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Energy eigenvalues have been calculated for square and rectangular quantum wires with finite bar-
rier potential of GaAs/GagesAlys7As and Gag47Ing 53As/InP systems, by expressing the wave func-
tion in terms of a two-dimensional Fourier series. Calculated values are compared with those ob-
tained carlier by using the finite element method and by using equivalent circular or elliptic wires.
Experimental values of the energy shift of Gag47Ings3As/InP wires are also compared with the cal-
culations.

1. Introduction

Quantum wires in which the electron motion is confined in two directions have been
receiving much attention. It has been predicted that transistors and lasers made with
quantum wires will have better performance characteristics [1 to 3]. Attempts have been
made therefore to realize experimentally quantum wire structures. Some success has
been achicved by using the technique of electron beam lithography [4] and etching, and
also by using the technique of selective growth on SiO; patterned substrates [5]. Quan-
tum wires with rectangular geometry have been obtained by the former technique [6]
while wires of triangular cross-sections have been obtained by the latter technique [7].
The observed blue shift in the energy levels has been considered as evidence of two-
dimensional confinement. Agreement of the calculated value of energy with experiment
has been reported in both cases. However, no details of the method of calculation and
material constants have been given.

The experimental quantum wires have been made by using either Gaga7IngszAs or
GaAs as the well material. The wire has been covered by InP in the case of Gag47Ings3As
wire and by GaggzAlgsrAs in the case of GaAs wire. The barrier potential in both cases
is of the order of 250 meV. Energy eigenvalues are significantly altered for finite barrier
potential, but the Schrodinger equation cannot be solved analytically for wires of square
or rectangular cross-sections when the barrier potential is finite. An analytic solution
may, however, be obtained for circular or elliptic cross-section by using Bessel or
Mathieu functions. The present authors reported such solutions for GagarIngszAs/InP
wires in [8]. The solutions were used to estimate the energy eigenvalues for wires of
square or rectangular cross-sections by assuming that the values are identical to those
for the circular and elliptic cross-sections having areas equal to (0.96)% times the cross-
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sectional areas of square or rectangular cross-sections. The factor of (0.96)% was obtained
by considering the solutions for wires of infinite barrier height. The calculated values of
energy shift, however, differed considerably from the experimental values.

The Schrédinger equation for quantum wires of rectangular cross-sections and finite
barrier potential may, however, be solved numerically. Shertzer and Ram-Mohan [9]
calculated the energy eigenvalues for electrons and holes in GaAs/GaggzAlyszAs quan-
tumn wires by using the finite element method. Notomi et al. {4] expressed the wave func-
tion as a linear combination of the functions for a two-dimensional well in one dimen-
sion and obtained a differential equation for the expansion coefficient in the other
direction. Eigenvalues were obtained by solving the differential equation. Gershoni et al.
[10], on the other hand, obtained the energy eigenvalues for electrons by using a two-
dimensional Fourier series for the wave function and compared these values with those
obtained from photoluminescence excitation spectroscopy in Gag47Ing 53 As wires.

We have used the method suggested by Gershoni et al. [10] to calculate the energy
shift of the photoluminescence peak in rectangular Gagg7IngssAs quantum wires for
comparison with the experimental results of Notomi et al. [4]. We have calculated also
the values of energy levels in rectangular GaggsAlgszAs/GaAs quantum wires by this
method for comparison with the results reported by Shertzer and Ram-Mohan [9].

Calculations have also been done to find out if the eigenvalues for rectangular or
square wires may be estimated from the results for elliptic and circular wires with an
equivalent cross-sectional area [8]. It should be mentioned that the incorporation of the
energy dependence of the effective mass is not easy for the numerical methods but such
incorporation may be easily done in analytical methods [8]. The effect of energy band
nonparabolicity in square or rectangular quantum wires with finite barrier may be esti-
mated for the square or rectangular wires from the analytic solutions for equivalent
circular or elliptic wires.

The method of solution is briefly outlined in Section 2 and results are presented in
Section 3. Implications of the results are discussed in the concluding section.

2. Theory

Energy eigenvalues for the rectangular quantum wire of dimensions L, and L, are re-
quired to be obtained from the Schrédinger equation in the envelope function approxi-
mation [11] as

—(1?/2mo) [V(1/m™(z, y)) V] F(z, y) + V(z, y) F(z, y) = EF(z, y), D

where m*(x, y) represents the effective mass of the carrier for different values of z and
y. It is equal to myy, the effective mass of the well material in the well region and equal
to the effective mass for the barrier material mg in the barrier region. V(z, y) is the
potential as a function of z, y. It is equal to zero in the well region and equal to V3, the
barrier potential, in the barrier region. F is the energy eigenvalue. The wave function
F(z, y) may be expanded in a two-dimensional Fourier series with periods of L, and L,
in the z and y directions, respectively. The values of L, and L, are chosen arbitrarily
but should be significantly large so that the actual wave functions become insignificantly
small for these values of z and y. In practice their values are chosen to be such that the
eigenvalues do not change significantly when their values are increased.
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Accordingly, the wave function is written as

Flz,y) =3 am@u, = 2 Gm sin 7T <}— — i) sin ma (l - i) , (2)
ILm i,m 2 LI 2 Ly
Lm=1,2,3....

