diluted semiconductors is very different from
that observed in non-dilute materials. As seen in the previ-
ous figure the broadening of the excitation increases signi-
ficantly as we move away from the Γ-point. We expect that
the momentum cut-off below which a well-defined excita-
tion exists should be related to the percolation correlation
length ξp [13].
In fig. 3 we have plotted, for different concentration of

Mn impurities, the spin wave energy ω(q) at low q. To
be more precise, the energy of the first peak in A(q, ω)
in the (1,0,0) (q= ( 2π

La0
, 0, 0) is shown as a function of q2,

the system size varies from L= 16 to L= 32. We clearly
observe that for small momentum (q→ 0) ω(q)∝D(x)q2.
Note that we have used for a0 = 5.65 Å the value of
the lattice spacing in GaAs. Note that, the error bars
are included in the size of the symbols. If the average
over disorder configuration was not sufficient one would
expect that the curve ω(q) would exhibit some noise.
In fig. 4, we have plotted the spin stiffness D(x) and
the Curie temperature (from ref. [10]) as a function of
the Mn2+ concentration x. We remind that there is no
adjustable parameters in these calculations. We observe
that the values of D(x) are relatively high for dilute
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Fig. 3: (Color on-line) Magnon energy ω(q) inmeV as a
function of q2(in Å−2) for different concentration of Mn2+

impurities (x= 0.02, 0.03, 0.04 and 0.05). The size L of the
fcc lattice varies from L= 16 to L= 32.
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Fig. 4: (Color on-line) Spin stiffness D inmeV Å2 as a function
of the concentration x in optimally annealed samples and TC
in kelvin in Ga1−xMnxAs from ref. [9]. In the inset the ratio
TC/D(in Å

−2) as a function of x is plotted.

ferromagnetic system. For example for x= 0.03 for which
the Curie temperature is TC ≈ 80K the spin stiffness
is D≈ 210meV Å2. Interestingly this value is close to
what is usually measured in non dilute systems as in
manganites [16–18]. When approaching the percolation
threshold from above the spin stiffness decreases very
fastly, faster than the Curie temperature which can be
fitted by TC ≈A(x−xc)1/2 [10]. However, we cannot
extract the critical power in a reliable manner, this
should require more calculations close to the percolation
threshold. In the inset we have also plotted the ratio
Tc/D, it is clearly seen that the Curie temperature is not
proportional to the spin stiffness.
It is now interesting to compare these results to experi-

mental data. In contrast to Curie temperature or resistiv-
ity measurements, there are only few experimental studies
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concerning the magnetic excitation in diluted magnetic
semiconductors. In our knowledge there are two papers in
which the measurement of the spin stiffness in GaMnAs
was done. In ref. [19], the authors have measured it
by ferromagnetic resonance in as grown sample where
x= 0.05. They have reported a value of approximately
60meV Å2. In a recent study [20], done using samples of
different concentrations and sample history, it was shown
that annealed sample possess much higher values of the
spin stiffness. Indeed, it was shown that the annealed
sample (x= 0.03) which orders ferromagnetically below
T expC = 80K has a spin stiffness of the order of Dexp ≈
160meV Å2, whilst for as-grown samples (x= 0.05 and
0.06) Dexp was only approximately 40meV Å2. We remind
that our calculation are performed for optimally annealed
samples. In fig. 4 for x= 0.03 we find T thC = 88K and

Dth(x= 0.03) = 210meV Å2, both of these values agrees
well with the experimental values. Because the concentra-
tion of Mn is not precisely known in experimental samples,
a value of x= 2.5% would lead to T thC = 75K and D

th(x=

0.025) = 175meV Å2, this would significantly improve the
agreement. Now the interesting question is: Why are the
values of the spin stiffness in as-grown samples so small?
Let us assume that before annealing the main effect of
compensation (for more details see ref. [10]) is a reduc-
tion of the density of the magnetically active Mn (xeff).
Because the measured TC ≈ 65–80K for x≈ 5%–6%, from
the theoretical curve of TC we would conclude that xeff �
2.5%. Thus the expected stiffness should be larger than
150meV Å2. This is in disagreement with the much smaller
experimental values. We argue that the physical mech-
anism which appears to be responsible for such small
values should be the inhomogeneous nature of the as grown
sample instead of the reduction of the magnetically active
localized spins. In ref. [10], we could explain the measured
TC in as-grown samples by just estimating for each of them
xeff but with no need to take into account of the inhomo-
geneous nature. Thus D is more sensitive to the presence
of inhomogeneities than the Curie temperature [21].
To conclude, we have calculated the magnetic excitation

spectrum in dilute ferromagnets within a theory based
on the Self-consistent Local RPA. The theory is general
and allows to treat disorder and thermal fluctuations in
a reliable manner. As an illustration, we have calculated
the spectrum in a well-annealed sample of GaMnAs as
a function of the impurity concentration. It is predicted
that well-defined excitation can be observed only in a
restricted region of the momentum space centered around
the Γ-point. A good agreement with experimental values
of the spin stiffness was obtained for the annealed sample
with concentration x= 0.03. We have also discussed and
provided an explanation to the very small value of the
spin stiffness measured in as-grown samples. We hope
that this theoretical study will motivate new experimental

measurements for example D as a function of the impu-
rity concentration and as a function of the annealing
treatment.
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Fröbrich P. and Kuntz P. J., Phys. Rep., 432 (2006)
223.

[12] Motome Y. and Furukawa N., J. Phys. Soc. Jpn., 72
(2002) 472.

[13] Uemura Y. J. and Birgeneau R. J., Phys. Rev. B, 36
(1986) 7024; Phys. Rev. Lett., 57 (1986) 1947.

[14] Orbach R. and Yu K. W., J. Appl. Phys., 61 (1987)
3689.

[15] Aharony A., Alexander S., Entin-Wohlman O. and
Orbach R., Phys. Rev. Lett., 58 (1987) 132.

[16] Martin M. C., Shirane G., Endoh Y., Hirota K.,
Moritomo Y. and Tokura Y., Phys. Rev. B, 53 (1996)
R14 285.

[17] Fernandez-Baca J. A., Dai P., Hwang H. Y., Kloc
C. and Cheong S. W., Phys. Rev. Lett., 80 (1998)
4012.

[18] Endoh Y. and Hirota K., J. Phys. Soc. Jpn., 66 (1997)
2264.

[19] Goennenwein S. T. B. et al., Appl. Phys. lett., 82 (2003)
730.

[20] Wang D. W. et al., cond-mat/0609646.
[21] Bouzerar G. and Cepas O., Phys. Rev. B, 76 (2007)

020401(R).

57007-p5


