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The wavevector~frequenoy dependent dielectric constant is investigated 
for a superlattice structure. Attention here is focused on the collec- 
tive modes of the GaAs-GaAIAs superlattice with doped (or modulated 
doped) quanttun wells. For wells widely separated in space, such that 
Bloch wave function overlap between wells is negligible, a Bloch-like 
plasmon can propagate along the superlattice direction mediated entirely 
by Coulomb interaction alone. Interaction of these plasmons with 
optical phonons and with a magnetic field is investigated. 

i. Introduction 

Plan-made superlattice structures with pre- 
cise interfacial and dimensional control are 
now a reality as a result of the recent ad- 
vancements made by molecular beam epitaxy 

1 
(HBE). Layered structures, GaAs-GaAiAs being 
the most extensively studied and best charac- 
terized system, can b% grown with periodici- 
ties ranging from %5A to hundreds of Ang- 
stroms. In this paper, we focus on the 
collective modes of the GaAs-GaAIAs superlat- 
rice and present a calculation of the wave 
vector-frequency dependent dielectric con- 
stant. 

The idea of collective plasmon modes in a 
layered structure, most notably in the context 
of graphite and intercalated transition-metal 
dichalcogenides, has been studied by various 
workers in the field, The plasmon excitations 
of a thin metallic layer were first demon- 

strated theoretically by Ritchie 2 in 1957. 

5tern 3 derived the polarizability and plasmon 
dispersion relation of a two-dimensional elec- 
tron gas in the self-consistent field approxi- 

mation. Equiluiz, et al. 4 have calculated 
the plasmen modes of the MO5 inversion layer 
including the interaction with the photon 
field. A rather complete analysis of the 
electrodynamics of the quasi-two-dimensional 

gas is found in the work of Dahl and Sham 5. 
In a multicomponent plasma, two plasmon 
branches are found: a high frequency optical 
branch and a low frequency acoustic branch 
(which is highly damped by electron-hole exci- 

tations) .6 For a layered electron gas 

Visscher and Falicov 7 have calculated the 
static dielectric constant. Within a hydrody- 

namic model, Fetter 8 has derived the equations 
describing the plasmon modes of an infinite 
array of two-dimensional sheets of electrons. 

Apostol 9 has done a similar analysis using an 
equation of motion (RPA) approach to derive 
the plasmon dispersion relation and Caille et 
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al. have attempted to include phonons. In 

a similar spirit, Mele and Ritsko II investi- 

gated the frequency-wave vector dependent 
longitudinal dielectric constant for 
FeCl~-intercalated graphite. 

In this paper, we use standard many-body 
techniques to calculate the plasmon dispersion 
relation for a GaAs-GaAIAs superlattice struc- 
ture. Previous treatments based on equation 
of motion and hydrodynamic approaches allow 
one to derive the R,P,A. result but approxi- 
mations beyond this are quite difficult. The 
approach we have taken for the superlattice is 
a generalization of that taken by Das Sarma 

and Madhukar 12 for the double heterojunction 
quantum-well structure which led to the pre- 
diction of an anomalous acoustic plasmon 
(uf~q) distinct from the electron-hole contin- 

13 
uum. We focus here on the plasmon modes of 
a superlattice structure leaving to a later 
paper an investigation of more subtle many- 
body effects (self-energy, exchange, depolari- 
zation, inter-subband excitations). In addi- 
tion, we consider the effects of interaction 
with longitudinal optical phonons and with a 
magnetic field on the dispersion relation of 
the superlattice plasmon. 

2. Theory and Results 

In Fig. i, we show the conduction and va- 
lence band profiles of a GaAs-GaAIAs superlat- 
rice. Here d is the distance between wells 
(the periodicity) and £ is the well thickness. 
We focus on the case where Z (%50A) is much 
smaller than d. Thus, the electron wave func- 
tion is essentially confined to the quantum 
well and the normal Bloch wave function over- 
lap is taken to be negligible. This will be 
relaxed in a later publication. In this situ- 
ation, long-range Coulomb interaction is still 
operative between the wells and leads to plas- 
mona propagating along the direction of the 

8 
superlattice. 

Each well is considered to be equivalent 
and arranged on a periodic lattice. Each well 
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Figure i. 

