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BESSEL FUNCTIONS OF PURELY IMAGINARY ORDER, WITH AN
 
APPLICATION TO SECOND-ORDER LINEAR DIFFERENTIAL EQUAl'IONS
 

HAVING A LARGE PARAMETER· 

T. M. DUNSTERt 

Abstract. Bessel functions of purely imaginary order are examined. Solutions of both the modified and 
unmodified Bessel equations are defined which, when their order is purely imaginary and their argument 
is real and positive, are pairs of real numerically satisfactory functions. Recurrence relations, analytic 
continuation formulas. power series representations. Wronskian integral representations, behavior 
at singularities, and asymptotic forms of the zeros are derived for these numerically satisfactory functions. 
Also, asymptotic expansions in terms of elementary and Airy functions are derived for the Bessel functions 
when their order is purely imaginary and of large absolute value. 

Second-order linear ordinary differential equations having a lari\e parameter and a simple pole are then 
examined, for the case where the exponent of the pole is complex. Asymptotic expansions are derived for 
the solutions in terms of the numerically satisfactory Bessel functions of purely imaginary order. 

Key words. asymptotic analysis, Bessel functions. ordinary differential equations, zeros 
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1. Introduction and summary. The purpose of this paper is to investigate solutions 
of both the unmodified and the modified Bessel equations (see (2.1) and (3.1». We 
consider the case where the parameter in the equations is purely imaginary, so that 
the solutions are of purely imaginary order. 

Consider first the asymptotic behavior of Bessel functions. This is an that 
has been extensively studied, reflecting the importance of Bessel functions in many' 
areas of mathematics and physics. Uniform asymptotic expansions of modified and 
unmodified Bessel functions of complex argument and large positive order are available 
in terms of both elementary and Airy functions, see § 7 of Chap. 10 and § 10 of Chap. 
11 in Olver (1974). (We will refer to Olver's book frequently, and therefore here and 
throughout we use the abbreviation "Chap." to refer to a chapter of that text.) 
Expansions for complex orders with positive (nonzero) real part are also available: 
see § 8 of Chap. 10. 

When the parameter is purely imaginary, however, the picture is less 
complete; only the modified Bessel function of the third kind seems to have 
been extensively studied. Uniform asymptotic expansions in terms of Airy functions 
have been derived for real and large, by Balogh (1967). The positive zeros 
of also been investigated by a number authors (see, e.g., Ferreira and 
Sesma (1970), Laforgia (1986». For other asymptotic results concerning Bessel func­
tions of purely imaginary order, see Jeffreys (1962, pp. 90-91) and Falcao (1973). 

Regarded as a Bessel function of purely imaginary order, the function is 
unique in two respects. First, it alone of the standard Bessel functions is real when 
the argument is positive: the Bessel functions and 
the modified function are all complex when and x are real and nonzero. 

Second, K'iv(X) is recessive as x +00, a property that makes the function useful 
10 certain phys:ical problems, such as hydrodynamical, quantum mechanical, and 
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diffraction theories. Also, this property allows us to readily identify the function with 
asymptotic solutions of (2.1) that it satisfies. 

An example in which Bessel functions of purely imaginary order play an important 
role in quantum mechanics is the problem of s-wave scattering by a reduced exponential 
potential; see Kogan and Galitsky (1963, pp. 334-341) and Joachain (1975, p. 317). 
For other applications see Hemker (1974). 

On account of the two above-mentioned properties, remains one of a pair 
of solutions of (3.1) on the x interval (0, (0) that are numerically satisfactory; see 
Miller (1950). is oscillatory in a neighborhood of the x = 0, and is exponential 
in a neighborhood of x = 00. An appropriate numerically satisfactory companion would 
be a real solution which is of equal amplitude and out of phase in the oscilla­
tory region. We introduce a function, denoted by which fulfills these criteria 
(see (2.2». 

Solutions of unmodified Bessel equation (3.1) that are real when is purely 
imaginary, and z x is positive, are oscillatory throughout °< x < We introduce 
two real solutions, denoted by and that are out of phase on 0< x < 00, 

have equal amplitudes of oscillation at x = 00 for all 0, and have asymptotically 
equal amplitudes of oscillation throughout 0 < x < as 00 (see (3.2) and (3.3». 

The plan of this paper is as follows. In §§ 2 and 3 we derive a number of results 
concerning and most of which pertain to being purely 
imaginary. We record recurrence relations, analytic continuation formulas, power series 
representations, Wronskian relations, connection formulas, integral representations, 
and asymptotic behavior at z = °and 00. These results follow from standard results 
concerning Besselfunctions, the latter being found, for example, by perusing Olver 
(1974), and in most instances details of their derivations have been omitted. 

In §§ 2 and 3 the zeros of the four functions are also examined; asymptotic 
formulas are derived for the zeros including those of which are of importance 
in certain physical problems, such as in quantum mechanics (sec Gray, Mathews, and 
MacRobert (1952». 

In §§ 4 and 5 we examine the asymptotic behavior of the four functions as 00. 

As has already been noted, the modified B.essel function has been studied by 
Balogh (1967). The corresponding asymptotic expansion for (as well as that 
for is derived, using the theory of Chap. 11. The theory of Chap. lOis applied 
to deriving asymptotic expansions, involving elementary functions, for Fiv( and 

(as well as for Hankel functions and 
One example of a useful application for these asymptotic results is to problems 

of high-frequency wave propagation in inhomogeneous media with linear velocity 
profiles (see, for example, Gupta (1965». For detailed discussions of this class of 
problem see Brekhovskikh (1960). In his paper Gupta uses expansions (29) for arg = 

and although this is not justified, we shall see that the first of these represents 
the (dominant) real part when y = - 1< < 00. 

