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The wavevector~frequency dependent dielectric constant is investigated
Attention here is focused on the collec-
tive modes of the GaAs~GaAlAs superlattice with doped (or modulated

for a superlattice structure.

doped) quantum wells.

For wells widely separated in space, such that

Bloch wave function overlap between wells is negligible, a Bloch-like
plasmon can propagate along the superlattice direction mediated entirely
Interaction of these plasmons with
optical phonons and with a magnetic field is investigated.

by Coulomb interaction alone.

1. Introduction

Han-made superlattice structures with pre-
cise interfacial and dimensional control are
now a reality as a result of the recent ad-
vancements made by molecular beam epitaxy

(HBE).l Layered structures, GaAs-GaAlAs being
the most extensively studied and best charac-
terized system, can be grown with periodici-
ties ranging from ~5A to hundreds of Ang-
stroms. In this paper, we focus on the
collective modes of the GaAs-GaAlAs superlat-
tice and present a calculation of the wave
vector-frequency dependent dielectric con-
stant.

The idea of collective plasmon modes in a
layered structure, most notably in the context
of graphite and intercalated transition-metal

dichalcogenides, has been studied by various
workers in the field. The plasmon excitations
of a thin metallic layer were first demon-

strated theoretically by Ritchiez in 1957.

Stern3 derived the polarizability and plasmon
dispersion relation of a two-dimensional elec-
tron gas in the self-consistent field approxi-

Equiluiz, et a]..4

mation. have calculated
the plasmon modes of the MOS inversion layer
including the interaction with the photon
field. A rather complete analysis of the
electrodynamics of the quasi-two-dimensional
gas is found in the work of Dahl and Shams.
In a multicomponent plasma, two plasmon
branches are found; a high frequency optical
branch and a low frequency acoustic branch

(which is highly damped by electron-hole exci-

tations).6 For a layered electron gas

calculated the
Within a hydrody-

. . 7
Visscher and Falicov have
static dielectric constant.

namic model, Fetter8 has derived the equations
describing the plasmon modes of an infinite
array of two-dimensional sheets of electrons.

Apostol9 has done a similar analysis using an
equation of motion (RPA) approach to derive
the plasmon dispersion relation and Caille et

al‘10

have attempted to include phonons. 1In

a similar spirit, Mele and Ritskoll investi-
gated the frequency-wave
longitudinal dielectric
FeCl,-intercalated graphite.
In this paper, we use standard many-body
techniques to calculate the plasmon dispersion
relation for a GaAs-GaaAlAs superlattice struc-
ture. Previous treatments based on equation
of motion and hydrodynamic approaches allow
one to derive the R.P.A. result but approxi-
mations beyond this are quite difficult. The
approach we have taken for the superlattice is
a generalization of that taken by Das Sarma

and Madhukar12 for the double heterojunction
guantum-well structure which led to the pre-
diction of an anomalous acoustic plasmon

(wvq) distinct from the electron-hole contin-

uum.13 We focus here on the plasmon modes of

a superlattice structure leaving to a later
paper an investigation of more subtle many-
body effects (self-energy, exchange, depolari-
zation, inter-subband excitations). In addi-
tion, we consider the effects of interaction
with longitudinal optical phonons and with a
magnetic field on the dispersion relation of
the superlattice plasmon.

vector dependent
constant for

2. Theory and Results

In Fig. 1, we show the conduction and va-
lence band profiles of a GaAs-GaAlAs superlat-
tice. Here d is the distance between wells
{the periodicity) and L is the well thickness.
We focus on the case where % (“50A) is much
smaller than d. Thus, the electron wave func-
tion 1is essentially confined to the quantum
well and the normal Bloch wave function over-
lap is taken to be negligible. This will be
relaxed in a later publication. In this situ-
ation, long-range Coulomb interaction is still
operative between the wells and leads to plas-
mons propagating along the direction of the

superlattice.8
Each well is
and arranged on a

considered to be eguivalent
periodic lattice. Each well
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Figure 1.

