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A quantum-mechanical theory of the electron-(long-wave optical) phonon interaction in dielectric 
bilayer systems is developed. The operator describing the interaction between an electron and the 
phonon modes of the bilayer system is calculated including the electronic polarizability. All 
polarization eigenmodes together with their dispersion relation are derived and discussed. The 
dispersion curves of the surface phonons are calculated and presented for various cases in graphical 
form. The interaction of electrons outside and inside the bilayer system is studied and the coupling 
functions are calculated and discussed and they are shown in graphical form. 

Es wird eine quantenmechanische Theorie der Elektron-(langwellig-optischen) Phonon-Wechsel- 
wirkung in dielektrischen Doppelschichtsystemen entwickelt. Dabei wird der EinfluB der elek- 
tronischen Polarisierbarkeit auf die Struktur des Hamilton-Operators der Wechselwirkung der 
Elektronen mit den Phononen beriicksichtigt. Es werden alle Polarisationseigenmoden und die 
dazu gehorenden Dispersionsrelationen abgeleitet und diskutiert. Die Dispersionskurven der 
Oberflachen-Phononen werden fur verschiedene Falle berechnet und graphisch dargestellt. Die 
Wechselwirkung von Elektronen, welche sich innerhalb und aul3erhalb des Doppelschichtsystems 
befinden, wird untersucht und die Kopplungsfunlrtionen werden fur verschiedene Falle berechnet 
und graphisch dargestellt. 

1. Introduction 
In the last few years the interest in the investigation of surface properties of condens- 
ed media and of thin layer properties has been highly increased. Thereareseveral 
reasons for it : (i) surfaces are always present in real samples and (ii) due to the very 
large scale integration in microelectronics surface properties are of great importance. 
Therefore, experimental and theoretical investigations in the field of surface physics 
are in direct relation to microelectronics, optoelectronics, and other modern applica- 
tions. 

Solid state surfaces as well as interfaces between two media are connected with a 
variety of interesting phenomena. On the one hand their existence results in completely 
novel effects and, on the other hand, the properties of the bulk are changed. In 
finite crystals the electrons can couple with lolzgitudinal phonons and with surface 
phonons. The investigation of the latter interaction is easier when the effect of retarda- 
tion connected with surface modes is neglected. The effect of electron-phonon inter- 
action results from the sum over all wave vectors, while the effect of retardation on 
surface modes is limited to small frequencies (wave vector of the light in the FIR 
IqI = lo5 m-l, dimension of the first Brillouin zone IqI ‘v 1O1O m-l). Therefore, the 
approximation neglecting retardation effects yields good results. Is the electron (or 
an ion) out of the medium an interaction takes place only with the surface modes. 
This effect is important for various surface spectroscopic experiments as for instance 
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EELS and XPS. In  layered semiconductor devices the understanding of the interaction 
of conduction band electrons with long-wave optical phonons is of great importance. 
The new developments concerning heterostructures and superlattices on the basis of the 
polar ArrrBV semiconductors increase the interest in the understanding of the electron- 
phonon interaction. The electron-phonon interaction plays an important role to 
understand the quasi-two-dimensional electron system which foims the space charge 
layer in such novel devices. 

Firstly electron-phonon interaction in a dielectric layer was considered by Lucas 
et al. 113 followed by works of Wang and Mahan [ 2 ] ,  Evans and Mills [3], and others. 
The electronic polarizability was taken into account firstly by Licari and Evrard [4], 
the electron-phonon interaction in a bilayer system without it was studied by Lenac 
and Sunjid [5]. In fact, this electronic polarizability plays an important role in the 
interaction operators and can give a large contribution to their magnitudes. For 
instance in an infinite extended dielectric medium the strength of electron-phonon 
interaction is proportional to (l/cm - l / ~ $ ) l / ~ .  Neglecting the electronic polarizability 
( E ~  = 1) in a ArrrBV semiconductor the strength of interaction is overestimated by a 
factor of eight. 

In our work a bilayer system composed of two dielectric media (ionic crystals or 
polar semiconductors) is studied. The importance of bilayer systems is given by the 
fact that they are often practically realized. Moreover the bilayer system serves as a 
model for multilayer systems. For such a bilayer system we have developed a quan- 
tum-mechanical theory of electron-phonon interaction (in the long-wave approxi- 
mation) taking into account the effect of electronic polarizability. The latter is non- 
trivial for a bilayer system because the electronic polarizability enters the interaction 
operators in a complicate manner. Moreovei the orthonormalization relation of the 
surface polarization eigenmodes is changed. 