In § 7 asymptotic solutions are constructed for equations of the form 

(1.1) 

in which u is a large parameter, the independent variable x lies in an open (finite or 
infinite) interval, and at some point x = Xo, f(x) has a simple pole and (x -
is analytic. It is supposed that there are no other transition points (zeros of f(x) or 
singularities) in the x interval under consideration. 
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We consider the case where 

. 2 + 1 1 
(1.2) hm (x-xo) g(x)=---<-- (,,>0), 

x .... xo 4 4 

which corresponds to the exponents of the pole = Xo being complex (see, e.g., § 4 of 
Chap. 5). 

The complementary problem, where the exponents are real, has been tackled by 
Olver (see §§ 1-4 of Chap. 12). We proceed in a manner similar to Olver's. By means 
of the Liouville transformation, fonnulas (2.02) and (2.03) of Chap. 12, our equation 
(1.1) is transformed to the fonn (7.1), where" is positive (compare (2.05) of Chap. 
12). Equation (7.1) is the focus of our attention; asymptotic solutions are constructed 
in terms of the Bessel functions of purely imaginary order and 

Using auxHiary functions for these four functions (given in § 6), we derive 
error bounds for the asymptotic expansions. 

It will be assumed that the reader is familiar with the results in Chaps. 10 and 11 
and §§ 1-5 of Chap. 12. 

2. Modified Bessel functions of purely imaginary order. The modified Bessel func­
tions (z) and (z) compose a numerically satisfactory pair of solutions of the 
modified Bessel equation 

2
d w 1 dw ((2.1) -+--- 1+- w=O
dz 2 z dz Z2 

in the half-plane larg zl 7T/2, for all complex values of such that Re O. By 
"numerically satisfactory" we mean a pair of linearly independent solutions that satisfy 
the criteria of Miller (1950). When is purely imaginary, however, the function (z) 
has the undesirable property of being complex on the positive real z axis. Therefore 
we now introduce the following function: 

(2.2) 

which will be seen to be an appropriate numerically satisfactory companion to 
where is real and nonzero, and x is real and positive. Note that is not defined 
when = O. It is not possible to define a numerically satisfactory companion to 
which remains finite as O. 

The definition of should be compared with the definition of 

7T
(2.3) 

- = z (z), = 
(2.4) 

= = z (z) + 
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Analytic continuation. For any integer m 

(2.5a) KJ.'(z e = cos -sin (z), 

(2.Sb) = cos (m/J.'rr)LJ.'(z)+sin (mjL7T)KJ.'(z). 

Power series representation. A power series expansion for (z) in ascending 
powers of z is readily derived from (2.2) together with the well-known power series 
for (see formula (10.01) of Chap. 2). When = and z =x this power series 
can be expressed as 

where 

(2.7) = arg + s + n. 
(For each s we define the branch of (2.7) so that is continuous for 0 < < with 

.• = 0.) 
From the definition (2.3) of we derive in a similar manner 

) 1/2 (x 2/ 4)2 sin In (x/2) - .• )
(2.8) = - ( sinh (V7T) S![(V2)(12+ v ... (S2+ V2)]1/2' 

Connection formulas. 

(2.9) 

Wronskian. 

7Ti 
(2.10) (z), LJ.'(zn = . ( )

Sin Z 

Integral representations. To derive an integral representation for we first 
express the function as a linear combination of Hankel functions. From the definition 
of and § 8.1 of Chap. 7 we obtain 

(2.11) (z) = 7T {e cosh (V7T) H(l)(z + H(2)(Z e 
2 sinh (

Next, the Hankel functions in (2.11) are expressed by their Sommerfeld integral 
representations (equation (4.19) of Chap. 7, with = 7T/2). The resulting integral 
representation for can be re-expressed, via a splitting into three integrals followed 
by appropriate changes of integration variables, in the following form: 

= [sinh (V7T)]-1 ezcos9 cosh dO 

(2.12) 

- e-zcoshl sin (vt) dt, larg zl < 7T/2. 

It is immediately seen from (2.12) that (x ) is real for 0 < x < The modified Bessel 
function has the known integral representation 

(2.13) = e-zcosht cos (vt) dt, larg zl < 7T/2, 

and from this it is seen that too, is real for 
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Behavior at the singularities z =0, 00. If v( > 0) is fixed and x 0+, then 
1/2 

(2.14) 
( )SIO • 

1/2 

(2.15) 
( ) {cos In 

SIO ' 

(Note that the amplitudes of oscillation of and in a neighborhood of 
the origin become unbounded as 0.) As z 

(2.16) 

(2.17) 

larg zl 37T/2 ­

larg zl 7T/2 ­

where 8 is an arbitrary small positive constant (a convention used throughout). It should 
be emphasized that in (2.17) we have neglected exponentially small contributions (in 
Poincare's sense), and as such the error term in this asymptotic formula can be large 
near the boundary of the region of validity. Inclusion of the exponentially small terms 
will result both in an extension of the region of validity, and increased accuracy (cf. 
Exercise 13.2 of Chap. 7). 

Zeros. When 0 it is known that has an infinite number of simple positive 
zeros inO < x < and no zeros in X < 00. We denote the zeros by .• } I , such that 

(2.18) > .. > 0, 

(2.19) lim =0. 
8_00 • 

LEMMA 1. When 0, L,v(x) has an infinite number ojsimple positive zeros, denoted 
by .• say, such that 

(2.20) > ... > 0, 

(2.21) lim = O. 
s_OO • 

Proof. The asymptotic behavior of near x = 0 (see (2.1 5)) shows that the 
function has an infinite number of positive zeros. Using the Wronskian relation (2.10) 
and arguing along the lines of the proof of Theorem 7.1 of Chap. 7 we see that the 
zeros k , (s = 0,1,2, ... ) are interlaced. It remains then to show that I > 
Suppose that Iv,l( > From (2.16) it is seen that is positive for x > 
and therefore negative in in particular < O. From (2.17) it is seen 
that is positive in (0), and therefore > o. Thus the assumption 

implies 

< 0, 

which contradicts the fact that the Wronskian (2.10) is positive for 0 < x < 00. Thus 
I > I as asserted. 0 
, Asymptotic approximations for the zeros of can be derived from 