A superlattice of GaAs-GaAIAs consisting of 
a periodic array of quantum wells with 
periodicity d. The modulation of the conduction 
and valence band by the superlattice potential 
is shown. Each well is doped (or modulated 
doped) with n electrons. £ is the width of the 
well, E is the ground subband energy, and E 
is the ~ermi level. F 

is either doped (or modulated doped) with 
electrons (or holes) to a density n. Results 
for alternating electron-hole wells (with 
equal masses) will also be given. For differ- 
ent masses (an m:-m=-m:-m2.., superlattice) or 

different densities (nl-n2-nl-n=...), optical 
14 

and acoustic-like branches are found. 
Consider a single quantum well doped with 

n electrons. It has a ground subband energy E o 
(see Fig. i) and Fermi-level E F. Its motion 
is confined to the well but free-electron like 
perpendicular to the well (along the plane 
perpendicular to the superlattice direction) 
with dispersion relation 

E = E + h2q~, ~ (I) 
q, o 

2m* 

where q. is the wave-vector parallel to the 
plane (i.e. perpendicular to the superlattice 
direction), m ~ is the electron effective mass. 
In the two-dimensional limit, the plasmon dis- 

2.D 
persion relation ~ was first calculated by 

P 
Stern 3 

L 
and shown to be proportional to q~ . 

When one has n such 2-D quantum wells arranged 
on a periodic lattice, the simple 2-D plasmon 
dispersion relation will broaden into a band. 

To determine the collective modes of a ho- 
mogeneous electron gas, one sets the dielec- 
tric constant equal to zero. For a superlat- 
tice, for each quantum well, the subband wave 

function is given by T % elq"°P% i (z) where 
is the wave vector within the plane, ¢.(z) is 
the quantized wave function in the wel~ and i 
is the subband index. In general, for such an 
inhomogeneous system, the dielectric constant 

is a fourth-rank tensor 12 with indices (ij~m). 
For example, the Coulomb interaction expanded 
on the subband basis is 

// -q.,Iz-z, f 
Vijzm(Z,Z') dzdz' 2ge 2 e ~i* (z)~j 

£oq,, 

where ijZm label the different subbands and 
different wells. In this paper, we focus on 
the ground state properties and consider only 
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the ground subband (i = 0). The diagonal ap- 
proximation, which is valid for the Si inver- 

sion layer 15, is also applied here; namely i = 
j ~nd Z = m. Within these approximations, the 
dielectric constant is a matrix on well index 

• _ ~ - o (~,,,~) (3) 

£i3 (q"''~) = °ij /iijj(q")~jj 

where 0 (q.,~) is the bare polarization bub- 
33 

ble. Since only the 0'th subband is consid- 
ered, the indices i and j label here different 
wells. The collective excitations are given 
by the zeroes of the dielectric constant Eq. 
(3) which in this case (for n quantum wells on 
a periodic lattice) is a n x n matrix and is 
given by setting the determinant of Eij to 

zero. Following Das Sarma and Madhukar, 12 we 
consider the approximation where the wave 
function is highly localized within the well 
(delta-function like) and d is large so that 
Bloch overlap is negligible. It is appropri- 
ate to note that this approximation is not 
necessary and via Eq. (2) the complete inter- 
nal structure of the quantum subband can be 
included. This approximation leads to a Cou- 
lomb interaction between planes. 

-q,,Izi-zjl 
2~e 2 e 

V.. (4) 
13 ~oq,, 

where [ is the static dielectric constant. 
Since e~ch well is doped with n electrons (n 
is a 2-D density) and is equivalent to all 

others, the ground subband polarization z° . ,  
]3 

in the high frequency regime is simply given 
by 

q~ 
o n 

w.. (q,,,~) : ---- for ~ > and for all j 
3] m* ~2 q"VF 

(5) 

where V~ is the Fermi velocity. The introduc- 
tion o~ many-body effects (self-energy and 
vertex corrections) beyond the R.P.A. is given 
by appropriate modifications to the bare po- 

larization bubble o (e.g., Hubbard-type cor- 
rections). 

Within the above approximations and in the 
limit q,,d >> i, we need consider only nearest 
well interactions. The Coulomb interactions 
between wells becomes 

-q,,d 
2~e 2 e 

V (6) 
i,i+l Soq,, 

The matrix for the dielectric constant Eq. (3) 
is now seen to be equivalent to the matrix for 

(z) ~ (z ' ) ~m(Z ' ) 

(2) 

the eigenenergies for the tight binding model 

• ~ ~ -~ and -Vi,i+l~i+l,i+ 1 ~ (namely l-Vii nil o 
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ti,i+i). This can b e  diagona!ized by going 

over to collective coordinates. The result 
obtained for the energy of the collective mode 
(plasmon) of the superlattice is 

2.D -q,,d qid) ½ = (l ± 2e cos (7) 
P 

where ~p2'D = . ~  is the single- 
h om 

well plasmon dlsperslon relation; ql is along 
the superlattice direction and q,, perpendicu- 
lar to the superlattice direction. The + sign 
is for electron-electron interaction; the 
sign for electron-hole interaction. 