A superlattice of GaAs-GaAlAs consisting of
a periodic array of quantum wells with
periodicity d.
and valence band by the superlattice potential
is shown. Each well is doped (or modulated
doped) with n electrons.
well, E_is the ground subband energy, and E

is the Fermi level. F

is either doped (or modulated doped) with

electrons (or holes) to a density n. Results
for alternating electron-hole wells (with
equal masses) will also be given. For differ-

ent masses (an m,-m,-m,-m,... superlattice) or

different densities (n,-n,-n,-n,...), optical

and acoustic-like branches are found.14

Consider a single quantum well doped with
n electrons. It has a ground subband energy E
(see Fig. 1) and Fermi-level E.. Its motion
is confined to the well but free-electron like
perpendicular to the well (along the plane
perpendicular to the superlattice direction)
with dispersion relation

2.2
= +
Eq" Eo heq? (1)

2m*

where q, 1is the wave-vector parallel to the
plane (i.e. perpendicular to the superlattice
direction), m” is the electron effective mass.
In the two-dimensional limit, the plasmon dis-

b was first calculated by

D
Stern3 and shown to be proportional to q%.

When one has n such 2-D quantum wells arranged
on a periodic lattice, the simple 2-D plasmon
dispersion relation will broaden into a band.
To determine the collective modes of a ho-
mogeneous electron gas, one sets the dielec-
tric constant equal to zero. For a superlat-
tice, for each quantum wel&z Ehe subband wave

function is given by ¥ ~ e 3Py (2) where 3
is the wave vector within the pfﬁne, ¢:(z) is
the quantized wave function in the welf and i
is the subband index. In general, for such an
inhomogeneous system, the dielectric constant

. . 2
persion relation w

is a fourth-rank tensor12 with indices (ijam).
For example, the Coulomb interaction expanded
on the subband basis is

, ~q.,|z-z" | ,

i) — ] * . ]

Vijlm(z’z )y = -/fdzdz iﬂz e ¢i (z)¢j(z)¢2(z )¢m(z )
odn

where 1ijf¢m label the different subbands and
different wells. In this paper, we focus on
the ground state properties and consider only

The modulation of the conduction

2 is the width of the

the ground subband (i = 0). The diagonal ap-
proximation, which is wvalid for the Si inver-

. 15 . .
sion layer ~, is also applied here; namely 1 =
j and L = m. Within these approximations, the
dielectric constant is a matrix on well index

-~ > o -
. yw) =8 .~ v, .. (g)r, (gq,,w) (3)
Eij(q" ij 1133 delTyqe

where nojj(q“,u) is the bare polarization bub-

ble. Since only the 0'th subband 1is consid-
ered, the indices i and j label here different
wells. The collective excitations are given
by the zerces of the dielectric constant Eq.
(3) which in this case (for n quantum wells on
a periodic lattice) is a n x n matrix and is
given by setting the determinant of £55 te
zero. Following Das Sarma and Madhukar,12 we
consider the approximation where the wave
function is highly localized within the well
(delta-function like) and d is large so that
Bloch overlap is negligible. It is appropri-
ate to note that this approximation is not
necessary and via Eq. (2) the complete inter-
nal structure of the guantum subband can be
included. This approximation leads to a Cou-
lomb interaction between planes.

-q,lz -z_]

2 r ]
Vi- - 2me e (4)
J €9

where ¢ 1s the static dielectric constant.
Since edch well is doped with n electrons (n
is a 2-D density) and is eguivalent to all
others, the ground subband polarization "Ojj
in the high frequency regime 1is simply given
by

q?

n .
o ;ﬁ—* for w > q,,VF and for all 3

Q
W]] (q" rw)
(5}

where V_ is the Fermi velocity. The introduc-
tion oE‘ many-body effects (self-energy and
vertex corrections) beyond the R.P.A. 1s given
by appropriate modifications to the bare po-

larization bubble “o
rections).

Within the above approximations and in the
limit g,d >> 1, we need consider only nearest
well interactions. The Coulomb interactions
between wells becomes

(e.g., Hubbard-type cor-

Vil e o (6)
1 Edn

The matrix for the dielectric constant Eg. (3)
is now seen to be equivalent to the matrix for

(2)

the eigenenergies for the tight binding model

-1 . - -v. . . . >
(namely 1 Vii LI £, and 1,1+1ﬂl+1,l+1
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y. This can be diagonalized by going

Vi, i+
over to collective c¢oordinates. The result
obtained for the energy of the collective mode
(plasmon) of the superlattice is

-q,8
w = wi'D(l + 2e cos qld)5 (7N
2 bl
2.0 _ ( 2mmetan

where g = Tam* is the single-
well plasmon disperslon felation; q, is along
the superlattice direction and g, perpendicu-
lar to the superlattics direction. The + sign
is for electron-electron interaction; the -
sign for electron-hole interaction.