(2.14), and also from the asymptotic expansions given in § 4 (see (4.7) and (4.8». We 
now record asymptotic approximations for the zeros which can be derived from these 
results. First, consider the asymptotic behavior of the zeros as 00: from (4.3), (4.7), 
and (4.8), together with the theory of § 6 of Chap. 11, we can show that 

(2.22) = S-I/30(JI-2/3)+ 
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Behavior at the singularities z = 0, If v( > 0) is fixed and x 0+, then 

) 1/2
(2.14) . h( )( slO • 

) 1/2
(2.15) ( . h( )

SIO • 

(Note that the amplitudes of oscillation of and in a neighborhood of 
the origin become unbounded as 0.) As z 

(2.16) 

(2.17) 

larg zl 

larg zl ­

where 8 is an arbitrary small positive constant (a convention used throughout). It should 
be emphasized that in (2.17) we have neglected exponentially small contributions (in 
Poincare's sense), and as such the error term in this asymptotic formula can be large 
near the boundary of the region of validity. Inclusion of the exponentially small terms 
will result both in an extension of the region of validity, and increased accuracy (cf. 
Exercise 13.2 of Chap. 7). 

Zeros. When 0 it is known has an infinite number of simple positive 
zeros inO < x < and no zeros in x < We denote the zeros by } I , such that 

(2.18) > > > > ... > 0, 

(2.19) lim = O. 
00 

LEMMA 1. When 0, has an infinite number ofsimple positive zeros, denoted 
by say, such that 

(2.20) > > > > > ... > 0, 

(2.21) lim =O. 
• 

Proof. The asymptotic behavior of near x = 0 (see (2.1 5» shows that the 
function has an infinite number of positive zeros. Using the Wronskian relation (2.10) 
and arguing along the lines of the proof of Theorem 7.1 of Chap. 7 we see that the 
zeros (s = 0, 1,2, ... ) are interlaced. It remains then to show that > 
Suppose that > 1( > From (2.16) it is seen that is positive for x > 
and therefore negative in in particular < O. From (2.17) it is seen 
that is positive in and therefore > o. Thus the assumption 

> implies 

< 0, 

which contradicts the fact that the Wronskian (2.10) is positive for O<X<OO. Thus 
1> 1 as asserted. 0 
. Asymptotic approximations for the zeros of can be derived from 

(2.14), and also from the asymptotic expansions given in § 4 (see (4.7) and (4.8». We 
now record asymptotic approximations for the zeros which can be derived from these 
results. First, consider the asymptotic behaviorof the zeros as from (4.3), (4.7), 
and (4.8), together with the theory of § 6 of Chap. 11, we can show that 

(2.22) s- II3 0(p- 213 )+ 
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as uniformly for all positive integers s. Here X is defined implicitly by the 

·1
j 

equation 

I {1+(I-X
2
)1/2} 21/2(2.23) =n X -(I-X), 

and denote the (negative) zeros of the Airy function Ai (x), with the usual 
convention 

(2.24) 0> a l > a2 > .... 

For fixed s the sth zero of K;v(x) takes the simplified form 

(2.25) = 0(v- 2/3), 

as 
Next, we consider the form of the zeros for fixed as s We know that 0 

in this case; from the first two terms in the power series (2.8) we find that as s (x 0) 

-(2/ 01 } 

(2.26) k = 2 1+ e + 
{ (I + v 2 ) , 

for fixed We remark that it is not obvious that the right-hand side (RHS) of (2.26) 
is the sth zero of K;v(x), as opposed to, say, the (s+ 1)th zero. We now show that the 
RHS of (2.26) indeed represents To do so consider (2.22): this is uniformly valid 
for all integers .s, and therefore we can consider the limiting form of this expression 
as s with large blJt now assumed fixed. On employing the approximation 

(2.27) as = -(37T(4s - 1)/8)2/3+ 0(S-4/3) 

(see (5.05) of Chap. II) together with (2.23) we find that 

(2.28) ( - v-2/3 as) 2 e-( 1/ In as s 

From the definition (2.7) of and the asymptotic form (see Abramowitz and Stegun 
(1965, p. 257)) 

, 7T 
arg {[(IY)} yIn (y) 

we find that for large 

(2.29) 

Thus on comparing (2.22), (2.28), and (2.29) with the RHS of (2.26) we deduce that 
the latter represents for large fixed and s By a continuity argument this is 
true for nonlarge values of as well. 

Finally, we corresponding asymptotic forms for I' As 

(2.30) = vX( -v-2/3bs) + + O(v- I ), 

uniformly for all positive integers s. Here X is again given by (2.23), and I 

denote the (negative) zeros of the Airy function Bi (x), in ascending order of absolute 
magnitude. 

For fixed s and 

(2.31) = 0(v-2/3). 

For fixed and s 

.1 } 
(2.32) I = 2 1+ e + .

{ (I + v 2 ) 
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3. Unmodified Bessel functions of purely imaginary order. Standard solutions of 
the unmodified Bessel equation 

2 
d w Idw ((3.1)	 -+--+ 1-- w=O
dz2 Z dz Z2 , 

are the Bessel functions of the first and second kinds (z), (z), and the Bessel 
functions of the third kind (Hankel functions) The characterizing 
properties of these functions are the following: . I 

(0	 (z) is recessive at the regular singularity z when Re > 0 or = 0, and 
moreover is real on the positive real z axis wheq real. 

(ii)	 (z) is real for positive z and real and for large positive z has the same 
amplitude of oscillation as and is out of phase by 

(iii) For all is recessive at infinity in the sector arg - and 
is recessive in the conjugate sector. 

Thus, when is real and nonnegative, and are a numerically satisfactory 
pair on 0 < x < and when Re > 0 or = 0, and are a numerically 

pair the sector arg (z), being the numeri­
cally satisfactory pair in the conjugate sector. 