For q.d << i, the more important physical 
limit, the interaction between all quantum 
wells becomes important and we must sum the 
Coulomb interaction over all wells. We obtain 
for the interplane Coulomb interaction 

qll d = 0.13 

-q,,d -2q,,d 

4he 2 e cosqld - e 

eoq,, l_2egq-dcosqi d + e-2q,,d 
(8) 

for the case of electron-electron interaction. 
The determinant of eij' Eq. (3), equal to zero 
is easily solved. The result is equivalent to 
going beyond the nearest neighbor approxima- 
tion in the tight binding model. The result 
for the collective oscillations is 

-2q.d ]½ 

2.D[ . i - e . 

= ~ e_2q.d- (9) 
P i- (±2e-q"dcosql d) + 

where quantities have been defined in Eq. (7). 
This result, with the concurrent delta-func- 
tion approximation, is equivalent to that ob- 
tained by the authors mentioned previously 

(see ref. 8 and 9). If we relax the 
approximation stated by Eq. (45, namely delta- 
like wave functions, then the internal struc- 
ture of the quantum well will be evident in Vij 
and a modified plasmon dispersion will be ob- 
tained. However, qualitatively the results 
will be quite similar. We note the band type 
motion (cos qld) of the plasmon occurring 
along the superlattice direction. A plot of 
Eq. (95 is shown in Fig. 2 for q.d taken to be 
0.13. We see that the single quantum well 
plasmon has been transformed into a band along 
the superlattice as a result of long-range 
Coulomb interaction between wells. The solid 
line is for electron-electron interaction; the 
broken line for electron-hole. We note that 
for ql d = 0 and q.d small, 

4~ne 2 ] ½ 

= [ eom*d 
(i0) 

which is the bulk plasmon for a homogeneous 

system with 3-0 density, n 3"D = n/d. For qi d 
= ~ and q,,d small, an acoustic-like mode (~f~q) 

is found. 
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Figure 2. 

Plot of the plasmon dispersion relation Eq. (9) 
as a function of ql d. Here q.d is taken to be 
0.13. The broadening of the single sheet plasmon 
2.D 

(dotted line) into a band is evident. The 
P 

bandwidth is determined by the properties of the 
superlattice as discussed in text. Solid line is 
for electron-electron interaction. Broken line 
is for electron-hole 

= [ eom*d J (q.d) (ii) 

As shown by Das 5arma and Madhukar 12, 
there exists a critical periodicity distance d c 
for which d must be larger than in order for 
eq. (115 to hold. In the high frequency re- 
gime, w must be greater than q.V F. This leads 

8a o 

to a critical periodicity d c equal to --7-- for 
~ 2 c  o 

a i s  
the validity of eq. (ii). Here o =m~ 
the effective Bohr radius. Thus, in the re- 
gime in which eq. (115 holds, this is the gen- 
eralization of the anomalous acoustic plasmon 

of Das 5arma and Madhukar 12 to the case of a 

superlattioe. For q.d large, ~ reduces to the 

two-dimensional plasmon 3, Wp 2"D, since in this 

limit, the quantum wells are isolated from 
each other, 

The bandwidth is the difference between 
Eqs. (105 and (ii) and for GaAs with 

12 -2 = o O'068meZ; n~10 cm , e ° 12.35. d~2OOA, m* = 
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ber comparable to intersubband energies and 
longitudinal optical phonon energies. We also 
note from Fig. 2 that for a large range of qld 
the plasmon relation is outside of the elec- 
tron-hole continuum and thus should be a long 40 
lived excitation. We now include the effects 
of interaction with LO-phonon and magnetic ~LO -~- 
field. 

