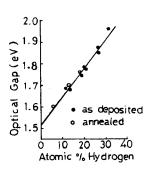
HYDROGEN CONTENT DEPENDENCE OF THE OPTICAL ENERGY GAP IN a-Si:H


Toshio HAMA, Hiroaki OKAMOTO, Yoshihiro HAMAKAWA, and Takeo MATSUBARA

Faculty of Engineering Science, Osaka University, Osaka 560, Japan *Department of Physics, Kyoto University, Kyoto 606, Japan

A theoretical attempt has been made on the hydrogen content dependence of the optical energy gap in a-Si:H using a simple tight-binding model. The interband optical absorption coefficient is calculated by CPA. It has been shown that energy spectra of the joint density of states shift to the higher energy side in parallel with increasing hydrogen content. For the comparison with the realistic line shape of experimentally observed absorption spectra, the effect of the Lorentzian distribution of the Si-H bond states is examined.

INTRODUCTION

It has been shown by the experimental approach that the optical energy gap $E_g^{\rm opt}$ in a-Si:H and hydrogen content have a correlation shown in figure 1. Moreover, the value of $E_g^{\rm opt}$ in zero hydrogen limit is much larger than that of band gap of crystalline silicon. There have been more than several theoretical studies on energy spectra of the electronic density of states (DOS) of a-Si:H 1 . Papaconstantopoulos and Economou demonstrated the widening of the band gap with increasing hydrogen content for a model of a-Si:H using the tight-binding method 1 . This result is in agreement with the recession of the top of the valence band observed in photoemission experiments 2 and suggests that $E_g^{\rm opt}$ depends on the hydrogen content. However, no clear explanation of the above mentioned cor-

Relationship between hydrogen content on the electronic states is treated and the optical energy gap

relation between E_g^{opt} and hydrogen content in a-Si:H has been made so far. The aim of this article is to study this hydrogen content dependence of E_g^{opt} in a-Si:H. We take a simple tight-binding model consisting of bonding and antibonding states, while the effects of the hydrogen termination is taken into account by a deep(high) bonding(antibonding) states of Si-H bonds effectively. The effect of the hydrogen content

And the Optical energy supported the Present Address: Fuji Electric Corporate Research & Development Ltd., 2-2-1, Nagasaka, Yokosuka, Kanagawa 240-01, Japan

0022-3093/83/0000-0000/\$03.00 © 1983 North-Holland/Physical Society of Japan

with a concept of site-perturbed randomness using the Coherent Potential Approximation(CPA). The interband optical absorption coefficient is calculated in two ways: the calculation of the joint density of states for the non-direct transition and the first principle calculation with the two-particle Green's function method³.

2. MODEL

We consider a simple model for the amorphous silicon that the valence (conduction) band is produced by the bonding(antibonding) states of Si-Si bonds. The effect of topological disorder of the system is not discussed directly here. Hydrogen incorporated in a-Si:H acts as a terminator of the Si dangling bonds. New states appear in the lower part of the valence band in photoemission spectra due to the bonding of silicon and hydrogen². In the conduction band, Si-H antibonding states are predicted from photoconductivity measurements⁴. Thus the effects of hydrogen on the electronic states of a-Si:H can be taken into account by a deep(high) Si-H bonding(antibonding) states. For simplicity, the fictitious bonding and antibonding states are introduced into the original covalent bond network at the places where hydrogen termination occurs, analogus to the hydrogen saturated vacancy model of Papaconstantopoulos and Economou $^{\mathrm{l}}$. Si-H bonds have the larger bonding-antibonding gap than Si-Si bonds in this model, similar to the quantum well model⁵. There are potential fluctuations in bonding (antibonding) states according to whether the bond is the Si-Si bond or the Si-H bond. The CPA is a useful method to treat such a site-perturbed disordered system.

3. FORMULATION

We adopted the following two-band tight-binding Hamiltonian:

$$\begin{array}{lll} H &=& H_V &+& H_C \\ H_\mu &=& \sum\limits_n \left|n\mu\right> \epsilon_n^\mu < n\mu \left| + \sum\limits_{nm} \left|n\mu\right> t_{nm}^\mu < m\mu \right| \ , \quad (\mu = v,\,c\,) \end{array}$$
 where $\left|n\mu\right>$ denotes a state at the n-th bond in the band , ϵ_n^μ the random site

where $|n\mu\rangle$ denotes a state at the n-th bond in the band, ε_n^μ the random site energy and t_{nm}^μ the transfer integral. The coupling between the band v and c is not considered. The dipole operator $\Pi^\dagger = \sum_{n} |nc\rangle p < nv|$ describing the electronic excitation connects the two bands. The DOS of the band is given by

$$D_{U}(E) = \langle \langle Tr_{U} \delta(E-H_{U}) \rangle \rangle ,$$

where $<<\cdots>>$ denotes the ensemble average and $Tr_{ij}(\cdots)=\sum_{n}<n\mu|\cdots|n\mu>$.

