

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This *Accepted Manuscript* will be replaced by the edited and formatted *Advance Article* as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the [**Information for Authors**](#).

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard [**Terms & Conditions**](#) and the [**ethical guidelines**](#) that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

generated liposomes, including size, size distribution, lamellarity, membrane composition, and encapsulation efficiency, form the basis for comparison. We hope that this critique will allow the reader to make an informed decision as to which method should be used for a given biological application.

1 Introduction

Liposomes, or lipid vesicles, are self-assembled lipid structures in the shape of closed membrane capsules. (See Figure 1.) They can act as biomimetic compartments with a membrane that closely resembles that of living cells, encapsulating materials such as DNA, proteins, drugs, or other chemicals.^{1,2} They can be formed, manipulated, and modified in a variety of ways,² and due to their similarity to cells and naturally occurring vesicles, they have been extensively studied.^{3–5} Tools for observing and characterising their properties are well developed,^{6–14} and moreover basic molecular dynamics simulations of their structure and behaviour have been refined in recent years.^{15–18}

First synthesised in a laboratory in the late 1960s,^{19–22} liposomes have become a standard tool in lipid and membrane science,^{23–27} drug delivery,^{28–30} compartmentalisation of biomolecules,^{31–34} as well as the formation of rudimentary artificial cells.^{35–43} Liposome-based artificial cells can be used to study cellular systems in isolation and in a simpler physical environment than in living cells. For example, Sackmann and coworkers, as well as other research groups, have studied the reconstitution of cytoskeletal components inside liposomes,^{44–50} while Noireaux *et al.* used liposomes to encapsulate an *in-vitro* transcription and translation reaction.^{37,38}

^a Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland. Tel: +41 (0)44 633 6610; E-mail: andrew.demello@chem.ethz.ch

31 orders of magnitude, while simultaneously increasing throughput and analytical performance. This review will assess the
32 merits of current techniques of liposome production and material encapsulation that are either entirely or partially performed
33 within microfluidic devices, and appraise them according to application-specific criteria. As background for this discussion, a
34 description of the desirable liposome and method characteristics follows.

35 1.1 Liposome and Method Specifications

36 *Membrane composition and lamellarity.* Vesicles have been made using many different surfactants besides phospholipids.⁶⁶
37 The choice or combination of surfactants greatly affects the properties of the membrane, such as shape, thickness, stability,
38 elasticity, and permeability, as well as compatibility with biological materials.^{67–70}

39 Naturally-occurring phospholipids such as L- α -phosphatidylcholine (Egg PC), 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine
40 (POPC), and 1,2-dioleoyl-*sn*-glycero-3-phosphocholine (DOPC) have the advantage that they are more likely to be compatible
41 with membrane-bound proteins. This is important since pore forming peptides such as α -Hemolysin⁷¹ allow for transport of
42 molecules that would otherwise not be able to cross the membrane. This greatly extends the functionality of vesicles as bioreac-
43 tors or artificial cells.³⁷

44 One aspect of membrane composition that must be considered when producing vesicles is the presence of residue solvents
45 or oil inside the lipid bilayer as a result of the formation process. Most vesicle preparation methods involve the dissolution of
46 lipids in an organic solvent (typically chloroform), with subsequent removal of this solvent.² The solvent is usually removed
47 by an evaporation, vacuum desiccation, or lyophilisation step prior to addition of the oil or buffer that will be used to prepare
48 the liposomes. In some methods, water droplets are formed in oil and later transformed into liposomes by, for example, droplet

59 it is composed. A membrane composed of a single bilayer is unilamellar, while a membrane composed of many bilayers is
60 multilamellar (see Figure 2). Unilamellar vesicles resemble living cells more closely both in structure and function, and are
61 typically used in membrane protein studies.^{78–81} Multilamellar vesicles, on the other hand, are primarily used for encapsulating
62 substrates to be released upon disruption of the membrane at a later time, such as in drug delivery, or when membrane properties
63 other than stability have no effect, such as the use of magnetic-particle containing vesicles as MRI contrast agents.⁸² It is also
64 worth noting that existing methods cannot control the number of bilayers in multilamellar vesicles.

65 *Size and size distribution.* Many vesicle preparation methods result in polydisperse vesicles — that is, a vesicle population
66 containing vesicles of different sizes.⁸³ Although different sized vesicles may have different applications, most applications
67 require vesicle populations to be monodisperse.⁵ This is because variability in size causes variability in other application-critical
68 factors such as stability, the amount of material encapsulated or bound to the membrane, membrane curvature, or rates of transport
69 across the membrane.^{5,84–86} As such, monodispersity is a key criterion in determining the usefulness of a technique, and one of
70 the main motivations for using microfluidic systems to form liposomes.

71 Vesicles can range in diameter from a few tens of nanometres to a few hundred micrometres. A commonly used classification
72 system is summarised in Figure 2.

73 *Stability.* The stability of vesicles depends not only on size and membrane composition, but also on properties of the internal
74 and external phases such as osmolarity, pH, salinity, and temperature.^{68,70,87} Since all of these properties are in some way affected
75 by the method of formation, the method will also have a strong effect on vesicle stability. Physical instability of vesicles can
76 manifest itself in the form of lysis, aggregation, coalescence, or budding (Figure 3).⁸³

example, Angelini *et al.* improved stability by depositing PEGylated nanotubes on a membrane surface of charged multilamellar liposomes through charge interactions,⁸⁹ while Li and Palmer used actin polymerisation along the internal surface of the membrane.⁶ The use of cross-polymerisable synthetic lipids to form the membrane, followed by initiation of polymerisation after liposome formation, have also been shown to greatly improve stability.^{90–92} Although modifications like these are not ideal in many applications, they do result in a significant improvement in liposome stability. Indeed, Lee *et al.* carried out stability tests on vesicles prepared by electroformation, and found that they were strong enough to withstand electroporation and the mechanical stresses of microfluidic systems without reinforcing treatment after formation.⁹³

Usability. It is important to consider usability when comparing technologies. All else being equal, it is often the simplicity or ease of use of a method that will decide how widely it is adopted. Microfluidic tools can often be difficult to set up or operate, especially those involving many fluid inputs, different fluid phases, or complicated flow control. In this review, we evaluate the "usability" of each method by considering process setup and reusability, input-fluid handling, flow control, and whether the process can withstand fluctuations in operating conditions or alterations to operational parameters.

Encapsulation efficiency. Encapsulation efficiency is defined as the ratio of the concentration of material encapsulated to that found outside the vesicle after formation. Encapsulation efficiency can be inherently poor if the method does not separate the internal and external phases throughout the formation process. Stability also affects encapsulation efficiency, as ruptured or leaking vesicles release their contents into the external solution.^{94,95} One of the main purposes of encapsulation of materials into vesicles is to isolate them from other components in an experiment. A process with a low encapsulation efficiency clearly defeats this purpose.

¹¹⁷ high shear stress, electric fields, or incompatible chemical environments may disrupt or inactivate fragile biological samples.
¹¹⁸ Therefore, when choosing a method for a particular application, one should consider that descriptions of encapsulation efficiency
¹¹⁹ do not necessarily account for the function of the material being enclosed.

¹²⁰ The problem of low encapsulation efficiency can often be worked around by employing techniques such as dialysis, filtration,
¹²¹ or column separation of the resulting vesicles after they are formed.^{100–102} Such methods can remove most if not all of the material
¹²² that has not been encapsulated.^{103,104} However, this clearly adds to process complexity, wastes material, and may compromise
¹²³ vesicle stability.

¹²⁴ Another option is to use micro-injection to introduce a desired material into an already-formed liposome. This requires the
¹²⁵ trapping of a liposome and careful disruption its membrane with a microneedle.^{105,106} The reliance on individual trapping and
¹²⁶ disruption of a vesicle membrane for injection of material is a major drawback in terms of throughput, however. Furthermore, due
¹²⁷ to the highly sensitive nature of the trapping and injection operations, it is likely that liposomes of different sizes, composition,
¹²⁸ or with different contents will respond differently to the procedure.