GaAs is a polar material with a longitudi- ~TO 4- 
nal optical phonon with energy 36.8 meV. De- 
pending on the value of the parameters occur- 30 : 

ring in Eq. (I0), the plasmon bandwidth can be 1 ~i 
above or below this value. Consequently, the 
plasmon and LO phonon can interact. We take 

for ~(~), the dielectric constant for the GaAs i: i 
well, which includes the LO phonon interac- oJ(me~ 
tion, the same form as used by Pinczuk, et al. 16 
for the single quantum well; namely, 20 ' I 

~ ~LO 2 ] 
1 1 1 + ---- (12) 

£(~) 8~ ~2-~LO2 

E 
where ~ : 1 - E---j- and ~ : 10.48, ~o = 

12.35, ~LO is the LO-phonon frequency; thus, 

= .151. 
In the formalism presented above, we in- 

clude electron-phonon interaction by replacing 
i/E_ by Eq. (12) in Eq. (4). The dielectric 
matrix is diagonalized as before and we obtain 
a collective plasmon-phonon mode with excita- 
tion energy, 

~2 2 + ~ 2 ±~LO2V - ~ 2) + 4e~i/32mp2 
= wLO p P 

2 
(13) 

where w is here the plasmon mode of the su- 
perlatt~ce given by Eq. (9). In Fig. 3, we 

plot Eq. (13) for d ~ 100A, n ~ 1012cm -2 

which sets the top of the plasmon band at 41 
meV which is higher than wLO. The dotted line 

is the bare plasmon and q,d is 0.13. In Fig. 
4, we take the top of the band to be 30 meV 

(d%200~) which is lower than ~LO" The effect of 
the coupling between the plasmon and LO phonon 
is seen to be quite strong leading to coupled 
plasmon-LO phonon modes. 

For the case of a magnetic field applied 
along the superlattice direction, we follow 

the analysis of Kobayashi, et al. 17 who con- 

sidered the qld = 0 limit. We extend their 
results to include finite ql d. For simplic- 
ity, we ignore the LO phonon interaction. 
With a magnetic field applied along the super- 
lattice, the electronJs motion in the plane 
becomes quantized into a series of Landau or- 
bits with energies (n + i/2bh~ c. The effect 
of this quantization leads to a polarization 

O(q,,,~) for a single well given by 

o 2 ~ m~ c 
(q"'~)= ~ n fn ~2-(m ~ )2" Jn+m,n (q-) 

c m>-n 
-- (14) 
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Figure 3. 

Plot of the coupled plasmon-phonon mode 
energies as a function of qld. The dotted 
line is the bare plasmon mode. The top of 
the bare plasmon band was taken to be 
41 meV and qi d = 0.13. 

where 

=/+• iq,,x x x 
Jnn,(q,) ~ e ~n<-~--) ~n'<T) dx 

(15) 

and f is the Fermi distribution function, £2 
n 

= ~/m*w c is the cyclotron orbit radius, %n(X) 
eH 

is the Landau wave function, and w c = ~ is 
the cyclotron energy. For q,,Z << i, we obtain 
for the coupled magneto-plasmon mode 

\ -2qd ] 
w2 = ~2 + (~2-D)2 l-e 

c p _ (±2-q,,dcosqld)+e-2q,,d 

(16) 
2.D 

where ~p is defined after Eq. (7). This 

agrees with Kobayashi, et al. for ql d = O. 
There are also other Bernstein type modes oc- 
curring at w = n~ c (n = 2,3 .... ); however, as 
shown in Ref. 16 the coupling to these modes 
is very weak. 
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Figure 4. 

Same as Figure 3, but here the top of the 
bare plasmon band was taken to be 30 meV. 

In conclusion, we have studied the collec- 
tive modes of a superlattice structure includ- 
ing electron-phonon and magnetic field inter- 
actions. In a future publication, we will 
consider the effects of a superlattice on the 
collective modes between quantum subbands (de- 
polarization and exciton effect), inclusion of 
subband wave functions, and the effect of fi- 
nite Bloch overlap between wells. Here, we 
have shown that the plasmon-dispersion rela- 
tion in a superlattice quantum well structure 
follows very simply from the determinant of 
the dielectric matrix. The simple 2-D plasmon 
dispersion relation is broadened into a band 

along the superlattice direction. The width 
of this band is adjustable simply by choosing 
appropriate parameters. Interaction of these 
modes with LO phonons and magnetic field lead 
to interesting hybrid modes that may be ob- 
servable by light scattering techniques. In 
order to get a finite q, a grating might be 
applied to the superlattice surface. The 
GaAs-GaAIAs superlattice structure appears to 
be an ideal system to test out these ideas. 
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