When arg = no solution is recessive at the origin, and the Hankel functions 
and compose a numerically satisfactory pair throughout larg 

However, these functions, as well as and are not real on the real z axis 
when their orders are purely imaginary. We therefore now introduce two new Bessel 
functions that are real when z x is positive and arg = and moreover are 
numerically satisfactory when x and are not both small. We define 

(3.2)	 (z) = + 

(3.3)	 (z) = 

From the relations = = where bars denote com­
plex conjugates, it is readily verified that F;v(x) and Oiv(X) are real for x> o. (Note 
that Fo(z) =10 (z) and Oo(z) = Yo(z).) Also, from the following alternative representa­
tions, which can be derived from standard results (see, e.g., (4.12), of Chap. 7) 

(3.4a)	 = sec + (z)}, 

(3.4b)	 cosec 

it is seen that cos and sin satisfy the same recurrence 
relations as namely (2.3) with 11-'-I(Z), II-'(z), replaced by 

respectively. 
We now record other properties of and 
Analytic continuation. For any integer m
 

(3.5) = cos (z) + i sin tan /2) (z), 

(3.6) 0l-'(z em"i) = i sin cot (J.L7T/2)FI-'(z)+cos (mJ.L7T)0I-'(Z). 

Connection formulas. 

(3.7)	 = = 
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Power series representations. For purely imaginary order and positive argument 
we have 

)1;2 

. I cos In 
s![(//)(1+v2)···(s2+ v 2)]'/2 , 

­
1T 

) 
.. ) 

' 

where is defined by (2.7). 
Wronskian. 

= 2/( 1TZ). 

Integral representations. The Schliifli-type representations are readily shown to be 

larg zl < 1T/2, 

.
(3.12 ) e dt, larg zl < 1T/2,

21T1 

where the path of integration is indicated in Fig. 1. 
For purely imaginary order these integrals can be re-expressed as 

F" ( z ) I sech ( / 2) cos (z si nO) 
11 0 

) 

_2 sinh (/'1T/2) e sin dt, larg zl < 1T/2, 
0 

I 

I
t ----------------------­

!
-------­

: 

-,-'" ------ ---- -- --------­
I

1 I plane. 
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== 1 cosech (v1T/2) sin (z sin e) sinh de 
1T 

f" 
0 

(3.14) 
2--cosh (v1T/2) cos (vt) dt, larg zl < 1T/2.
1T 0 

Behavior at the singularities Z = 0, If (greater than zero) is fixed and x 0+, 
then 

2 tanh /2») 1/2 ,
(3.15) = {cos In x/2) )+ O(X")},( 

2 coth (V1T/2») 1/2
(3.16) {sin In( 

Note that in a neighborhood of x == 0 the amplitude of of and Gj,.(x) 
tends to 1 and respectively, as 0. 

As Z in larg zi 1T -

2 ) t 
/ 2{

cos (z-1T/4)( 1TZ Z 
(3.17) 

-sin , 

2 ) 1/2 { A
sin (z-1T/4\( 1TZ ,.0 Z 

(3.18) 

Z2,+1 ' 

where the are given by (4.02) of Chap. 7. 
From the foregoing results it is evident that and have an 

infinite number of zeros in both the x intervals and 0). A convenient 
notation for the zeros of is and where 

(3.19) > > > > > 0, 

(3.20) 1< <

with being the positive constant defined by (5.6) below. Using the same convention 
we can denote the zeros of by 1 and I' The zeros of and 

are simple and interlaced (cf. Lemma 1). 
Asymptotic approximations for the zeros can be established in a similar manner 

to those derived in 2 for the zeros of and L". (x \. For large the theory of 
§ 8 of Chap. 6 (in particular 8.5) can be applied to the uniform asymptotic expansions 
(5.15) and (5.16) (with n =0) which are given in § 5 below. We obtain the following 
asymptotic forms: 

{(4S-1)1T} .{(4S-1)(3.21 ) - Z -­+ 0 (1)- ---+ 0 (I)} 
.

(! { (4s 3) 1T} ( 1) {( 4s 3) ( 1(3.22) g = --- + 0 - Z + 0 -
J' 

as uniformly for all s. Here it is assumed that is sufficiently large to ensure that 

(3.23) 
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This ensures that none of the zeros can take the value In the Appendix we give a 
sufficient condition for (3.23) to hold, and it is seen that does not have to be very 
large for the inequality to hold (see (A6)). The function is defined implicitly by 
the equation 

(3.24)	 = (l + Z2)1/2+ In + (l Z2)1/2}' 

The corresponding approximations for and are given by (3.21) and (3.22), 
respectively, with s replaced by - s + 1. 

For fixed s, (3.21) and (3.22) can be simplified by Taylor's theorem to give 

(» T(4s-1)1T 0(1)
(3.25)	 (1+T2)1/2+ 

(» T(4s-3)1T 0(1)(3.26)	 = +­g 4(1 + T 2 ) 1/2 

as Again, on replacing s by -s + 1 in (3.25) and (3.26) we obtain the correspond­
• I f«) d «)lng Jormu as Jor an g • 

When is fixed, but still satisfying (3.23), and x 0+ we employ the first two 
terms of (3.8) and (3.9) to obtain the approximations 

0)	 } 

(3.27) f(» =2 1­ +
{ (1 + , 

0) } 

(3.28) g(» = 2 1- +
{ (1 + , 

as s Justification that these approximations represent the sth zero to the left of 
the point x = follows in a similar manner to that of (2.26) and (2.32). 

Finally, for fixed (satisfying (3.23) and we find from (3.17) that 

2 2
(» (1) 1 (411 +31)+ 1)(2811 O((3.29)	 f = s-- + s . 

4 2(4s 6(4s ' 

compare (6.03) of Chap. 7. Likewise, from (3.18) we find that 

2 2 2 
(3.30)	 (»=( + 411 +1 (411 +1)(2811 +3l)+0( 

g s 4 2(4s-3)1T S. 