¹²⁹ 2 Microfluidic Liposome Formation

¹³⁰ 2.1 Electroformation and hydration

¹³¹ Electroformation is probably the most common method for vesicle production. The process was first described by Angelova and
¹³² Dimitrov in 1986.⁵³ It involves spreading lipids dissolved in an organic solvent such as chloroform on the surface of a planar
¹³³ electrode, evaporation of the solvent by vacuum desiccation to form a dry phospholipid film, immersing the coated electrode in

144 process was a simple modification of the conventional method in which they coated an electrode with a film of dry lipids and
145 then placed two slits made of silicone rubber over it. The slits were then covered with a second electrode plate, thus forming
146 microfluidic channels through which buffer could flow. The remainder of the process was identical to the conventional method,
147 and resulted in a polydisperse population of liposomes.

148 In a further development, LeBerre *et al.* showed that vesicle size and size distribution could be controlled by artificially
149 fragmenting the lipid film through patterning of the electrode surface with elevated microstructures (Figure 4).^{117,118} This limited
150 the film segments to the size similar to that of the microstructures. Since these were small, fragments did not break apart when
151 peeling, resulting in vesicles with surface areas equal to that of the patterned structures. This was a significant improvement over
152 the standard electroformation method because it allowed for the formation of monodisperse vesicles.

153 Hydration is another popular technique used for the formation of vesicles. The process is similar to that of electroformation,
154 except that no electric field is applied. Instead, a vortex or controlled flow of aqueous buffer solution is passed over the coated
155 surface. The shear stress acting against the lipid layers causes them to peel off, break, and self-assemble into liposomes. However,
156 since there is no control over "peeling" and "fragmentation", the resulting vesicles are polydisperse and multilamellar.^{22,56,83} In
157 addition, the hydration method is extremely sensitive to the type of phospholipids used and physical conditions such as the
158 osmolarity of the buffer solution, temperature, and pH.^{22,57,83} For this reason, its use in applications where encapsulation is
159 intended is limited, because the materials being encapsulated will often affect the formation process.

160 The use of hydration in a microfluidic device has been described by Lin *et al.* in the formation of microtubes, and under
161 certain conditions, connected networks of microtubes and vesicles.^{119,120} This method was similar to that of Kurabayashi *et*
162 *al.* in that the dry lipid film was formed on a glass slide before being covered by a block of polydimethylsiloxane (PDMS) with

followed by several hours of desiccation by vacuum before assembling the microfluidic channels. This prevents the continuous
174 operation of the device, since lipids cannot be replenished during operation.

175 **2.2 Extrusion**

176 Extrusion of vesicles is typically carried out after their formation to modify properties such as lamellarity, size, and size distri-
177 bution. The process was first described by Olson *et al.* in 1979.¹²¹ It consists of passing a lipid or vesicle solution multiple
178 times through the pores of a polycarbonate membrane or other mesh of small apertures. Extrusion makes vesicles unilamellar
179 and monodisperse, with diameters controlled by the size of the pores, the pressure applied during the extrusion process, and the
180 number of times the solution is passed through the membrane.^{51,122} For example, Jousma *et al.* showed that a single pass through
181 a membrane with a pore size of 200 nm resulted in liposomes with diameters of 320 ± 50 nm, while five passes yielded vesicles
182 143 ± 10 nm in diameter.¹²³

183 The basic concept has been applied on a microfluidic chip by Dittrich *et al.* in the actual formation of liposomes (Figure
184 6).¹²⁴ The technique involved the use of a free-standing silicon nitride membrane, on which a lipid film coating was produced by
185 desiccation, covering apertures with diameter of approximately 3.5 microns. Aqueous flow around the silicon-nitride membrane
186 and through the apertures produced vesicles and microtubules, depending on flow speed. The resulting vesicles, however, were
187 polydisperse. Nonetheless, this issue may be addressed if the method is modified such that the vesicles are passed through the
188 membrane multiple times. Unfortunately, the authors provide no discussion of lamellarity or the encapsulation efficiency of
189 their method. But since there is no safe isolation between the solution to be encapsulated and that in which the vesicles will
190 be contained in, it is likely that the encapsulation efficiency is low. By way of comparison, the work by Hope *et al.* reported
191 an encapsulation efficiency of only 30%.⁵¹ Similar to the microfluidic implementations of the electroformation and hydration

201 Microfluidic tweezing, described by Lin *et al.*, is somewhat similar to flow focusing, and is also only feasible within a
202 microfluidic format. The technique was developed for the creation of membrane tubes, but it may be possible to adapt it for the
203 formation of vesicles, or to form vesicles from the tubes.¹²⁸ The technique involves dissolving phospholipids in water inside a
204 chamber that is connected to a T-junction through a small aperture. The centre channel of the T-junction is oriented away from
205 the aperture. Two fast flows arrive into the T-junction from opposite directions, and turn into the central channel, flowing away
206 from the aperture. As the flows converge and turn, they pull the phospholipid solution through the aperture, forming membrane
207 tubes.^{119,128} However, the vesicles resulting from this method are not monodisperse or unilamellar.

208 Importantly, the flow focusing method can be used for high-throughput vesicle production.^{129,130} The reaction solutions are
209 prepared separately and stocked, and can be loaded into containers mounted onto the microfluidic device, allowing for continuous
210 operation over long periods of time. There is no discussion of encapsulation efficiency in the work by Jahn *et al.* However, since
211 membrane formation depends on a continuous, diffusive exchange of solvent into an aqueous phase, it is likely that some of the
212 material to be encapsulated escapes to the exterior of the membrane before it forms. Furthermore, the solution that ends up inside
213 the liposome also contains alcohol, with alcohol molecules being partitioned into the membrane. This means that the former may
214 affect the behaviour of the encapsulated material of interest, and the latter will affect membrane properties such as stability.

215 2.4 Pulsed jetting

216 Pulsed jetting is a very elegant technique, first described by Funakoshi *et al.*⁷⁷ It mimics the action of blowing soap bubbles
217 through a loop supporting a thin soap film. The method consists of creating a bilayer membrane by carefully contacting two
218 lipid-stabilised water droplets,¹³¹ and using a micro-nozzle or micro-pipette to shoot small jets of aqueous solution across it.
219 The jetted volumes are wrapped by the membrane as they pass through, and as their momentum carries them further from the

228 vided in regard to cell viability). More recently, Stachowiak *et al.* used the same technique to encapsulate 500 nm nanoparticles
229 as well as the pore-forming protein α -hemolysin¹³² and, in continuing work, refined the apparatus so that an inkjet system was
230 used to control liposome formation (Figure 9).^{133,134} One problem with this technique is that a residual amount of the solvent
231 used in the phospholipid solution is found inside the membrane, in between the monolayers.⁷⁷ Kirchner *et al.* determined, us-
232 ing Raman spectroscopy, that the decane solvent used in membrane preparation is present throughout the membrane, forming a
233 layer up to tens of nanometres thick.¹³⁵ This is almost certain to affect the behaviour of some membrane-bound proteins and the
234 passive diffusion of other materials across the membrane. Stachowiak *et al.* do not address this issue in their work, so it is not
235 clear whether this problem can be solved.^{132–134} Although this problem has not been reported previously in other techniques, it
236 is likely to be a factor in other vesicle formation methods.

237 Two major shortcomings of this method are that it is non-trivial to set up, and very sensitive to both the operating conditions
238 and the materials being used. Indeed, a micromanipulator stage is needed to position the micro-nozzle in the right location with
239 respect to the membrane. Since the droplets that form the interface bilayer are created by manual pipetting, it is very difficult
240 to reproduce their exact location. This means that the micro-nozzle must be repositioned every time the apparatus is used.
241 Also, since liposome formation depends on the membrane being deformed by the momentum of a fluid jet, the whole process
242 is highly dependent on the viscosity of the solutions, operating temperature, and membrane composition. As a result, each time
243 the materials being used are changed (lipids, and internal and external phases), it is likely that the protocol must be modified in
244 some way. Another possible problem with the pulsed-jetting method is the high shear stress experienced by the sample during
245 the jetting process. This may disrupt large or delicate proteins or other biomolecules, limiting the applications of this technique.
246 However, to our knowledge, the consequences of this shear stress have not yet been investigated.