2. Polarization Eigenmodes of the Bilayer System: Long- Wave Optical Phonons 

2.1 Equation of motion and polarization eigenmodes 

We consider bilayer systems (Fig. 1) composed of diatomic ionic crystals or polar 
semiconductors consisting of one pair of positive and negative ions per Wigner-Seitz 
cell. 

Because our interest is directed to long-wave optical modes we use the continuum 
model. In this case we can write the displacement of the positive and negative ions as 
u+(z, t )  and u-(a, t ) ,  respectively. The equation of motion for the displacement of the 
ions in the n-th layer (n = 1,2)  is given by 

vacuum 

x3 = a 

x, =O 

x3 = -b 
vacuum Fig. 1. Bilayer system geometry 
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where u’ and u- are the displacement of the positive and negative ions, respectively, 
mi and m i  are the mass of the ions in the Wigner-Seitz cell of the n-th layer, e: is the 
effective charge of the ions, f n  the short-range force constant (excluding the long- 
range Coulomb fields), and E+Ioc and E-loc are the local fields at the positions of the 
ions. Equation ( 2 )  yields two parts of interaction between the ions: a short-range part 
(- fn(u+ - u-)) and a long-range part (- e~i!PoC). For the short-range part only the 
harmonic interaction is taken into account. In each layer the short-range force 
constant is considered to be equal inside the layer and at the surfaces of the layer. 
Then the geometry of the problem is taken into account only by the long-range part 
of the interaction. This simplification leads to good results in the case of long-wave 
optical modes. With the reduced mass of the ion pair pn = mim;[(mi + m i )  and the 
relative diplacement U ( Z ,  t )  = u+(z, t )  ~ u-(z, t )  we can write (l), (2) in the form 

(3) 2 pnU(z, t )  -pnWOnU(Z, t )  + e W o c ( ~ : l  t )  9 

2 where won = fn!pn is the frequency associated with the short-range part of the inter- 
action. The oscillating ions produce a polarization field P ( z ,  t )  consisting of two parts: 
(i) the ionic polarization caused by the relative separation of the positive and negative 
ions when the crystal vibrates in an optical mode (- U(Z, t ) ) ,  and (ii) the electronic 
polarization caused by the local electric field associated with the optiical modes acting 
on the electron shell of the ions (- EIOC(x, t ) ) .  P ( z ,  t )  is given as the sum of both parts, 

P ( z ,  t )  = nne%@, t )  + nncxnEIoC(z, t )  , (4) 

where n, is the number of Wigner-Seitz cells per unit volume, and an is the electronic 
polarizability per Wigner-Seitz cell in the layer n. From the point of view of classical 
electrostatics (equivalent to the unretarded limit considered here) the Maxwell 
equations results in the Poisson equation for the scalar potential @(z, t ) ,  

(5 ) 
1 

80 
A@(z, t )  1 - - etota’(x, t )  , 

where is the absolute dielectric constant, and etotal the total charge density. Since 
we assume the media to be nonconducting, nonmagnetic, and uncharged, etotal is the 
sum of both bulk and surface polarization charge density. 

Including both contributions ( 5 )  yields 

Using 

Ea(x,  t )  = - (7) 

and the well-known Lorentz relation between the local field and the macroscopic 
electric field E ,  

one obtains 

33’ 
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Herein 

is the Green tensor. Then the equation of motion for the polarization follows from ( 3 )  
and (4) with (9) 

We assume a harmonic time dependence of the polarization 
P ( z ,  t )  = P ( z )  e-imt. 