4. Asymptotic expansions for modified Bessel functions of purely imaginary 
order. The modified Bessel functions ZI/2 as well as the analytic 
continuations satisfy 

2 

(4.1)	 . d w { 2 Z2 -1 1 
dz2 = 4z2 JW, 

which is characterized by having a regular singularity at Z =0, an irregular singularity 
at Z = and turning points at Z = ±1. We apply the theory of a turning point in the 
complex plane (Theorem 9.1 of Chap. 11) to obtain asymptotic approximations, for 
large in terms of Airy functions. 

The first step is to transform (4.1) to the form 

(4.2) 



2n+ I •O(p, 2n + I•I(P,

2/3 ,

2n + I•I(P.

j,,(
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which is achieved by the following Liouville transformation: 

(4.3) ,3/2(Z) =In + Z2)1/2} - (1- Z2)1/2, 

I Z2) 1/4
(4.4) = ( w(z). 

This is precisely the Liouville transformation of § 10 of Chap. II and the reader 
is referred to this section for full details. It is seen from (10.04) in Chap. 11 that 

5 'Z2(Z2+4) 
(4.5) = 4(Z2_1)3' 

In the notation of § 10 of Chap. 11 solutions of (4.2) are 
and W2n + I.I( see (9.02). (10.06). (10.07). (10.14). and (10.23) of Chap. II. It 
can be shown by induction from (10.06) and (10.07) that 

(4.6) 

and therefore for j =O. ±I. n =0, 1.2.' ..• and > 0 

W2n + IJ( = Ai (- e -2"ij/3) (-I)'
JI 

(4.7) 

Bounds on the error terms are furnished by (9.03) of Chap. II. The solutions 
above are to be identified with solutions of (4.1). First. since Z 1/2Ki ,,( and 

z2»1/4W2n+1 are solutions of (4.1) that share the same recessive 
property at z =+00 =-(0), it follows that they are proportional to one another. 
The constant of proportionality can be determined by comparing the behavior of both 
functions at z=oo, -00; from (2.16). and from Chap. 11. (1.07), (10.08), (10.14), 
(10.23). we find 

(4.8) 

a result first given by Balogh (1967). (See also Exercise 10.6 of Chap. II.) 
The identification of is similar. Both this function. regarded as a 

function of z. and the modified Bessel function K i ,,( are recessive at z = 
when /2 < arg z < 7T. (We are restricting our attention to larg zl < 7T; K,,,( is 
of course also recessive at z = in arg z < 3 /2.) It follows that there exists a 
constant c such that 

)1/4(4.9) e -"i ) = c 1- Z2 

By comparing both sides as e-"'/3 we find that 

(4.10) 

Likewise, it can be shown that 

e·-"i/ 3 ( ) 1/4 

(4.11) e"') = 1- Z2 
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This completes the identification of the asymptotic solutions (4.7). It remains to 
derive an asymptotic expansion for and to do so we employ the analytic 
continuation formula (2.5a). On setting ± I in this equation, and then eliminating 

from the resulting two equations, we derive the relation 

(4.12) (z) = . 1 (z e - (z e"")}.
2 sm 

We now replace Z by in (4.12). set = and employ (4.9)-(4.11) to obtain the 
following identification: 

1T 1/4 
= . I!J . --2

(4.13) ! 1-z 

. {elTi/3W2n+1.1(1I, ".i/3W2n + I ._ I (II. 

On employing (4.7). together with (8.04) of Chap. II, we can re-express this as 

)1/4
L - -­

- 2 • h ( ) 1 Z 2sm 

(4.14) . [ Bi (- + Bi'(

+ C2n+l, I + e + 1,_1 (ll, ] , 

an expansion that is uniformly valid for > 0 and larg zi 1T We emphasize that 
both the expansions (4.8) and (4.14) are uniformly valid in neighborhood of the 
singularity Z = O. provided jarg zi 1T - Use of (4.8) and (4.14) can be restricted to 
the half-plane larg zi 1T/2, extensions to ranges of arg Z being achieved via the 
analytic formulas (2.5a, b). 

An asymptotic expansion for is also readily derived from the foregoing 
results; from identity 

sech(II1T){ ( ([ i.. ( ) = --.- e e - e e ,
2m 

and (4.9)-(4.11) we obtain 

)1/4[
=-2

n 

Z 

t--4;-J-
(4.15) 

+ (Y)}]e I I', , 

where 

(4.16) (z) = Bi (z) i tanh Ai (z). 

Again. this expansion is uniformly valid for 0, larg zi 1T -
Finally, in this section we derive Debye-type expansions for i.e., 

expansions involving elementary functions that are uniformly valid for 
positive x. The corresponding Debye-type expansions for are well known (see, 



2E)!dT]2={V2+X(T])}0,

n(

V2 (S_Jl_I BJ(?)=

n (v,T])=e

142(,
i
(?)

1/ 2

n
)

2-lf 1/40 n (v,
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e.g., Magnus, Oberhettinger, and Soni (1966, p. 141)). The following expansions are 
not valid near the turning point x = 1, and therefore we must consider the .x intervals 

separately. 
First, consider the case x < 00. On applying the Liouville transformation 

to (4.1) (with z replaced by x), we obtain the transformed equation 

(4.17) 

where 

'(t 2 -1)112
(4.18) 1)(x)= dt=(x2-1)1/2- sec I(X),f

I r 

(4.19) dx) 1/2 W (X) = x- 1/2(X 2 - I) \/4 W (X), 

x 2 (4+ x 2 
) 

(4.20) 4(x2-1); 

see § 2.1 of Chap. 10. On applying Theorem 3.1 of Chap. 10 we obtain the following 
solution of (4.17): 

V,(q)
(4.21 ) (-I) 

s 

where 

(4.22) q=(X 2_1)-1/2, 

(4.23) Vo(q) = I, 

(4.24) l(q) = 1) Vs (t)(5t 2+ I) dt (5 I). 