For q,d << 1, the more important physical
limit, the interaction betwsen all quantum
wells becomes important and we must sum the
Coulomb interaction over all wells. We obtain
for the interplane Coulomb interaction

-q,d ~2q,d
v 4re? © cosgid - e (8
= ~q,4d -2q,d
Eodn  1-2e S cosqgd + e Gn

for the case of electron-electron interaction.
The determinant of £ Eq. (3), equal to zero
is easily solved. Thé result is equivalent to
going beyond the nearest neighbor approxima-

tion in the tight binding model. The result
for the collective oscillations is
-2q,d B
2.D 1-e
W= w (9)
- -2q,.4
P 1~ (*2e q"dcosqld) + e “dn

where quantities have been defined in Eq. (7).
This result, with the concurrent delta-func-
tion approximation, is equivalent to that ob-
tained by the authors mentioned previously
(see ref. 8 and 9). If we relax the
approximation stated by Eq. (4), namely delta-
like wave functions, then the internal struc-

ture of the quantum well will be evident in Vjg

and a modified plasmon dispersion will be ob-
tained. However, qualitatively the results
will be quite similar. We note the band type
motion (cos gq;d) of the plasmon occurring
along the superlattice direction. A plot of
£q. (9) is shown in Fig. 2 for g.d taken to be
0.13. We see that the single gquantum well
plasmon has been transformed into a band along
the superlattice as a result of long-range
Coulomb interaction between wells. The solid
line is for electron-electron interaction; the
broken line for electron-hole. We note that
for gq;d = 0 and g,d small,

_ 4ne? K
w= e m*d
o

which is the bulk plasmon for a homogeneous

system with 3-D density, n3'D = n/d. For qud

= 1 and g.d small, an acoustic-like mode (u«q)
is found.

(10)
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Figure 2.

Plot of the plasmon dispersion relation Eq. (3)
as a function of gjd. Here q,d is taken to be
0.13.

2. . .
@ b (dotted line) into a band is evident.

w

bandwidth is determined by the properties of the

superlattice as discussed in text.
for electron-electron interaction.
is for electron-hole

n'ne2

T (q,d) (11)
o

As shown by Das Sarma and Madhukarlz,

there exists a critical periodicity distance d.
for which & must be larger than in order for
eq. (11) to hold. In the high frequency re-

gime, w must be greater than g.Vg. This leads
8ag
to a critical periodicity dc equal to 27 for
. a o is
the validity of eg. (11). Here ~o =m¥eZ
the effective Bohr radius. Thus, in the re-

gime in which eg. (11) holds, this is the gen-
eralization of the anomalous acoustic plasmon

of Das Sarma and Madhukar12 to the case of a

superlattice. For g,d large, w reduces to the

2.D

. . 3 . .
two-dimensional plasmon™, oy , since in this

limit, the isolated from
each other.
The bandwidth 1is

Egs. (10) and (11)

guantum wells are

the difference between
and for GaAs with

~
-4

nmlolzcm , €= 12.35, dmzooa, m* = 0.068m ,;
o) el

w

The broadening of the single sheet plasmon
The

Solid line is
Broken line
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the bandwidth is about 30 meV which is a num-
ber comparable to intersubband energies and
longitudinal optical phonon energies. We also
note from Fig. 2 that for a large range of qd
the plasmon relation is outside of the elec-
tron-hole continuum and thus should be a long
lived excitation. We now include the effects
of interaction with LO-phonon and magnetic
field.