Equation (12) becomes then 

With the abbreviations 

where 

is the ion plasma frequency, we get from (13) 

We are interested in wave propagation in the xrx2 plane where qll is a two-dimen- 
sional wave vector parallel to the surfaces of the bilayer syst,em. The x3-axis is chosen 
perpendicular t o  the interface a t  x3 = 0 (see Fig. 1). This symmetry of the bilayer 
system will be used now. The translational invariance for continuous displacements in 
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qII-direction is exploited by introducing two-dimensional Fourier transforms, 
m 

--m 

where xll is the two-dimensional position vector in the xl-xz plane. The two-dimen- 
sional Fourier transform 

--m 

is derived from the three-dimensional one by a complex integration and qil = lQlil 
The two-dimensional wave vector qI I and the two-dimensional position veetor 2 
are defined as 

211 = + zze2 9 (19) 

Q l l  = q1e1 + qze2 3 (20) 

where el, e2, e3 are Cartesian unit vectors directed along the xl, xz, x3 axis, respectively. 
Since P ( x )  is real its Fourier transform must satify the following condition: 

m i ,  5 3 )  = p*(-QllY x3) . (21 ) 

To write the integral equation (16) in a more transparent form we use (17) and (18). 
Then the integral equation changes to 

B B 
c YUBP,(QIl? 5 3 )  = c I dG "3(53  - 4 P,(Qll, 4 (22) 

with 
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Equation (22) with yap given by (23) is the microscopic form of the integral equation 
for the polarization. The integral equation (22) can be also obtained in a macroscopic 
form. We start with (6) and replace the electric field strength by the polarization 
according to  the linear macroscopic equation 

P(QlI, 5 3 )  = &oXn(Q) E(Qll, 5 3 )  9 (26 1 
where xn(w) = E ~ ( C O )  - 1 is the isotropic dielectric susceptibility. Using the same 
procedure as described above we find (22) with 

The integral equation (22) defines the eigenvalues oi(q1l) corresponding to the polari- 
zation eigenmodes Pi(qll, 5). Both forms of the integral equation (22), the microscopic 
(23), (24) and the macroscopic one (27), will be used in the following. The orthogonality 
relation 

a 

can be derived from (22) taking into account that M(z3 - 5;) = M+(zj  - 5). The 
eigenvectors of (22) will then be orthonormalized according to  

n 

- b  

with 

The orthonormalization relation given in (29) differs from that occurring in the case 
of a single free-standing layer by a weighting factor [4]. We define two new ortho- 
gonal unit vectors in the zl-x2 plane, 

and 
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and 

Realizing this transformation of coordinates in the integral equation (22) it is easy 
to separate the polarization field into an s-polarized part ( P  = (0, P,, 0)) and a p- 
polarized one ( P  = (Pq, , ,  0, P3)). Then the analytical relations for both parts of 
polarization are completely decoupled. Because we are interested in the polarization 
eigenmodes, the macroscopic form of the integral equation is used. One obtains for 
s-polarization 

x i '@) P s ( q l l ,  53) = 0. (36) 

The other two components (p-polarization) form a coupled system of Fredholm integral 
equations, 

x,'(o~) Pqll(qli7 53) = + I dxi e-qlilr~--z~l ( - ~ i l P q , , ( ~ l l ~  5;) - 

- iqli sgn (x3 - xi) P3(q\l, 5;))  3 (37) 

~;'((o) E%(OJ) P3(qll, x3) = ;- I dxi e-qlllza-zg/ x 
x ( - iq  sgn (x3 - 4 P*lI(QII, 4 + PllP3(~ll3 4) * 

(38) 

The usual way to solve this system of equations is to transform it, into differential 
equations [6]. These are 

The solutions (39) and (40) form a complete set of p-polarized polarization eigenmodes: 
(i) surface phonons, (ii) LO phonons, and (iii) TO phonons. 

2.1.1 p-polarization: surface phonons 

For surface phonons cn(co) + 0 and x;l(w) cn(w) i. 0 is valid. From (39) and (40) we 
find 

Cg is a normalization constant, S denotes surface phonons and s = 1 , 2 , 3 ,  ... Using 
(42) and (43) for the polarization modes in the integral equations (37) and (38) we obtain 
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a set of homogeneous linear equat,ions in 3’; and G;. For these field amplitudeswe find 

The condition for the existence of nontrivial p-polarized solutions leads to the implicit 
dispersion relation given by 

+ ‘ 2  e2qlIb = 0 . ( ~ 1  + c2) (1 - 4 + (cl - c2) (1 + E ~ )  e2q1Ia -~ 
(El  - E 2 )  (1 - 4 + (El +E2 ) (1 + E l )  e2q1ia 

(45) 1 - E 2  

This result for a bilayer system can be easily applied to some special cases such as a 
layer on a semi-infinite substrate (b  + a), a free-standing layer of thickness a(b = 0, 
E~ = l), and for a half-space geometry (a --* 00, b + a). 