A bound for is furnished by (3.04) of Chap. 10; for our purposes it suffices 
to observe that 

= 

as 00, uniformly for x < 00. It is possible to carry error bounds throughout 
the following analysis, but we will not pursue this. 

Since both and are recessive as x-+oo it follows that they are 
multiples of one another. By comparing both functions as x we find that 

(4.25) = (1T!(2v))1/2 

Next, on identifying the left-hand side (LHS) of (4.25) with (4.8), employing 
asymptotic expansions for Ai (x), (x) of large positive argument (see Chap. 11, 
(1.07)), and equating coefficients of we arrive at the following relations for each 

(-I -2(s- +
(4.26) 

l

. L V ,(q),2

-2('-ji - +
(4.27) 

\

(-I IJBj = V2s + 1(q), 



iv (
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where	 Uo = Vo = I and 

u = (2s + 1)(2s + 3)(2s + 5) ... (6s -1) (6s + 1) 
vs = (s 1). 

s ' (6s-1) Us 

We now in a position to derive a Debye-type asymptotic expansion for 
for x> 1. From (4.14), (4.26), and (4.27), together with (1.07) and (1.16) of Chap. 11, 
we have for 1+ x < and 

1/2 V. ( )	 o
(4.28)	 . e (X2_1)-1/4

( ) smh (V1T) s=o 

where q, and Vs(q) are given by (4.18) and (4.22)-(4.24). In a similar manner 
we can show that for 0 < x I 

1/2 
2

vx) ( ) sinh (V1T) (1- x )-1/4 

. V2s (iq)(4.29)	 . [ -sm - 1T 4 v2s 

iV2s+ 1
+cos -1T/4) V2s+1 , 

where 

(4.30) 

(4.31) 

5. Asymptotic expansions for unmodified Bessel functions of purely imaginary 
order. The unmodified Bessel functions and 
Zl!2 vz) satisfy the equation 

(5.1)	 d2W={_V21+Z2 __I_}w 
dz2 Z2 4z2 , 

which is characterized by having a regular singularity at z = 0, an irregular singularity 
at z = and turning points at z =±i (where the results of § 4 are applicable). 

We restrict our attention to the half-plane larg zl < 1T/2, with 0, and apply the 
Liouville transformation of § 7 in Chap. 10. The effect of this transformation is to 
throw (5.1) into the form 

(5.2) 

where 

(5.3) = (I + Z2)1/2+ In + Z2)1/2}' 

I + Z2) 1/4
(5.4)	 W(z),( 

z2(4- Z2)
(5.5) =4(1 + 

Before proceeding further let us introduce a constant defined by 

(5.6)	 = ('To _1)1/2, 
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2,+I(P)

1009 

.. 

I . 

BESSEL FUNCTIONS OF IMAGINARY ORDER 

where TO is the positive root of the equation coth To = To; from Exercise 8.1 of Chap. 
10 and (5.3) it is seen that Z = T is the point that is mapped to = 0, i.e., 

(5.7) = 0 (T = 0.6627 ... ). 

On applying 3.1 of Chap. 10 to the transformed equation (5.2) we obtain 
the following solutions: 

W ( I V, (p)(5.8) =e 
1=0 

(5.9) 

where 

(5.10) 

and the coefficients are given by (7.10) of Chap. 10, and are related to the 
of the previous section by 

(5.1 1) ( p) = ( - V, ( ip) (s=O, 1,2,"')' 

Our choice of reference points for the solutions is a, = + a2 = - with these 
choices the error term En.' is bounded by (3.04) of Chap. 10 for all points in larg zi 
except those on the finite interval z = 0 1, and at z = i, with the corresponding 
bound for E n .2 being valid in the conjugate region. 

We now identify the solutions (5.8) and (5.9) with Bessel functions. First, we see 
that for some constant c] 

(5.12) 

since both functions are solutions of Bessel's equation and share the same recessive 
property as z + ico. By comparing both sides as z + ico (see (4.03) of Chap. 7) we 
find that 

(5.13)
 

Likewise we find that
 

(5.14) = (2/ 1/2 e + Z2) -1/4 Wn.2( 

Asymptotic expansions for and G i ,.( are now obtainable from the above 
expansions and the relations (3.2) and (3.3): for > 0, larg zi < we have 

. 

(5.15) 
. ( /4)+ sIn 1 

+ 1 { +e £2n+I.1 e E2n+I.2 , 



_
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(5.16) 
_ 

cos 

+ 1 { -; /4-2' eI 

/4) (-00U2 .+1(p)
1T 20+1 

0=0 

i /4
£2"+11 -e £2"+12 . . • 

Asymptotic expansions for and can also be obtained in a similar 
manner. Note that the above expansions are uniformly valid in a neighborhood of 
z=O, provided for (5.12), for (5.14), 
and largzl;21T/2-fJ for both (5.15) and (5.16). 

6. Auxiliary functions. For differential equations of the type (l.l), with (1.2) 
applying, asymptotic solutions will be obtained involving Bessel functions and modified 
Bessel functions of purely imaginary order. In order to construct error bounds it is 
necessary to define auxiliary weight, modulus, and phase functions for these functions, 
as Olver did for the corresponding problem of Chap. 12 (see § 1.3). 

First we define auxiliary functions for and Let x = be the largest 
positive root of 1 • 

(6.0 

Since the LHS of (6.0 is negative as x and positive at x = (see (2.16), 
(2.17), and (2.20», it follows that 

(6.2) < < 

We now define a weight function by 

(6.3a) 

(6.3b) = 1/2 X <00). 