258 A very similar method was developed by Tan *et al.*, who used a microfluidic device and oleic acid to produce a lipid-stabilised
259 water-in-oil emulsion, and transferred it into an aqueous mixture of ethanol and water.¹⁴² The oleic acid phase dissolved in the
260 ethanol, forcing the phospholipids to rearrange into a bilayer membrane, thus forming a vesicle. Such vesicles are unilamellar,
261 monodisperse, of controllable size, and very stable — they were shown to last for more than 26 days — and the procedure is
262 simple and fast to implement. Figure 11 provides an illustration of the method. More recently, the same group demonstrated the
263 entire process performed inside a microfluidic device.¹⁴³ Since in this case the solvent used for removing the oleic acid from the
264 membrane is ethanol, the method is much more biocompatible than those previously described.

265 Although they did not discuss encapsulation efficiency in detail, Tan *et al.* demonstrated that their method can successfully
266 encapsulate nano-sized proteins, microbeads, and HeLa cells.¹⁴² They also stated that encapsulation efficiency is variable, and
267 will depend on the flow rate during the emulsification process and on the concentration of alcohol in the external aqueous
268 mixture when the droplets are transferred. Their method separates the internal aqueous solution from the external one throughout
269 the initial stages of the process, and so it is likely that encapsulation efficiencies are good. The final stage is where leakage may
270 occur, *i.e.*, when droplets are transferred to the aqueous mixture of water and ethanol and the phospholipids rearrange into a
271 bilayer. At this point, rupture and mixing of droplets with the external phase may occur before the lipids rearrange into a bilayer
272 membrane. Loss of efficiency due to the emulsification step is likely to occur because the size of vesicles affects their stability,
273 while the formation rate affects the lipid concentration at the oil-water interface. Hence, if the droplets are too small or form too
274 quickly (not giving enough time for lipids to stabilise the oil-water interface), the resulting vesicles are more likely to rupture
275 and release their contents into the external medium, thus lowering the overall encapsulation efficiency.

286 An elegant method for forming vesicles that has only been demonstrated using microfluidic technology is that of transient mem-
287 brane ejection, first demonstrated by Ota *et al* (Figure 13).¹⁴⁶ The technique consists of forming a lipid bilayer at a microchannel
288 junction, and then disrupting that membrane to form vesicles. In this work, a laser is used to heat up a gas bubble in the aqueous
289 solution on one side of the membrane. The resulting expansion of the bubble is enough to displace the fluid and push against the
290 lipid bilayer to deform it. The bilayer then breaks off into liposomes in a way similar to the pulsed-jetting described in section
291 2.4. A modification of the technique by Kurakazu *et al.* uses pneumatic valves to decrease the volume of the channel instead.¹⁴⁷
292 The main advantages of this method are that it is fully integrated within a microfluidic platform, and results in monodisperse
293 unilamellar vesicles with tunable size. However, the membrane used to form vesicles is eventually depleted, and needs to be
294 replaced. This is achieved by pumping a lipid-containing oil phase into the junction, where a lipid-stabilised oil-water interface
295 forms. The oil phase is then pumped out by a second aqueous phase. As the two oil-water interfaces come into contact, a bilayer
296 membrane forms. This depletion and replacement of the membrane imposes a complication: the user must deal with intermittent
297 oil phases separating batches of liposome samples. This membrane replacement action (and resulting two-phase output) along
298 with the pneumatic or light actuation result in significant usability shortcomings in this method.

299 Ota *et al.* state that the lipid membrane produced by their method contains oil residue between the two lipid layers, though
300 the discussion they provide on this topic claims that they did not experience problems related to this issue.¹⁴⁶ Nonetheless, the
301 membrane pore protein α -hemolysin was successfully incorporated into the membrane, and an *in-vitro* gene-expression system
302 based on *E.coli* cell-extract was encapsulated and used to express green fluorescent protein.

303 Finally, it is likely that encapsulation efficiencies are high, since the internal and external aqueous phases are kept separate
304 by the lipid membrane or oil phase at all times.

formation technique eliminated the polydispersity issues experienced in the macroscale implementation.

316 Another droplet emulsion transfer method, this time fully integrated into a microfluidic device, was described by Matosevic *et*
317 *al.*¹⁵³ In this work, they formed lipid-stabilised water-in-oil droplets which were then displaced by a ramp-shaped obstacle into a
318 co-flowing aqueous stream. When pushed from the organic into the aqueous phase, the droplets picked up a second monolayer of
319 lipids at the oil-water interface (see Figure 15). This displacement stage, however, proved to be too disruptive, causing 95-99% of
320 the droplets to burst as they crossed the interface. As a result, encapsulation efficiency (which should be close to 100% dropped
321 to 83%), yield, and throughput were compromised. This method, however, seems very promising if the displacement step can be
322 optimised to prevent droplets from bursting at the interface.

323 A major concern with the emulsion transfer method is the likely presence of oil residue inside the lipid bilayer after vesicle
324 formation. Since the process involves the transfer of droplets through an oil phase, it is reasonable to suspect contamination of
325 the final liposome membrane. As discussed in Section 1.1, the presence of oil in the lipid bilayer may have a significant impact
326 in the behaviour of the membrane and associated proteins. It is therefore important to address this matter.

327 In their work first describing emulsion transfer, Pautot *et al.* performed a thin-layer chromatography assay on the final
328 vesicles comparing them to pure lipids and pure oil samples, and could not detect the presence of oil in the vesicle sample.⁵⁹
329 This indicated that if any oil was present, it was less than 5% of the membrane (that being the sensitivity limit of their detection
330 technique). They also suggested that squalene, a complex mixture of long-chain alkanes, is a good candidate for forming oil-free
331 liposomes by emulsion transfer because it is immiscible in fully hydrated bilayers above the phase transition temperature.^{59,72}

332 However, Kubatta *et al.* showed that a large amount of oil was clearly visible in the membrane of vesicles formed by emulsion
333 transfer.¹⁵⁴ It should be noted, though, that the vesicles were between 3 and 5 millimeters in diameter — much larger than typical

344 3 Conclusions

345 In the last ten years there have been many new developments in liposome formation technology. Most notably, macroscale
346 methods have been transposed to the microscale while entirely new methods that are only possible with microfluidic technologies
347 were also developed. This happened because of the many benefits associated with reducing the dimensions of a fluidic process
348 down to the microscale, such as improved throughput and analytical performance, and a high degree of control over operational
349 parameters.

350 While progress has been rapid, a method that is capable of addressing all the requirements of the various applications of
351 liposome technology has yet to be realised. For each method there is a trade-off. For example, hydration, electroformation,
352 and extrusion result in excellent quality liposomes, but have very low encapsulation efficiency. Of those that achieve high
353 encapsulation efficiencies, pulsed jetting and transient membrane ejection are difficult to implement, while double emulsion
354 templates and ice droplet hydration are not very compatible with biological processes. Finally, droplet emulsion transfer, in spite
355 of being a promising technique, has yet to be implemented in a reliable fashion.