In the limiting case 411 + co (45) gives 

(El + 1) ( E 2  + 1) (El + E Z )  = 0 

&I = -1, E2 = -1, El = - E 2 .  (46) 
and 

From the descript3on above (see also (23) and (27))  the dielectric function of both 
media is 

with 

(49) 

where is the optical dielectric constant, wLn and wTn is the longitudinal and the 
transverse optical (LO and TO) phonon frequency, respectively. 

The various physical possibilities of combining two dielectric media arise out of 
the relative positions of the zeroes and poles of E ~ ( w )  and E ~ ( w ) .  There are only three 
distinct configurations (we assume without loss of generality WTI < W T ~ )  171, 

A: W T l  < WL1 < WT2 < WL2 9 

B: W T ~  < W T ~  < W L ~  < W L Z ,  

c: WT1 < COT2 < WL2 < wL1 - 
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Fig. 2. The dielectric functions E ~ ( w )  (heavy lines) 
and eZ(w) (dashed lines) of GaAs and GaP realizing 
case A. The frequencies os1, 0 ~ 2 ,  ws3, and 0 8 4  

are the asymptotic frequencies for large values of 
the wave vector as described in the text 

Equation (45) with the dielectric functions given in (47) yields the asymptotic fre- 
quencies ws1, ws2, as3, and ws4 for large wave vectors 

A bilayer system composed of two media with dielectric functions given by (47) alway 
supports exactly four surface phonon modes, each of the media supports two modes 
(see also Fig. 2 ) .  For numerical work we have chosen a GaAs/GaP bilayer system 
(optical constants see [6]) realizing case A. In Fig. 2 the dielectric function of these two 
media are given and the four asymptotic frequencies are indicated. To cases B and C 
there is no essential difference [6, 71. Fig. 3 and 4 show the dispersion curves of surface 
phonons for various thicknesses of the two layers. The dispersion curves start at 
Qll = 0 and w = W T ~ ,  a T 2 ,  or 0 ~ 2 ,  Iespectively. For large values of the wave 
vector qll the four dispersion curves approach ws1, ws2, ws3, or 0 ~ 4 ,  respectively, 
which are given by (51) to (53). 

The normalization constant in (42) and (43) is given with (29) by 

The surface phonon modes are not connected with bulk polarization charges (div P = 
= 0) but they are accompanied by the appearance of surface charges at  the boundaries 
of the bilayer system according to 

F,S eqiia + Gi e-qlla; x 3 = a ,  
~ P o l , '  = Cg (-8'; - 3';) + (Gi - GS); X, = 0 , (55) 

-#': e--Pllb - Gg eqllb; ~3 = - b .  I S 
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Fig. 3. Dispersion relation of long-wave optical surface phonons of a GaA.s/GaP bilayer system for 
various thicknesses of the GaAs layer. a) ~ a = 0.3 x m, -.-- a = 

= 0.4 x m, - - - - a = 0.9 >-: m; b) __ a = 0.3 x m, b = 0.3 x m, 
-.- a = 1.5 x m 

m, b = 0.3 x 

m, - - - - a = 3.0 x 

2.1.2 p-polarization: LO phonons 

DL,, = 0 and  EL^ = (-k) PLn. 

For LO phonons we have E ~ ( O J L ~ )  = 0 and E ~ ( C O L ~ )  =+ 0, p + n and hence for to = L ~ ) L ~  

From the differential equations (39) and (40) we obtain in the layer n 
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Fig. 4. Dispersion relation of long-wave optical surface phonons of a GaAs/GaP bilayer system for 
various thicknesses of the GaP layer. a) ~ a = 0.3 x m, b = 0.3 x 10-6m, - . ~  6 = 
= 0.4 X 10-6m,---- 6 = 0.9 x 10-6m; b) __ a = 0.3 x m, -.- 
6 = 1.5 :< 10-6m, - - - -  b = 3.0 x 10-6m 

m, 6 = 0.3 x 

The solut,ion of (57) is given by (42) and (43). The amplitudes E,  and G, are deter- 
mined by the boundary conditions for the fields E and D at the surfaces of the layer p .  
These conditions yield P, = G, = 0 so that P, E,  and D are zero outside the layer n. 
Inside the layer n (56) and the boundary conditions result in 

with 

m;  m = 1 , 2 , 3  ...; a,= a ;  u g =  b .  r n z  
qn = - 

an 
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The LO phonon modes of the layer n are highly degenerated because all of them have 
the same frequency O L ~ .  The normalization constant is given by 