For the evaluation of the energy eigenvalues, the wave function, as assumed above, is
substituted in the Schrodinger equation. The equation is then converted to a matrix
equation by using the orthonormality property of the constituent functions. The matrix
equation 1s,

(Alml’m’ - Eall’émm’) ¢lm = 0’ (3)

where the matrix element Ap,ppy is given by

Li Ly
R T 1 1 717'd(oc)ol’(m)
Alml’m’ - _1‘ _1_' - T J J M _____(pl’m’ Y dz dy
2mg {mp my Mmw dz dr
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e d de!
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3 2
L Ly
2 2
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L L
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I #0, I # 0 only for | = I, m = m/, for other combinations of /, I, m, m' L =0, [, =0.
@),y can be obtained by putting I, m’ in place of [, m respectively in the expression

of Pim -
Eigenvalues for the matrix are then obtained by using the IMSL software.
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Table 1
Energy eigenvalues in square and rectangular quantum wires
material dimension  energy levels (meV)
(nm?) —
conduction electron heavy hole light hole
a b a b a b
GaAs/GaggsAlysrAs 5% b 155.2 155.3 46.57  46.5 110.63 110.7
10 x 10 63.47 63.5 15.03 151 46.02  46.0
10 x 10 111.2 1111 31.0 30.9 79.77 798

a: present calculation, b: Shertzer and Ram-Mohan [9].

3. Results

To judge the accuracy of the method, calculations were first done for GaAs rectangular
quantum wires for which calculated values obtained by the finite element method were
reported earlier [9]. In Table 1 are presented the energy eigenvalues for rectangular
GaAs wires calculated by using the following parameter values:

Conduction electron: my = 0.0665mg, mp = 0.0858my, Vg =276 meV; light hole:
my = 0.0905mg, mp = 0.1107mgy, Vg =184 meV; heavy hole: mw = 0.3774my,
mp = 0.386bmy, Vg = 184 meV.

It is seen that our calculated values are almost the same as those obtained by Shert-
zer and Ram-Mohan [9] by using the finite element method.

In Table 2 are presented the energy eigenvalues of Gag.a7IngssAs/InP for square or
rectangular quantum wires. Calculations were done with the following values of physical
constants:

Conduction electron: mw = 0.042my, mp = 0.079my, V5 =240 meV; heavy hole:
mw = 0.47mgy, mp = 0.61lmg, Vg = 370.6 meV.

Values calculated by Gershoni et al. [10] for rectangular wires are also quoted. Also,
energy eigenvalues for cylindrical and elliptic quantum wires with a cross-sectional area
equal to (0.96)? times the area of the corresponding square or rectangular wire are giv-
en.

Table 2
Energy eigenvalues in squarc and rectangular quantum wires
material dimension energy levels (meV)
(nm?) -
conduction electron heavy hole
a b c a c
Ga[)_47IIlU_53AS/IIlP 5x b 162.4 163.8 43.4 44.3
10 x 10 76.0 77.5 13.1 13.2
20 x 20 28.1 28.4 3.6 3.63
10x 5 1215 160.0 103.0 28.3 22.7
25%x 5 96.0  105.0 229

a: present calculation, b: Gershoni et al. [10], ¢: equivalent cylindrical or elliptic quantum
wire
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Fig. 1. Energy shift for rectangular Gap4rIngszAs/InP quantum wires with a smaller dimension
5nm and different larger dimensions. O experimental points obtained by Notomi et al. [4], & and
0; experimental points obtained by Ils et al. [5]; the solid line gives the calculated values

We find that the values for the circular wires agree to within 2% with the values
obtained for the corresponding square wires. We may hence conclude that the energy
eigenvalues for square wires may be estimated quite accurately from the values for circu-
lar wires with the equivalent cross-sections as was done in [8].

The value for the elliptic wire is, however, found to be significantly lower than the
corresponding rectangular wire. This difference may be due to the fact that the eigenva-
lues of the elliptic wires were calculated with a limited number of Mathieu functions. It
may also indicate that the numerical factor for the equivalence does not apply to rectan-
gular wires with finite barrier potential. Values calculated by Gershoni et al. [10] are
also found to be about 20% higher than those obtained by us. As the values of physical
constants (particularly the band offset) used by Gershoni et al. [10] are not given, we
cannot comment on this difference.

The energy shift in a rectangular Gag 47Ings3As/InP wire calculated with physical cou-
stants given earlier are presented in Fig. 1. For comparison with the experiments of
Notomi et al. [4] and of 1ls et al. [5], the dimension of one side was taken 5 nm and the
dimension of the other side was varied from 8 to 50 nm. In Fig. 1 are also presented the
experimental points of [4, 5. We find that our results are close to the experimental
values [4, 5]. It should, however, be noted that there is a large amount of scatter in the
experimental results [4, 5]. For some wire widths the experimental values of energy shifts
differ by a factor of two or more. Our calculated values for a wire width larger than
20 nm agree with the average values. However, for widths less than 20 nm the calculated
values are significantly lower. The effect of band nonparabolicity has not been included
in our calculations. However, the band nonparabolicity increases significantly the energy
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eigenvalues and the increase is larger for electrons than for heavy holes. Inclusion of the
effect of nonparabolicity will therefore increase the value of energy shift particularly for
dimensions of the order of 3 to 10 nm, and bring the calculated values closer to the
experimental points.

4. Conclusion

We may conclude from the present study that the method of calculating the energy
eigenvalues for square or rectangular wires by expressing the wave function as a two-
dimensional Fourier series gives results identical to those obtained by the finite element
method [9]. It is also found that energy eigenvalues for a square wire may be estimated
from those for an equivalent circular wire [8]. However, for a rectangular wire the values
are significantly different from those obtained for an equivalent elliptic wire by using
only two Mathieu functions [8]. The energy shifts in rectangular GagarlngszAs/InP
wires are found to be close to the experimental results.
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