356 Due to their qualities and drawbacks, different methods remain useful only in different application niches. For membrane
357 protein biology membrane quality is paramount, while encapsulation efficiency or volume characteristics are less important.
358 In such applications, electroformation and extrusion are well suited for vesicle production and hence their immense popularity.
359 However, when liposomes are used as cell models, encapsulation efficiency and monodispersity are just as important as membrane
360 quality. This demand has resulted in the invention of the other techniques, such as pulsed jetting, transient membrane ejection,
361 and droplet emulsion transfer. Finally, the use of liposomes as enclosures for drugs or other chemical species tends to require

	Extrusion	Flow focusing	Pulsed jetting	Double emulsion templates	Ice droplet hydration	Transient membrane ejection	Droplet emulsion transfer
Medium	Unilamellar	Unknown	Unilamellar	Unilamellar	Unilamellar	Unilamellar	Unilamellar
No	Medium	Easy	Hard	Medium	Medium	Easy	Medium
Low*	No	Unknown	Yes	Unknown	Unknown	Yes	Yes / Maybe
LUV-GUV	Low	Low	High*	High	High	High	High
Polydisperse	SUV-LUV	SUV	GUV	LUV-GUV	GUV	GUV	GUV
	Monodisperse	Monodisperse	Monodisperse	Monodisperse	Monodisperse	Monodisperse	Monodisperse
	124	119,	77, 132–134	136,	144, 145	146, 147	150–153
		125–130		140–143			

* As discussed in Sections 2.1 and 2.4, it is possible that the electroformation and pulsed-jetting processes may disrupt the function of encapsulated material.

372 demonstrated, as well as trapping,^{164, 165} anchoring, and perfusing with reagents.¹⁶⁶ Notably, Robinson *et al.* have developed
373 a microfluidic platform in which a population of liposomes can be mechanically trapped into individual chambers, allowing
374 single-liposome observation and manipulation.¹⁶⁷

375 In conclusion, we have seen that liposome formation methods can be fully integrated into planar microfluidic platforms, and
376 that such methods show distinct advantages over macroscale or hybrid approaches. The challenge will be to create an on-chip
377 method of forming bespoke liposomes in high-throughput with high encapsulation efficiencies.

378 4 Acknowledgements

379 The authors would like to thank Dr Claire Stanley and Dr Robert Wootton for proofreading, comments, and helpful discussions
380 during the preparation of this manuscript.

381 References

- 382 1 D. D. Lasic, *Biochemical Journal*, 1988, **256**, 1–11.
- 383 2 P. Walde, K. Cosentino, H. Engel and P. Stano, *Chem. Eur. J. of Chem. Bio.*, 2010, **11**, 848–865.
- 384 3 E. Evans and D. Needham, *Journal of Physical Chemistry*, 1987, **91**, 4219–4228.
- 385 4 K. A. Edwards and A. J. Baeumner, *Talanta*, 2006, **68**, 1432 – 1441.
- 386 5 A. Jesorka and O. Orwar, *Annual Review of Analytical Chemistry*, 2008, **1**, 801–832.
- 387 6 S. Li and A. Palmer, *Langmuir*, 2004, **20**, 7917–7925.
- 388 7 S. Dieluweit, A. Csiszar, W. Rubner, J. Fleischhauer, S. Houben and R. Merkel, *Langmuir*, 2010, **26**, 11041–11049.
- 389 8 R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske and R. Lipowsky, *Journal of Physics: Condensed Matter*, 2006, **18**, S1151–S1176.
- 390 9 S. Li, P. Hu and N. Malmstadt, *Analytical Chemistry*, 2010, **82**, 7766–7771.

404 23 R. Lipowsky, *Nature*, 1991, **349**, 475–481.

405 24 M. Treyer, P. Walde and T. Oberholzer, *Langmuir*, 2002, **18**, 1043–1050.

406 25 A. P. Liu and D. A. Fletcher, *Biophysical Journal*, 2006, **91**, 4064–4070.

407 26 J. Lee, S. Choi, C. Doe, A. Faraone, P. A. Pincus and S. R. Kline, *Physical Review Letters*, 2010, **105**, 038101.

408 27 S. Ytzhak, J. P. Wuskell, L. M. Loew and B. Ehrenberg, *The Journal of Physical Chemistry B*, 2010, **114**, 10097–10104.

409 28 O. P. Medina, Y. Zhu and K. Kairemo, *Curr Pharm Des*, 2004, **10**, 2981–2989.

410 29 P. Goyal, K. Goyal, S. G. V. Kumar, A. Singh, O. P. Katare and D. N. Mishra, *Acta Pharm*, 2005, **55**, 1–25.

411 30 A. Samad, Y. Sultana and M. Aqil, *Curr Drug Deliv*, 2007, **4**, 297–305.

412 31 P. Monnard, *Journal of Membrane Biology*, 2003, **191**, 87–97.

413 32 N. Ben-Haim, P. Broz, S. Marsch, W. Meier and P. Hunziker, *Nano Letters*, 2008, **8**, 1368–1373.

414 33 K. Hosoda, T. Sunami, Y. Kazuta, T. Matsuura, H. Suzuki and T. Yomo, *Langmuir*, 2008, **24**, 13540–13548.

415 34 P. L. Luisi, M. Allegretti, T. P. de Souza, F. Steiniger, A. Fahr and P. Stano, *ChemBioChem*, 2010, **11**, 1989–1992.

416 35 T. Oberholzer, R. Wick, P. L. Luisi and C. K. Biebricher, *Biochem Biophys Res Commun*, 1995, **207**, 250–257.

417 36 L. E. Locascio, W. N. Vreeland, A. Jahn and M. Gaitan, *Lab-on-Chips for Cellomics*, Springer Netherlands, 2004, pp. 59–81.

418 37 V. Noireaux and A. Libchaber, *Proceedings of the National Academy of Sciences of the United States of America*, 2004, **101**, 17669–17674.

419 38 V. Noireaux, R. Bar-Ziv, J. Godefroy, H. Salman and A. Libchaber, *Physical Biology*, 2005, **2**, P1–P8.

420 39 D. Deamer, *Trends in Biotechnology*, 2005, **23**, 336–338.

421 40 K.-i. Shohda and T. Sugawara, *Soft Matter*, 2006, **2**, 402–408.

422 41 P. Monnard and H. Ziock, *Origins of Life and Evolution of Biospheres*, 2007, **37**, 469–472.

423 42 P. Walde, *Bioessays*, 2010, **32**, 296–303.

424 43 S. F. Fenz and K. Sengupta, *Integr. Biol.*, 2012, **4**, 982–995.

425 44 W. Hckl, M. Bnnann and E. Sackmann, *Physical Review Letters*, 1998, **80**, 1786–1789.

426 45 L. Limozin, M. Brmann and E. Sackmann, *European Physical Journal E*, 2003, **10**, 319–330.

427 46 D. Merkle, N. Kahya and P. Schwille, *ChemBioChem*, 2008, **9**, 2673–2681.

441 60 M. Long, A. Cans and C. Keating, *Journal of the American Chemical Society*, 2008, **130**, 756–762.

442 61 M. FREEMANTLE, *Chemical & Engineering News Archive*, 1999, **77**, 27–36.

443 62 K. F. Jensen, *Chemical Engineering Science*, 2001, **56**, 293 – 303.

444 63 X. Jiang and G. Whitesides, *Engineering in Life Sciences*, 2003, **3**, 475–480.

445 64 M. G. Roper, C. J. Easley and J. P. Landers, *Analytical Chemistry*, 2005, **77**, 3887–3894.

446 65 D. B. Weibel and G. M. Whitesides, *Current Opinion in Chemical Biology*, 2006, **10**, 584 – 591.

447 66 D. E. Discher and A. Eisenberg, *Science*, 2002, **297**, 967–973.

448 67 J. N. Israelachvili, S. Marelja and R. G. Horn, *Quarterly Reviews of Biophysics*, 1980, **13**, 121–200.

449 68 X. Armengol and J. Estelrich, *Journal of Microencapsulation*, 1995, **12**, 525–535.

450 69 M. Bergström, *Langmuir*, 2001, **17**, 7675–7686.

451 70 A. Gliozzi, A. Relini and P. L.-G. Chong, *Journal of Membrane Science*, 2002, **206**, 131 – 147.

452 71 L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley and J. E. Gouaux, *Science*, 1996, **274**, 1859–1866.

453 72 T. McIntosh, S. Simon and R. MacDonald, *Biochimica et Biophysica Acta (BBA) - Biomembranes*, 1980, **597**, 445 – 463.