The LO phonons are connected with both bulk polarization charges 

~ d ~ "  = CFn ( PI/ + ~ 'z:') sin (qrz3) 

and surface polarization charges 

2.1.3 p-polarization: T O  phonons 
For TO phonons we have 

XG1("Tn) = 0 and XG1(@Tn) =k 0, P 12 

and hence for a) = 

D T ~  = PTn and E T n  = 0 .  

Analogous to the case of LO phonon modes we obtain 

(62 ) Qr PFn(qllt x3) = Q F ~  [i pil cos ( q ~ x 3 )  eq,, + sin (qrx3) e3 

The TO phonon modes of the layer n are also highly degenerated. The normalization 
constant is given by 

The TO phonon modes are not accompanied by the appearance either of surface 
polarization charges or of bulk ones. 

2.1.4 s-polarization 
The s-polarized modes are solutions of (36). For nontrivial solutions of (36) x;'(o) = 0 
must be used. That means only for o = oT1 or CL) = (OT2 s-polarized TO phonon modes 
exist. Analogous to the case of p-polarized TO phonon modes we obtain for o = O T ~  

DsTn = P s ~ , ,  and E s ~ n  = 0 (in the whole space). 
The eigenfunctions can be arbitrary functions of x3, and we may expand it in a 

complete set of orthonormal eigenfunctions, 
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The s-polarized TO phonon modes are degenerate, and they are not accompanied by 
the appearance either of a surface polarization charge or a bulk one. 

The p-polarized modes are completely decoupled from the s-polarized modes, and 
both polarization eigenniode systems satisfy their own closure relation 

where p denotes the p-polarization and i runs over all p-polarized polarization eigen- 
modes, and 

2.2 Hamiltonian of the polarization eigenmodes 

According to  the equation of motion (3) we find the Hamiltoriiaii density 

where 
II = nnpnu 

is the canonical momentum function. The Hamiltonian function H ,  is given by the 
space integral over X,, 

With the classical Poisson brackets [8] for field functions, 

ka= { ~ u , ~ y } ;  f i a =  { n m ~ p } ,  

the Hamiltonian function (69) yields the equation of motion (3). Using the symmetry 
of the bilayer system by int,roducing a two-dimensional Fourier transform according 
(17) we can write 

The relation between the displacement u and the polarization P is given by 
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With (72) and (73) we can write the Hamiltonian function (71) in the form 

where we have introduced Born- von K&rmBn periodic boundary conditions in the 
xl-xz plane according to  

where A is the unit area of the bilayer system in the xl-xz plane. Proceeding in the 
standard manner the polarization P(q11, z3) is represented in terms of the complete 
set of orthonormal polarization eigenmodes Pi(qll, z3), 

,, 
In  (76) and (77) the vectors P and P are now considered as quantum field operators 
denoted by the cap. The following commutation relations are valid: 

[&ll, x3)9 &(q;l? 4 1  = [h&lr %3)> *F (q ; I?  4 1  = 0 * 

These commutation relat,ions yield the well-known commutation relation for the 
operators 2: and Gi, 

[&(!l,h ^aj+(q;l)l = ~9ll9fl6ij 7 

[~+(Ql I )>  ̂aj+(q;l)l = [Wll), %I!l)l = 0 . C79) 

The operatjor &$ is the creation and Zi  the annihilation operator of long-wave optical 
phonons of the bilayer system. Using the relations (79) and the orthonormalization 
relation (29) we obt,ain the Hamiltonian of the polarization eigenmodes in the usual 
diagonalized form, 

Hp = Hi + 2p, (80) 

and 

The Hamiltonian *p of the s-polarized long-wave optical phonons of the bilayer 
system and the corresponding Hamiltonian I?; of the p-polarization are completely 
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decoupled from each other. In &: the summation extends over all p-polarized polari- 
zation eigenmodes of the bilayer system: long-wave optical surface, LO and TO 
phonons. 