From the definition above it is seen that is a positive continuous function of 
x, and moreover is nondecreasing, as can be seen from the equation 

1T
(6.4) 

dx sinh 

which can be, derived by differentiating (6.3b) and employing (2.10). 
Having defined a weight function we now introduce modulus and phase functions; 

we define them by the relations 

(6.5a) = sin 

(6.5b) = cos 

or explicitly 

= 
(6.6a) 

= -tao-I {Ki~(X)/Li~~l.)L (0 < 

I 



v

2

2
-

2
)
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(6.6b) 

the branch of the inverse tangent chosen so that is continuous for 0< x < 
On differentiating and using (2.10) we find that 

d8(I)(x)
(67)"	 >0 

. sinh 

and therefore as x decreases from to zero, decreases monotonically from 
to -00. This fact, together with (2.20), (6.2), and (6.5a, b), shows that 

(6.8)	 . = = -(s 

For fixed 0, the following asymptotic behavior of the auxiliary functions can 
readily be derived from the definitions above and the results of § 2. 

As 
1/2 

(I)(6.9) (x) ( . h ( )) , 

as 

(I» (I) ( ) 1/2(6.10) (x -(' h( »1/2' (x)- . h( ) .X

Next, we must introduce auxiliary functions for the derivatives of the modified 
Bessel functions. We define 

(6.11)	 = sin 

(6.12)	 = cos 

giving 

(6.13a)	 = 

(6.l3b) = tan-I 

= 1/2(6.14a) 
Kj,,(X )Lj,,(x) 

(1)( ) t -I(6.l4b) x = an ,

The branches of the inverse tangents are chosen so that is continuous for 
o<x<oo with as From the following equation (which can be 
deduced from (2.1), (2.10), and (6.11)-(6.13»: 

_ 

- sinh 

it is seen that is monotonically decreasing for 0< x < where = min 
The asymptotic behavior of is as follows. As 

(6.15)	 ) 1/2.
 
x 1T)
 

1/2 

(6.16)	 N(I)(x)-
( x sinh ) .
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Auxiliary functions for the unmodified Bessel functions and are 
defined in a similar manner. These functions are oscillatory, of bounded amplitude, 
throughout the x interval (0, and as such a weight function does not strictly need 
to be introduced. However, although the amplitudes of both functions are equal for 
large this is not the case when is small; near the origin the amplitudes of the two 
functions are quite disparate as (see (3.15) and (3.16». Thus, to sharpen sub­
sequent error bounds, we introduce a weight function for that is 
continuous in x and decreases monotonically from the value coth /2) at x = 0 to 
unity at x = Our choice, one of the simplest, is 

l+x 
(6.17) E(2l(X) = -----­

tanh /2) + x
 

We now introduce modulus and phase functions in the usual manner. We define
 

(6.18) = cos 

(6.19) G (x) = sin 

so that 

(6.20) = , 

2 ) (2)( ) -1 { } '.,(6. 1 x - tan )(x)F;.(x)' 

On differentiating (6.21) and employing (3.10) we arrive at the equation 

= F I-tanh 
dx (tanh + x)(l + x) 

From (3.15 )-(3.18), therefore. it is seen that dx is positive for both sufficiently 
small and sufficiently large x, for each fixed positive value of is thus 
monotonically increasing for large x, and with this fact in mind we define the branch 
of the inverse tangent in (6.21) so that is continuous for 0 < x < and also 

(6.22) 

The asymptotic behavior of is as follows. As x 0+ 

(6.23) 

As 

(6.24) 

Finally, we define modulus and phase functions for the derivatives of and 
by 

(6.25) = cos 

(6.26) = sin 

or explicitly 

,2 X(G'( »)2}1/2(6.27) (x)= { , 



2P;y(x)O;y(x)(l-tanh

y

2D;_1(O+

l/2 1/2{I/I(t)Cs (t) 2D:_ 1(t)}

V

2
+

2
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(2)()_ { }( )6.28 x -tan 

The derivative of (6.28) can be shown to be 

dW(2)(X) 

(6.29) 
2(x2+ v2) (V7T)) 

= 
7TX (tanh (v7T/2)+x)(l+x) , 

and since the product is GO/x) as x it follows that dx is 
positive for sufficiently large x. The function w is thus monotonically increasing 
as and therefore we can define the branch of the inverse tangent of (6.28) so 
that is continuous for 0 < x < with the stipulation that 

(6.30) 

The asymptotic forms of are 

(6.31) 1/2 as 

2 ) 1/2
(6.32) TTX( 

7. Asymptotic expansions for solutions of a differential equation with a large para­
meter and a simple pole. We now turn our attention to differential equations of the form 

(7.1) d2W= {U 2 
_ 1+ W 

' 
where and v are positive parameters, and is analytic in some interval [0, 
where is positive (and possibly infinite). Our task is to construct asymptotic solutions 
for (7.1) for large u, analogous to those of Olver, who in Chap. 12 considered the 
complementary problem where the coefficient of is greater than or equal to 

We start by the comparison equation to (7.1): 
2

d W {U2 
(7.2) = 

which has exact solutions where denotes or or any linear 
combination of the two. These solutions are in fact the first tenns in asymptotic 
expansions of solutions of (7.1); we seek fonnal series solutions of the form 

(7.3) . 
• =0 U U .=0 U 

On substituting the series above into (7.1) and comparing like powers of u we 
find that the series fonnally satisfies the equation if both 

(7.4) - - = 0, 

(7.5) + + - =0. 

These two equations can be integrated to give the following two recursion relations 
for the coefficients: 

(7.6) = + - dt, 



s+ 1(') s (')

ip (U,I/2)
p
(U,I/2)

~

A
o.,

o,,(t/2
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(7.7) = f
Without loss of generality we set = 1. Since, by hypotheses, is analytic, so 
too are the coefficients C Ds in interval [0, (see Chap. 11, Lemma 7.1). 