454 73 P. J. Booth, M. L. Riley, S. L. Flitsch, R. H. Templer, A. Farooq, A. R. Curran, N. Chadborn and P. Wright, *Biochemistry*, 1997, **36**, 197–203.

455 74 M. Lorch and P. J. Booth, *Journal of Molecular Biology*, 2004, **344**, 1109 – 1121.

456 75 P. J. Booth, *Current Opinion in Structural Biology*, 2005, **15**, 435 – 440.

457 76 C. V. Kulkarni, A. M. Seddon, O. Ces and R. H. Templer, *Soft Matter*, 2010, **6**, 4339–4341.

458 77 K. Funakoshi, H. Suzuki and S. Takeuchi, *Journal of the American Chemical Society*, 2007, **129**, 12608–12609.

459 78 J.-L. Rigaud, B. Pitard and D. Levy, *Biochimica et Biophysica Acta (BBA) - Bioenergetics*, 1995, **1231**, 223 – 246.

460 79 F. M. Menger and J. S. Keiper, *Current Opinion in Chemical Biology*, 1998, **2**, 726 – 732.

461 80 A. M. Seddon, P. Curnow and P. J. Booth, *Biochimica et Biophysica Acta (BBA) - Biomembranes*, 2004, **1666**, 105 – 117.

462 81 L. A. Bagatolli, *Biochimica et Biophysica Acta (BBA) - Biomembranes*, 2006, **1758**, 1541 – 1556.

463 82 T. Toyota, N. Ohguri, K. Maruyama, M. Fujinami, T. Saga and I. Aoki, *Analytical Chemistry*, 2012, **84**, 3952–3957.

464 83 P. Walde and S. Ichikawa, *Biomolecular Engineering*, 2001, **18**, 143–177.

478 97 C. Grabielle-Madelmont, S. Lesieur and M. Ollivon, *Journal of Biochemical and Biophysical Methods*, 2003, **56**, 189 – 217.

479 98 X.-M. Zhang, A. B. Patel, R. A. de Graaf and K. L. Behar, *Chemistry and Physics of Lipids*, 2004, **127**, 113 – 120.

480 99 B. Sun and D. T. Chiu, *Analytical Chemistry*, 2005, **77**, 2770–2776.

481 100 D. W. Fry, J. White and I. Goldman, *Analytical Biochemistry*, 1978, **90**, 809 – 815.

482 101 C. Chen and S. Schullery, *Journal of Biochemical and Biophysical Methods*, 1979, **1**, 189–192.

483 102 G. Jederstrom and G. Russell, *Journal of Pharmaceutical Sciences*, 1981, **70**, 874–878.

484 103 S. Dipali, S. Kulkarni and G. Betageri, *Journal of Pharmacy and Pharmacology*, 1996, **48**, 1112–1115.

485 104 D. c. Imbert, G. Kasting and R. Wickett, *Journal of Cosmetic Science*, 1996, **47**, 337–349.

486 105 P. Bucher, A. Fischer, P. Luisi, T. Oberholzer and P. Walde, *Langmuir*, 1998, **14**, 2712–2721.

487 106 M. Karlsson, K. Nolkrantz, M. Davidson, A. Stromberg, F. Ryttsen, B. Akerman and O. Orwar, *Analytical Chemistry*, 2000, **72**, 5857–5862.

488 107 M. I. Angelova, S. Soleau, P. Meleard, J. F. Faucon and P. Bothorel, *Prog. Colloid Polym. Sci.*, 1992, **89**, 127–131.

489 108 P. Taylor, C. Xu, P. D. I. Fletcher and V. N. Paunov, *Chem. Commun.*, 2003, 1732–1733.

490 109 P. Taylor, C. Xu, P. D. I. Fletcher and V. N. Paunov, *Physical Chemistry Chemical Physics*, 2003, **5**, 4918–4922.

491 110 M. K. Doeven, J. H. Folgering, V. Krasnikov, E. R. Geertsma, G. van den Bogaart and B. Poolman, *Biophysical Journal*, 2005, **88**, 1134 – 1142.

492 111 D. J. Estes and M. Mayer, *Biochimica et Biophysica Acta (BBA) - Biomembranes*, 2005, **1712**, 152 – 160.

493 112 L.-R. Montes, A. Alonso, F. M. Goi and L. A. Bagatolli, *Biophysical Journal*, 2007, **93**, 3548 – 3554.

494 113 P. M. Shaklee, S. Semrau, M. Malkus, S. Kubick, M. Dogterom and T. Schmidt, *ChemBioChem*, 2010, **11**, 175–179.

495 114 P. Girard, J. Pecreaux, G. Lenoir, P. Falson, J. Rigaud and P. Bassereau, *Biophysical Journal*, 2004, **87**, 419–429.

496 115 S. Aimon, J. Manzi, D. Schmidt, J. A. Poveda Larrosa, P. Bassereau and G. E. S. Toombes, *PLoS ONE*, 2011, **6**, e25529.

497 116 K. Kurabayashi, G. Tresset, P. Coquet, H. Fujita and S. Takeuchi, author, 2005, pp. 1159 – 1162 Vol. 2.

498 117 M. LeBerre, A. Yamada, L. Reck, Y. Chen and D. Baigl, *Langmuir*, 2008, **24**, 2643–2649.

499 118 A. Diguet, M. Le Berre, Y. Chen and D. Baigl, *Small*, 2009, **5**, 1661–1666.

500 119 Y.-C. Lin, M. Li, Y.-T. Wang, T.-H. Lai, J.-T. Chiang and K.-S. Huang, author, 2005, pp. 1592 – 1595 Vol. 2.

501 120 Y. Lin, K. Huang, J. Chiang, C. Yang and T. Lai, *Sensors and Actuators B: Chemical*, 2006, **117**, 464–471.

515 133 J. C. Stachowiak, D. L. Richmond, T. H. Li, F. Brochard-Wyart and D. A. Fletcher, *Lab on a Chip*, 2009, **9**, 2003–2009.

516 134 D. L. Richmond, E. M. Schmid, S. Martens, J. C. Stachowiak, N. Liska and D. A. Fletcher, *Proceedings of the National Academy of Sciences*, 2011, **108**, 517 9431–9436.

518 135 S. R. Kirchner, A. Ohlinger, T. Pfeiffer, A. S. Urban, F. D. Stefani, A. Deak, A. A. Lutich and J. Feldmann, *Journal of Biophotonics*, 2012, **5**, 40–46.

519 136 H. C. Shum, D. Lee, I. Yoon, T. Kodger and D. A. Weitz, *Langmuir*, 2008, **24**, 7651–7653.

520 137 A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone and D. A. Weitz, *Science*, 2005, **308**, 537–541.

521 138 L. Chu, A. Utada, R. Shah, J. Kim and D. Weitz, *Angewandte Chemie International Edition*, 2007, **46**, 8970–8974.

522 139 R. T. Davies, D. Kim and J. Park, *Journal of Micromechanics and Microengineering*, 2012, **22**, 055003.

523 140 T. Foster, K. D. Dorfman and H. T. Davis, *Journal of Colloid and Interface Science*, 2010, **351**, 140 – 150.

524 141 E. Lorenceau, A. Utada, D. Link, G. Cristobal, M. Joanicot and D. Weitz, *Langmuir*, 2005, **21**, 9183–9186.

525 142 Y. Tan, K. Hettiarachchi, M. Siu, Y. Pan and A. Lee, *Journal of the American Chemical Society*, 2006, **128**, 5656–5658.

526 143 S.-Y. Teh, R. Khnouf, H. Fan and A. P. Lee, *Biomicrofluidics*, 2011, **5**, 044113.

527 144 S. Sugiura, T. Kuroiwa, T. Kagota, M. Nakajima, S. Sato, S. Mukataka, P. Walde and S. Ichikawa, *Langmuir*, 2008, **24**, 4581–4588.