Since H ,  is the Hamiltonian of long-wave optical phonons of the bilayer system, 
the summation over qll is limited by the cont,inuum approximation. The summatjon 
over qll should be performed up to the limit q < qc where qc is the cut-off wave vector 
of the continuum approximation and q = qll + qze3 (for surface modes is qz = 0). 
We can roughly estimate qc to be in the order of 108 m-l. 

The Hamiltonian (80) to (82) together with the polarization eigenmodes and eigen- 
frequencies defined in Section 2.1 gives a complete description of the phonon modes 
of a bilayer system in the long-wave approximation. 

,. 

3. Electron-Phonon Interaction 

The interaction energy of an electron (charge - e )  a t  the position xe with a polarizable 
medium is 

He, = -e@(xe, t )  . (83) 
Using the expression for the scalar potential @(xe, t )  (6) and the symmetry of the 
bilayer system by introducing the two-dimensional Fourier transform, we obtain in a 
straightforward way 

(84) 

i e 
He, = __ C dz3 eiqllzTl e--plilz~-x~! x 

- b  
2A&O 911 

x [ie-p,, + sgn (5 - 25) e3] P(~I ( ,  x37 t )  . 
Making use of the representation of P(q1, x,, t )  in terms of polarization eigenmodes 
the Hamiltonian of the electron-phonon interaction has finally the form 

- b  

x [iepll + sgn (x3 - 2;) e3l pi*(q.lI, x3)  . (86) 
The coupling functions r, can be expressed by the macroscopic electric field. Starting 
with 

we obtain with (83) and (84) an expression equivalent to  (86), 
%II(qll, 23) = -~!l!l@(qll~ 5 3 )  (87) 

Inserting in (86) the various polarization eigenmodes from Section 2.1 one finds that 
the electron does not couple to  TO phonon modes of p- and s-polarization. The reason 
for this is that TO phonon modes are not, accompanied by the appearance either of a 
surface polarization charge or a bulk one. 

The numerical work has been done for a GaAs/GaP bilayer system. We have 
calculated the coupling functions (86) for t,he interaction of the electron with surface 
phonon modes (42), (43) and with LO phonon modes (58). Since the media are isotropic 
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Fig. 5. Spatial dependence of' the coupling 
functions rg(qll, zt )  of the electron-(long- 
wave optical) surface phonon interaction for 
various thicknesses of the two layers of the 
GaAs/GaP bilayer system (411 = 30 x lo5 m-l). 

Ti. a) a = 0.3 x 10-6m, b = 0.3 x 10-6m, 
b) a = 0.6 x m, b = 0.3 x m, c) a = 
= 0.3 x m, 6 = 0.6 x m 

---TI _ _ _ _  r2 _._ and . . . . . . S. b, 

I', is only a function of qli = lqlll and not of the direction of qll. Fig. 5 to  8 show the 
spatial dependence of the coupling functions Ti(q11, xg) of the electron coupling with 
the four surface phonon modes (s = 1, 2, 3, 4) for the GaAs/GaP bilayer system. 

As can be seen from (88) the spatial dependence of the coupling functions I:. is 
strongly correlated to  the spatical dependence of the electric fields associated with the 
phonons [6]. The coupling function of the electron-surface phonon interaction is 
mainly localized at the surfaces and the interface of the bilayer system (see Fig. 5 
to  7 ) .  Furthermore an interaction takes place even when the electron is outside the 
bilayer system close to one of its surfaces. This effect is used in EELS measurements. 
Surface mode 1 (2) is supported by the GaAs(GaP) layer and consequently this mode 
gives the main contribution to the interaction if the electron is localized close to  the 
GaAs (Gap) surface of the bilayer system.The behaviour is analogous in case of the 
interface modes 3 and 4, they are dominant if the electron is localized close to  the 
interface between the GaAs and the GaP layer. It is illustrated that the localization 
of the coupling function I ' g  at the surfaces increases with larger values of the wave 
vector qll (see Fig. 5 a  and 6). Fig. 7 shows the coupling functions I'i that are calculated 

Fig. 6. Spatial dependence of the coupling func- 
tions ri(ql1, zg) of the electron-(long-wave optical) 
surface phonon interaction of the GaAs/GaP 
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GaAs 
I /  