The optical absorption spectra for the case of non-direct transition in which the complete relaxation of the k-selection rule is assumed are calculated by the joint density of states as

$$\alpha(\mathsf{E}) \bullet \mathsf{E} \ \varpropto \ \mathsf{ffdE}_1 \mathsf{dE}_2 \delta(\mathsf{E}_1 - \mathsf{E}_2 - \mathsf{E}) \mathsf{D}_c(\mathsf{E}_1) \mathsf{D}_v(\mathsf{E}_2) \ .$$

4. RESULTS AND DISCUSSION

Values of the band parameters were chosen to reproduce the main features in the DOS of a-Si:H near the gap: ε_S^V =-2.5, ε_S^C =2.5, ε_H^V =-5.0, ε_H^c =3.0, and B_V = B_C =2.0 in eV. The calculated DOS in the case of pure system (cx=0.0) is shown in figure 2(a) and that of cx=0.3 in figure 2(b). The change of the band edge with increasing hydrogen content is shown in figure 3(a). The band gap increases almost linearly as illustrated in figure 3(b). These results are in agreement with the previous one 1. The calculated absorption spectra $(\alpha \cdot E)^{1/2}$ are shown in figure 4. The results for the non-direct transition case in figure 4(a) are almost straight lines, for the semielliptic DOS was assumed for the energy dispersion. The results for the CPA calculation in figure 4(b) are different from the above. This discrepancy is ascribed to that the relaxation of the k-selection rule is not sufficient in this binary alloy-like treatment. However, it is

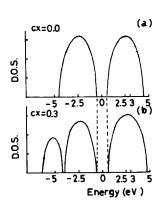


FIGURE 2 Calculated DOSs: (a) cx=0.0 (the pure case) (b) cx=0.3

noted that absorption spectra shift to the higher energy side in parallel with increasing hydrogen content for both

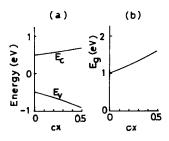
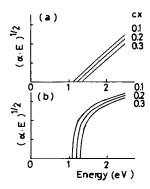



FIGURE 3
Hydrogen content dependence of (a) the valence band edge E and the conduction band edge E and (b) the band gap

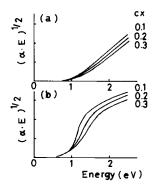


FIGURE 4 $(\alpha \cdot E)^{1/2}$ plots obtained from (a) the CPA calculation for cx=0.1,0.2 and 0.3 the energy levels of Si-H bonds

FIGURE 5 The same plots as in figure 4. The non-direct transition case and (b) the Lorentzian distribution is assumed on

cases. Next we considered the effect of the fluctuation of the energy levels of Si-H bonds, such as due to the bond distortion. A Lorentzian distribution was assumed to describe the above-mentioned fluctuation. The results are shown in figure 5. The width of the distribution was taken to be 0.8 eV in the band v and 0.4 eV in the band c. There occurs the band edge tailing and the results of CPA are improved. Though the absorption spectra are smeared out near the band gap, $E_{\alpha}^{\mbox{opt}}$ obtained from figure 5(a) has the same value as that obtained from the corresponding spectrum in figure 4(a) and it increases almost linearly with hydrogen content. Thus the one of the features of E_{g}^{opt} in a-Si:H can be described with this simple model calculation. The other problem that E_{α}^{opt} in the case of cx=0 is much larger than that of band gap of c-Si seems to be the one in which topological disorder inherent to amorphous systems plays an important role. It was reported that the dihedral angle disorder cause a substantial change in the states near the gap from the analysis of the ideal amorphous semiconductor .

REFERENCES

- 1) e.g., D. A. Papaconstantopoulos and E. N. Economou, Phys. Rev. B24 (1981) 7233.
- 2) B. von Roedern, L. Ley, M. Cardona and F. W. Smith, Phil. Mag. B40 (1978)433.
- 3) S. Abe and Y. Toyozawa, J. Phys. Soc. Japan 50 (1981) 2185.
- 4) T. D. Moustakas, D. A. Anderson and W. Paul, Solid St. Commun. 23 (1977)155.
- 5) M. H. Brodsky, Solid St. Commun. 36 (1980) 55.
- 6) M. H. Cohen, J. Singh and F. Yonezawa, J. Non-Cryst. Solids 35&36 (1980) 781; J. Singh, Phys. Rev. B23 (1981) 4156.