528 145 T. Kuroiwa, H. Kiuchi, K. Noda, I. Kobayashi, M. Nakajima, K. Uemura, S. Sato, S. Mukataka and S. Ichikawa, *Microfluidics and Nanofluidics*, 2009, **6**, 529 811–821.

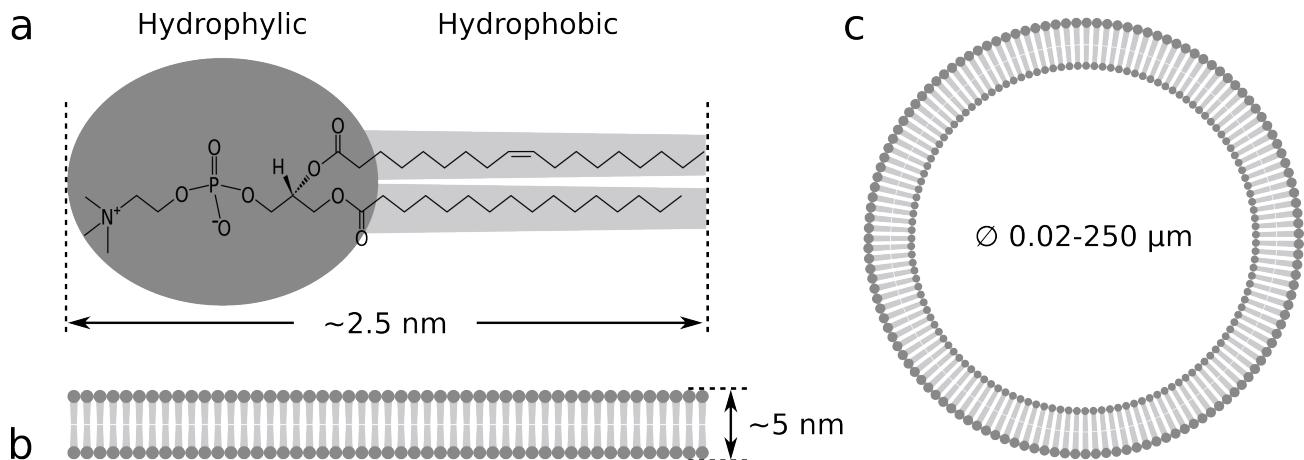
530 146 S. Ota, S. Yoshizawa and S. Takeuchi, *Angewandte Chemie International Edition*, 2009, **48**, 6533–6537.

531 147 T. Kurakazu and S. Takeuchi, author, 2010, pp. 1115 –1118.

532 148 M. Hase, A. Yamada, T. Hamada and K. Yoshikawa, *Chemical Physics Letters*, 2006, **426**, 441–444.

533 149 A. Yamada, T. Yamanaka, T. Hamada, M. Hase, K. Yoshikawa and D. Baigl, *Langmuir*, 2006, **22**, 9824–9828.

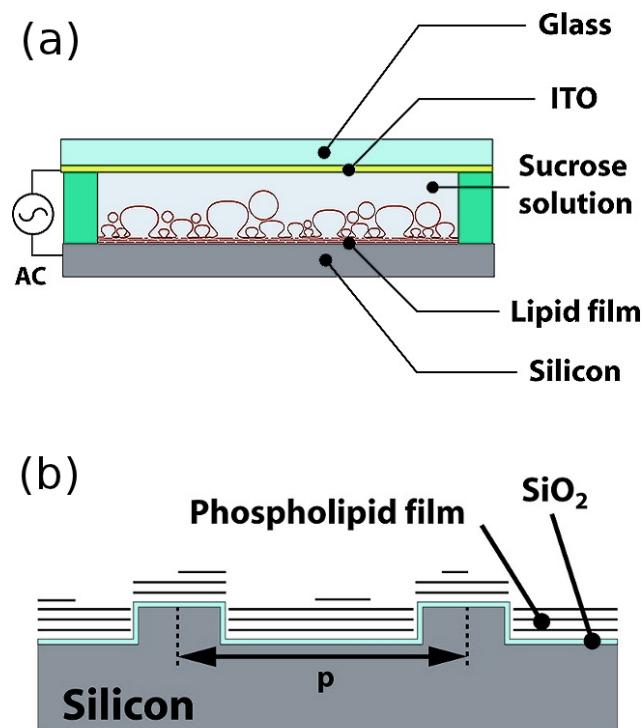
534 150 T. Hamada, Y. Miura, Y. Komatsu, Y. Kishimoto, M. Vestergaard and M. Takagi, *The Journal of Physical Chemistry B*, 2008, **112**, 14678–14681.

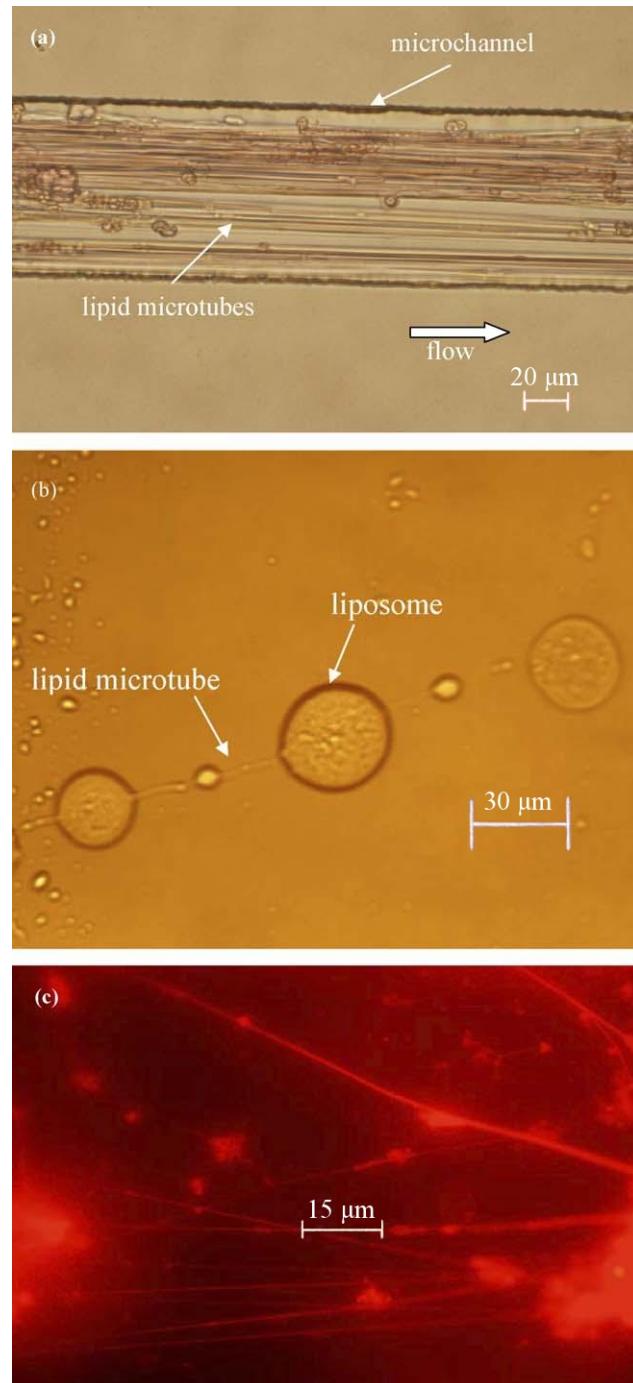

535 151 P. C. Hu, S. Li and N. Malmstadt, *ACS Applied Materials & Interfaces*, 2011, **3**, 1434–1440.