Before we state our theorem on error bounds, let us define certain constants that 
appear: 

(7.8) A\l)( = sup 

(7.9) =sup 

(7.10) = sup 

where 

= 2 sinh / 

each supremum being taken over the finite x interval (0,00). It is readily shown that 
each exists and is finite for every positive value of 

THEOREM 1. With the conditions stated at the beginning of this section, (7.1) has, 
for each positive value of u and v and each integer n, the fcllowing two solutions, which 

(
are repeatedly differentiable in interval (0, 

( 
W2n +I,I(U, = 

s=o u u (
(7.11) 

e 
e 

(u r) = r l /2L (Url/2) L' (u rl /2)
2"+1.2 25 

(7.12) 
a 

where 

le2n+I.I(U, lae2n+I,I(u, 

exp {(7.13) 

D n 

U2n + 1
 

le2n+I,2(U, /ae2n+I,2(U, w 
1/2 + 

(l)(v) }
(7.14) exp _Iu-

D n (7 
U 2n + 1 

The derivation of these error bounds is similar to that of Theorem 4.1 of Chap. 12, 
and details will not be included here. 

s=o U U 



jp jp ,

jp (x
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It remains to construct asymptotic solutions for (7.1) in the interval (a, 0), where 
a is negative (possibly infinite) constant. On replacing' by in (7.3) it is readily 
verified that formal series solutions of (7.i) are given by 

.=0 u 
(7.15) 

u u 

where denotes or or any linear combination of the two. The coefficients 
and here are understood to be the analytic continuations across 0 of 

those satisfying (7.4) and (7.5); thus (7.7) still holds, and (7.6) is replaced by 

(7.16) =- + Itl- I/2{ C.(t) - t)/2 + Jl2 tn dt. 

As before, we introduce three constants that appear in subsequent error bounds. 
We define 

(7.17) JI) = sup »2}, 

(7.18) =sup 

(7.19) JI) = sup n, 
each supremum being taken over the x interval (0, again, it is readily verified that 
each supremum exists and is finite for every positive value of JI. 

We may now state the following theorem concerning error bounds. 
THEOREM 2. With the conditions stated at the beginning of this section, (7.1) has, 

for each positive value of u and and each integer n, the following two solutions, which 
are repeatedly differentiable in the interval (a,O): 

(7.20) 

(7.21) 

where 

le2n+I,3(U, lae2n+I.3(U, 

1/2 + 

(7,22) exp { } 

U2n + 1 



aC2n+I,4(U,0/a;1
1/ M~2)(ul;II/2)'

(2)(V)

a,,(I;II/2Do(0)

1/ D.(O

.
2n + 1,I(U,O

2n + I •3(U,O

2n + I ,2Cu,

r
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\C2n+I,4(U,01 
1/2 +

}
(7.23 ) exp _Iu-

1/2
U 2n + 1
 

Final remarks. (i) We have assumed that is infinitely differentiable in (a, f3). 
If we do not require asymptotic expansions for solutions of (7.l), but just a finite 
number of terms in the approximations, the requirement of analyticity of can be 
relaxed to that of finite differentiability. 

(ii) Since we have derived explicit error bounds on the approximations, it has 
not been necessary to impose any restrictions on the dependence of on u, other 
than that it be a continuous function of u; if the dependence of on u adversely 
affects the asymptotic validity of an approximation it will be reflected in the error bound. 

(iii) To facilitate identification of solutions it is desirable that the asymptotic 
solutions be uniformly valid on the intervals (-00,0) and (0,00). For 
this it is necessary that the variations of (s =0, 1,2, ... , n) converge at 
; = ±OO. Sufficient conditions for this to be true are given in Exercise 4.2 of Chap. 12. 

(iv) The error bounds can be used to deduce the asymptotic behavior of the four 
solutions, both respect to the independent variable ; and the asymptotic variable u. 
For instance the solution is seen to be recessive as ; f3, a property that 
uniquely characterizes the solution if f3 =00. Likewise, the solutions W2n + I ,2( U, and 

can be identified by their behavior as (with the aid of (2.15) and 
(3.15», and W2n + I ,4(U,0 can be identified by its behavior as ; a. 

Finally, consider the asymptotic behavior of the four solutions as u 00. If the 
variations in the error bounds are bounded functions of u then, in the manner of § 5.2 
of Chap. 12, it can be shown that the RHS of (7.3) provides a uniform compound 
expansion of W2n + I,I(U, and for K and L, respectively, to 2n + 1 
terms. A similar argument holds for (7.15). The existence of solutions that are indepen­
dent of n and have the infinite series (7.3) or (7.15) as compound asymptotic expansions 
may be established by the method of § 6 of Chap. 10. 

Appendix. We investigate how large should be to ensure that (3.23) holds. First, 
we observe that 0) is bounded by 

(A.l) 1 0) <2cI,1 ( = exp , 

where 

(A.2) 

and p is given by (5.10). The bound (A.l) corresponds to (7.14) of Chap. 10, the only 
difference being that the reference point for is = ioo, and that the path of 
integration A must be an path linking = ioo to = 0, or correspond­

2ingly p = 0 to P = (l + T ) -1/2. (For a definition of a progressive path, see p. 222 of 
Chap. 6.) 

Our of A is as follows. For large positive R let r R be the path linking 
= iR to = 0, consisting of the union of a circular arc from = iR to = R with a 

real segment from = R to = O. It is seen that r R is an -progressive path. The 



~
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(0 ) 

(R ) 

FIG. 2a. Path r R in plane. FIG. 2b. Path in p plane. 

corresponding path in the p plane, links p =PR to P = (l + T 2
) -1/2, where PR = 

R +O(iR-2
); see Fig. 2a, b. We take our variation path A to be the limit of r R as 

R Tn the P plane the S'-path A corresponds to the real segment 0 P (l + T 
2

) -1/2; 

note that can neglect the contribution to the variation from the vanishingly small 
arc near P = O. 

Thus with our choice of 

2II-Sp 1 2-3T
(AJ) VI) =

1 

dp = 3/' = 0.009]
8 1 + ) 

Now, since the RHS of (A.I) is a monotonically decreasing function of v, it follows 
that it is bounded above by 1/ if 

(A.4) 

where Va is the root of the equation 

(A.5) Vo = (Va = 0.4506 ... ). 

By symmetry V, 0)1 is also bounded above by ] / if (A.4) holds, and so, III 
conclusion, we have shown that a sufficient condition for to hold is for 

(A.6) 
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