GaAs 1s a polar material with a longitudi-
nal optical phonon with energy 36.8 meV. De-
pending on the value of the parameters occur-
ring in Eq. (10), the plasmon bandwidth can be
above or below this value. Consequently, the
plasmon and LO phonon can interact. We take
for g(w), the dielectric constant for the Gaas
well, which includes the LO phonon interac-

tion, the same form as used by Pinczuk, et al.l®

for the single quantum well; namely,

o w 2
stm) = im . +[ wz_zo 2 ] (12)
LO
Em
where o = 1 - £ and £ = 10.48, £, =
12.35, Yo is the LO-phonon frequency; thus, «
= .151.

In the formalism presented above, we in-
clude electron-phonon interaction by replacing
1/e by Eq. (12) in Eq. (4). The dielectric

o, ¥, , ) .
matrix is diagonalized as before and we obtain
a collective plasmon-phonon mode with excita-
tion energy,

2 - 2 4 2 s\ ftw 2~ w?) + dow 2w ?
w wLO u)p \/ LO P O p

2

(13)

where @ _1s here the plasmon mode of the su-
perlattf%e given by Eq. (9). In Fig. 3, we
plot Eq. (13) for d ~ 100%, n o~ lolzcm-z,
which sets the top of the plasmon band at 41
meV which is higher than WGt The dotted line

is the bare plasmon and q,d is 0.13. In Fig.
4, we take the top of the band to be 30 meV

(@“200R) which is lower than w, . The effect of

the coupling between the plasmon and LO phonon
is seen to be quite strong leading to coupled
plasmon-LO phonon modes.

For the case of a magnetic field applied
along the superlattice direction, we follow
1.17

the analysis of Kobayashi, et who con-

sidered the g d = 0 limit. We extend their
results to include finite g d. For simplic-
ity, we ignore the LO phonon interaction.
With a magnetic field applied along the super-
lattice, the electron's motion in the plane
becomes quantized into a series of Landau or-
bits with energies (n + 1/2Yhw, . The effect
of this quantization leads to a polarization

no(q”,w) for a single well given by

o( ) 2 mw,.,

™ wr)= — z :f ———— J

4 22 7N wle(me )2 n+m,n(q")
m>-n ¢

(14)

q”d = 0.13
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Figure 3.

Plot of the coupled plasmon-phonon mode
energies as a function of gjd. The dotted
line is the bare plasmon mode. The top of
the bare plasmon band was taken to be

41 meV and qd = 0.13.

where

$oo
Jnn‘(q") =,/:°° elq"x‘bn(*:_) ¢n'(—};_) ax

and fn is the Fermi distribution function, 22

(15)

= ﬁ/m*uc is the cyclotron orbit radius, ¢ (%)

is the Landau wave function, and we = E%%T is
the cyclotron energy. For g,% << 1, we obtain
for the coupled magneto-plasmon mode

-2q,d
l-e
w2 = 0?2 + (2°D)2 =d o5 d
1 - (%2 *"cosqid)+e 2w
(16)
2.D | . .
where Wy is defined after Eq. (7). This

agrees with Kobayashi, et al. for gq(d = 0.
There are also other Bernstein type modes oc-
curring at w = nw_ (n = 2,3,...); however, as
shown in Ref. 16 the coupling to these modes
is very weak.



40
AN

COLLECTIVE MODES OF A SUPERLATTICE

q”d = 0.13

“Lo

WTOf-m—m -

30 )

w{meV)

20

10

Figure 4.

Same as Figure 3, but here the top of the
bare plasmon band was taken to be 30 meVv.

In conclusion, we have studied the collec-
tive modes of a superlattice structure includ-
ing electron-phonon and magnetic field inter-
actions. In a future publication, we will
consider the effects of a superlattice on the
collective modes between quantum subbands (de-
polarization and exciton effect), inclusion of
subband wave functions, and the effect of fi-
nite Bloch overlap between wells. Here, we
have shown that the plasmon-dispersion rela-
tion in a superlattice quantum well structure
follows very simply from the determinant of
the dielectric matrix. The simple 2-D plasmon
dispersion relation is broadened into a band

along the superlattice direction. The width
of this band is adjustable simply by choosing
appropriate parameters. Interaction of these
modes with LO phonons and magnetic field lead
to interesting hybrid modes that may be ob-
servable by light scattering techniques. In
order to get a finite g, a grating might be
applied to the superlattice surface. The
GaRs-GaAlAs superlattice structure appears to
be an ideal system to test out these ideas.
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