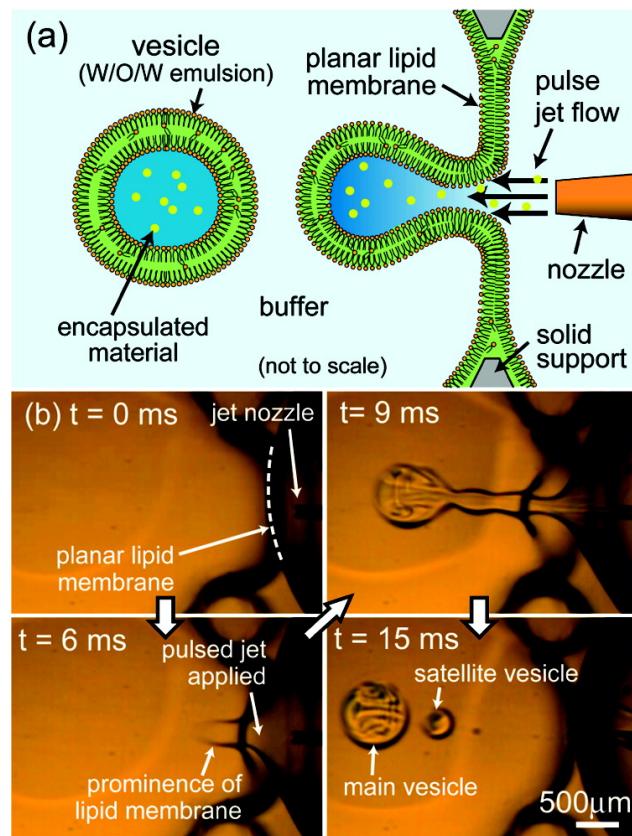
536 152 K. Nishimura, H. Suzuki, T. Toyota and T. Yomo, *Journal of Colloid and Interface Science*, 2012, **376**, 119 – 125.

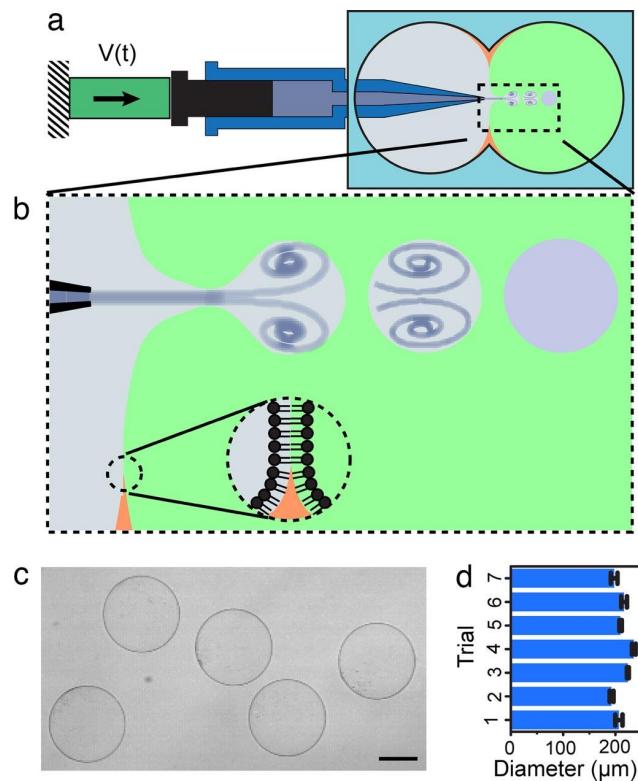
537 153 S. Matosevic and B. M. Paegel, *Journal of the American Chemical Society*, 2011, **133**, 2798–2800.

538 154 E. Kubatta and H. Rehage, *Colloid and Polymer Science*, 2009, **287**, 1117–1122.



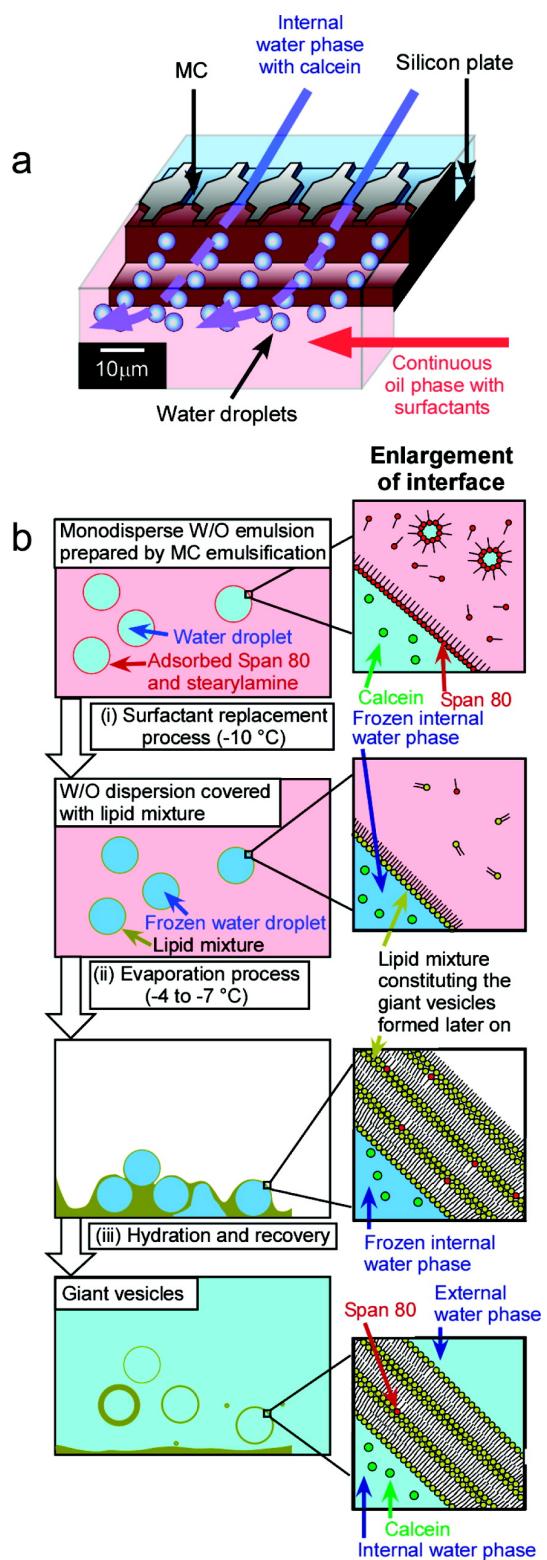

Fig. 1 (a) The structure of one POPC (1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine) lipid molecule, showing the hydrophylic head and hydrophobic tail. POPC is a naturally-occurring lipid and is commonly used in the production of synthetic liposomes. (b) The heads and tails of the lipid interact to self-assemble into a membrane structure, and (c) a lipid vesicle.