-1 

/ I [  

Fig. 7. Spatial dependence of the coupling func- 
tions T&ii, zt )  of the electron--(long-wave optical) 
surface phonon interaction by neglecting the con- 
tribution of the electronic polarizability (0, = 1) 
of the GaAs/GaP bilayer system (qll =: 30 x 
x 105 m-l). ___ r;, --- rg, --. - r;, 

rs4 . . . . . .  
-7.01 , ['\,, I,,/: I 

-7.5 
, GuP 

-0.6 -0.4 -0.2 0 02 0.4 0.6 

with 6, = 1 in (86), which corresponds to an insuffient contribution of the electronic 
polarizability as it is often done by other autors. A comparison of the results given in 
Fig. 5a and 7 shows that the electronic polarizability plays an important role in the 
electron-surface phonon interact,ion. The difference in the strength of the interaction 
is certainly a non-negligible effect, especially for the technologically important AIIIBV 
semiconductors. 

If the electron is inside the GaAs (Gap) layer it interacts also with the LO phonon 
modes of these layers. As is seen in Fig. 8 the interaction strength of the electron with 
the LO phonon modes vanishes outside the bilayer system and at the surfaces, and 
inside the layer it is small near the surface because of the factor sin (qEx3) appearing 
in (86) with (58). 

Thus, when the electron is close to the surface but inside the layer the main contri- 
bution to the strength of the electron-phonbn interaction arises from that with surface 
modes. In  this case the electron and the surface phonon mode form a new surface 
elementary excitation called surface polaron. The shift in energy AE of the electron 
caused by the interaction fie* can be estimated by second-order pertubation theory to 
be proportional to /TI2. In this process described by this second-order correction the 
electron emits a virtual phonon of wave vector qil and then reabsorbs it. Thus, when 
the electron is close to the surface bue inside the bilayer system it will be attracted to 
the surface just as if it is outside. If the electron is in one of both layers and close to 

1 
E- 
L- 

-0.4 -0.2 o or2 LIL 
x; r i f6m,  -- 

Fig. 8. Spatial dependence of the coupling functions TEn(qll, z;) of the electron-LO phonon interac- 
tion of the GaAs/GaP bilayer system (911 = 30 x 105 m-1). a) I'El(qll, zt), b) e2(qil, z;) 
34 physics (b) 129/2 
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the inteiface it will be attracted to the interface. This result is completely opposite 
to that obtained from electrostatic considerations. Prom the theory of the classical 
image charges one obtains that the image charge is of the same sign as the electron 
inside the layer, so the electron is repelled from the surface. If the electron i s  far 
away from the bilayer system classical theory of image charge and second-order 
pertubation theory with the Hamiltonian (85) lead to the same results for A E .  

4. Concluding Remarks 
In this paper a quantum-mechanical theory of electron-(long-wave optical) phonon 
interaction in bilayer systems has been developed. Many experiments have been 
performed with bi- and multilayer systems, or with a single layer on a substrate, and 
they have stimulated the theoretical study of such systems. For instance the physical 
processes occurring in EELS for electrons reflected or transmitted by a bilayer system 
or XPS from bilayer systems are successfully treated in the present formalism. Typical 
quantum-mechanical features, such as multiple-excitation processes in EELS are 
naturally incorporated in the treatment here given. Since we have used both microsco- 
pic and macroscopic relations it is easy to generalize the results to an arbitrary dielec- 
tric function E ( w ) .  We must insert this dielectric function in (28) which yields an 
altered normalization relation, and can use (86) to calculate the coupling functions 
T,. For example, this generalization enables us to study also metallic bilayer systems 
(or the combinations dielectric/metal, dielectricin-type semiconductor) where elec- 
trons behave like those of a quasi-free electron gas. 

The theory developed is also applicable to the problem of a conduction electron in a 
bilayer system (polar semiconductors) interacting with the long-wave optical phonon 
modes [9]. In this case the Hamiltonian derived here for the bilayer system is analo- 
gnous to the well-known Frohlich polaron problem in the bulk. There is currenkly a 
revival of interest in the study of this problem 19 to 151. In modern microelectronic 
devices based for example on GaAs,/Ga,All -,As heterostructures the contribution 
from the electron-phonon interaction influences the electronic properties noticeably 
[l6]. The electron-phonon interaction is an important scattering mechanism limiting 
the mobility of the free carriers. 
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