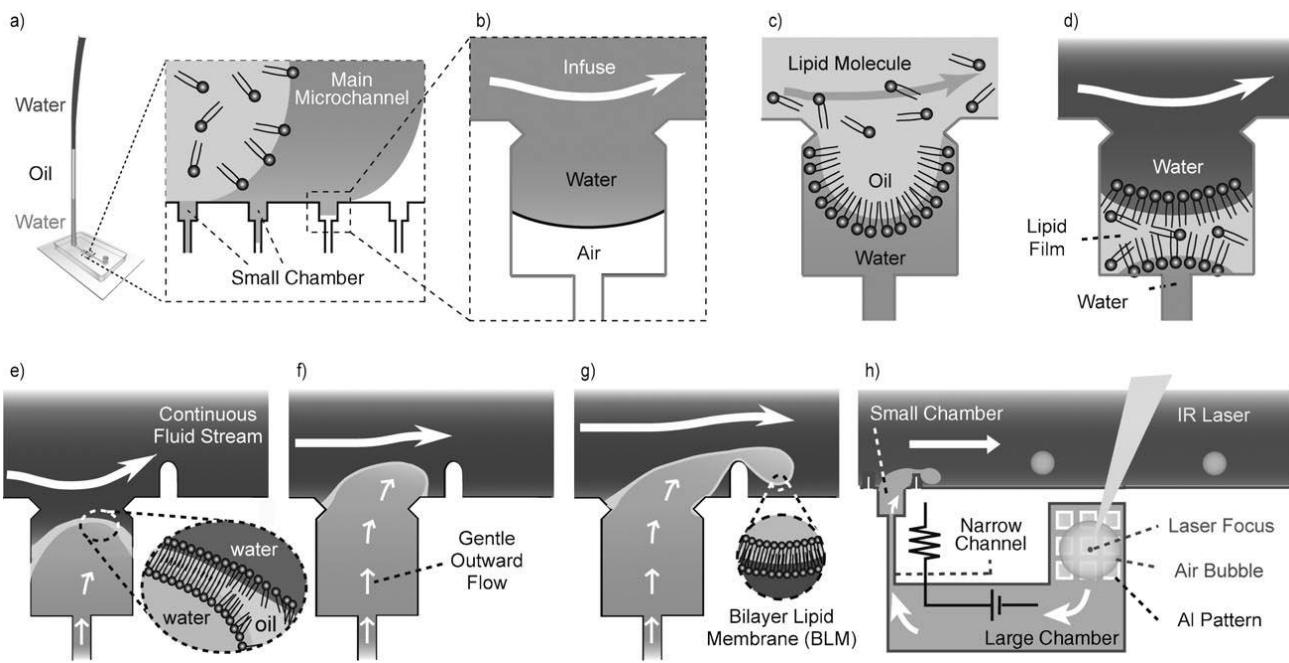

Fig. 4 The experimental setup for the electroformation of giant phospholipid vesicles on a silicon substrate (a), as demonstrated by Le Berre *et al.* (b) A section showing only the Silicon electrode, patterned with an array of micropillars 170 nm in height and with pitch sizes p of 7, 15, and 60 μm . Adapted with permission from 117. Copyright 2008, American Chemical Society.

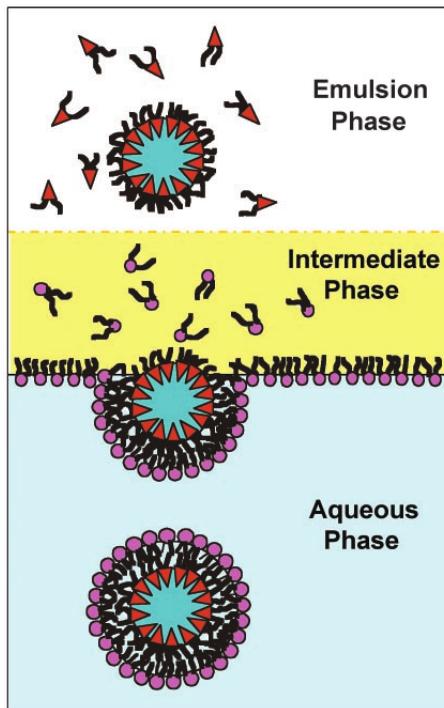

Fig. 5 Microtubule formation by hydration in a microfluidic channel, by Lin *et al.* (a) The DMPC (1,2-dimyristoyl-*sn*-glycero-3-phosphocholine) microtubules formed in a PDMS channel are stable and controllable. (b) The method sometimes also generated nanotube-vesicle networks. Vesicles are connected by nanotubes, allowing for material exchange between them. (c) A fluorescence image of a self-assembled network of lipid tubules and vesicles. Adapted with permission from reference 120. Copyright 2006, Elsevier.

apertures are fabricated on the silicon substrate in a rectangular area of approximately 3 mm in length. (b) A cross-section of the assembled device and one of its $3.5\ \mu\text{m}$ diameter apertures. Lipids are coated over the aperture, from which vesicles and tubules are extruded. Reprinted with permission from reference 124. Copyright 2006, The Royal Society of Chemistry.

junction during vesicle formation. Reprinted from reference 125.


Fig. 8 Pulsed jetting, by Funakoshi *et al.* (a) A schematic of the vesicle formation method. The green area represents the organic solvent. (b) A sequence of images of vesicle formation captured by a high-speed camera. The planar membrane is stretched, forming a balloon that breaks out into spherical vesicles within 10 ms. Reprinted with permission from 77. Copyright 2007, American Chemical Society.


Fig. 9 Blowing vesicles by pulsed-jetting, after Stachowiak *et al.* (a) A schematic of the device and apparatus assembly. A micropipette is inserted close to a lipid membrane, and a piezo-electric actuator is used to generate pulses of fluid. (b) The pulsed jet crosses the membrane, forming vesicles. (c) A micrograph of the resulting liposomes (scale bar: 100 μm , and (d) the resulting diameters of vesicles formed in seven trials. Reprinted with permission from reference 132. Copyright 2008, The National Academy of Science.



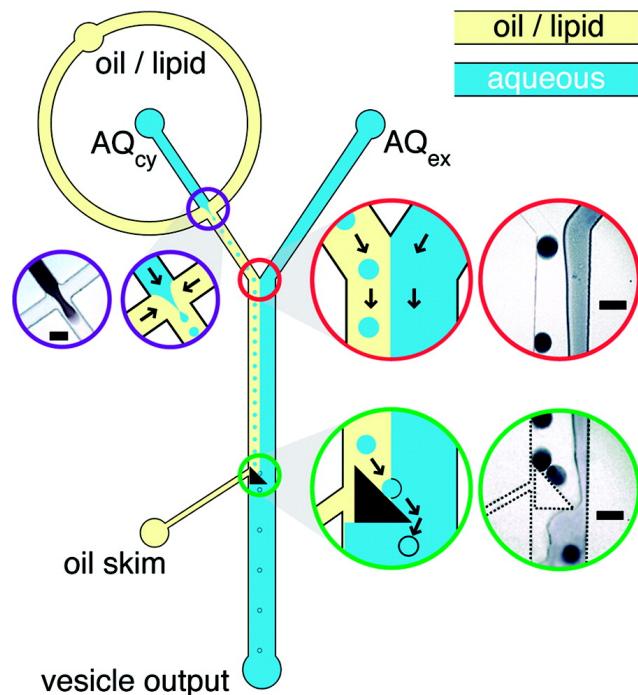

Fig. 12 Vesicle preparation by ice droplet hydration in a microfluidic device, by Sugiura *et al.* (a) A schematic of the microfluidic device, and (b) the process of ice droplet hydration for surfactant replacement. Reprinted with permission from reference 144. Copyright 2008, American Chemical Society.

Fig. 13 The transient membrane ejection method invented by Ota et al. (a) Water, oil containing lipids, and water are sequentially passed through a main microfluidic channel flanked by many small chambers. (b) The first water phase enters the chambers, pushing the air out through the PDMS. (c) As the lipid-containing oil passes through the main channel, it forms a lipid-stabilised oil-water interface at the entrance of the chambers, enclosing small volumes of water in them. (d) As the second water phase displaces the oil, the two lipid-stabilised water-oil interfaces come into contact at the chamber entrance, forming a lipid bilayer membrane. (e-f) A gentle flow generated from the chamber out into the main channel displaces the membrane, causing it to bud off into vesicles. (h) This gentle outward flow is generated by the controlled expansion of an optically generated microbubble. Reprinted with permission from reference 146. Copyright 2009, WILEY-VCH Verlag GmbH.

Fig. 14 Droplet emulsion transfer method for vesicle formation, developed by Pautot *et al.* Water droplets are formed in a lipid-in-oil suspension, and then passed through a oil-water interface which is itself stabilised by phospholipids. As the droplets cross the interface into the aqueous phase, they pick up a second layer of phospholipids, forming a bilayer membrane, and thus become vesicles. Reprinted with permission from reference 58. Copyright 2003, The National Academy of Sciences.

Fig. 15 Fully-integrated microfluidic droplet transfer method for vesicle formation, developed by Matosevic *et al.* Lipid-stabilised water-in-oil droplets are formed by flow-focusing of water into an oil stream at a microfluidic junction, and then forced across an oil-water interface by a ramp-shaped barrier. Similar to the macroscale method, the droplets pick up a second layer of lipids as they cross the interface, forming a bilayer membrane, and thus becoming liposomes. Scale bars: 100 μ m. Reprinted with permission from reference 153. Copyright 2011, American Chemical Society.