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A number of Krylov-subspace metheds and their applicability tothe drift-diffusion equations for semiconductor devices are
surveyed. Triangular (non-tensor-product) grids are appropriate for these highly nonsymmetric problems. The role of the
underlying discretization is considered, including both the traditional bax-method variant of the Scharfetter—Gummel scheme
and 2 new upwinding (streamline-diffusion-like) procedure. Several preconditioners are discussed, including a novel alternate-
block-factorization method. Graph coloring is used to enhance performance on vecior computers.

1. Introduction

The continuing miniaturization of integrated
circuit elements makes the conventional trial-and-
error approach through experiments increasingly
expensive and uneconomical. For this reason,
computer simulations offer an interesting and
challenging alternative. Such simulations allow

new devices to be designed on a computer, predict

a (possible) number of pathologies or shortcom-
ings, characterize current—voltage relations for
higher levels of simulation, and so forth. Device
simulation requires the solution of difficult sys-
tems of nonlinear partial differential equations
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(PDEs). The commonly used set of modeling
equations were introduced in 1950 by Van
Roosbroeck [1]. Since then, these drift—diffusion
equations have been popular for device analysis,
but only in the last decade has it become feasible
to solve the equations in two space dimensions.
While the numerical effort needed is rather chal-
Jenging, a number of effective methods have been
developed that make these important simulations
possible. There have been some books written on
the subject of device simulation [2-4] and the
proceedings of several thermatic meetings have
appeared.

We have considered a number of Krylov-sub-
space (conjugate-gradient-like) methods [5-7] ap-
plied to the so-called drift—diffusion equations.
Our approach involves specialized PDE discretiza-
tion schemes and non-tensor-product grids, result-
ing in nonlinear and linear systems of equations
that are difficult to solve. Based on our limited
experience, we currently believe that bi-conjugate
gradient methods coupled with specialized block
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iterations and preconditioning allow an efficient
safution of many device simulation problems,

Given the complexity of the subject and the
brevity of this paper, we will not describe the
device modeling problem in any detail [8]. Never-
theless, we believe that the matrices that arise
from these problems are not trivially solved by
. Krylav-subspace methods. We would welcome
further research into this specialized area. Hence,
we are planning to put some representative
matrices into the NETLIB collection [9], so that
researchers interested in iterative methods can ex-
periment with some new problems.

Section 2 presents the drift—diffusion equations
for device modeling and mentions the spatial-dis-
cretization techniques that are used. Section 3
describes some of the technique employed to solve
the nonlinear equations that arise. Section 4 dis-
cussions methods for the associated linear systems

of equations. Section 5 presents some computa-

tional results, for a MOS field-effect transistor
(MOSFET) and a Hall sensor, and draws some
conclusions.

2. The drift-diffusion equations for device modeling
2.1. The continuous problem

A number of device simulators have been de-
veloped that approximately solve the drift—diffu-
sion equations in a appropriate space—time do-
main, 2X[0, 7,] where 2 CR? {or, more re-
cently, 2C R?) and 7 is the final time of inter-
est, and with appropriate initial and boundary
conditions., The equations provide values for the
electrostatic potential, ¢(x, ), as well as the elec-
tron and hole carrier concentrations, n(x, r) and
p(x, 1), where x =§). The drift-diffusion equa-
tions [1] may be written as

g(¥, n, p)=—v{ewy) +g(n-p-N(x))
=0, (1)

] :
82(4% n, p)=CI§? gV-Jn—an(n, p)=os
(2)
on ) _
8:(¢. n, p) =g + VS, —qR,(n, p) =0,
(3)

where the electron and hole current densitieg are |

given by
Jn= 7qp’nnv¢+quzV”r [4]
Jp = 7qp‘pp Vltb - quVps (SJ !

respectively, and €, ¢, N and R, are the dielectrc
constant, electron charge, net impurity (doping;
concentration and recombination—generatigy
terms, respectively. In eqs. (4) and (5), py( x. i)
and Dy(x, V¢} are the mobilities and diffusig,
coefficients, respectively. In oxide regions, €gs.
(1)-(5) are replaced by

— v (evy) =0. (6) |

(In addition to v, # and p, currents flowing oy :

of boundary segments can be derived via line
integrals of current densities.)
Egs. (1}-(6) can be augmented by additiona|

Kirchhoff equations for lumped extrinsic circui; |

elements [8,10-12]. The equations have been ex
tended to include magnetic effects [13].

Egs. (1)-(6) are typically normalized by scaling
procedures, such as proposed by deMari [14.15] ar
Markovich [4] (also see ref. [3]). The form of
mobility and diffusion coefficients that appear in
egs. (4) and (5) are complicated functions and are
subject to some debate, see refs. [16,3,17]. Somgz

model forms for the recombination-generation

terms in eqgs. (2) and (3) are discussed, for exam-
ple, in refs. [16,3,17].

In this paper, we will primarily discuss the
static problem. That is, we will assume
on  dp
w0 g
unless otherwise noted. Eqs. (1)-(6) then represent
a coupled system of boundary-value problems.

We will not discuss the appropriate boundary
conditions for egs. (1)-(6) in any detail (see refs.
[2—4]). The boundary conditions are Dirichlet on
the terminal contacts and Neumann elsewhere.
(For example, the terminal contacts of a MOSFET
are at the source, gate, drain and substrate.)

Egs. (1})—(6} are written in terms of the primi-
tive variables, ¢, » and p. The primitive variables
have the advantage that (1) is nonlinear in i but
egs. (2) and (3) are linear in # and p, respectively,
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except for the recombination terms, R,, and pos-
sibly the mobility and diffusion coefficients. Dis-
advantages of the primitive variables include: (1)
the huge range of n and p; and (2) the necessity
of ensuring n>0 and p>0 computationally.
Another choice of variables is used when the
so-called Einstein relation holds. We will use tildes
above quantities to denote the deMari scaled ver-
sions of the quantities appearing in egs. (1)-(6).
The Einstein relation then amounts to the assump-
ion that D, =i, and the gquasi-Fermi variables,

¥, v and w, are defined as

i=e’", (8)
et | | G
The static drift—diffusion equations become .
Ay e T — e TV~ K =0, (10)
v (8, €7 v) — R, =0, Y
V--(—ﬁ.p ew_“;Vw) - f?p =0. (12) -

The advantages of writing the problem in terms of
quasi-Fermi levels include: (1) compression of the
range of the dependent variables; (2) a guarantee
that n >0 and p>{; and (3) the form of the
equations simplify somewhat as do the matrices.
The main disadvantage is that egs. (11) and (12)
are completely nonlinear in v and w, respectively.
A number of other choices of variables for this
problem has been suggested, such as the Slotboom
variables, exponentials of the quasi-Fermi varia-
bles and a vorticity / stream-function formulation.
We will largely confine our discussion to the
primitive variables, but refer the reader to refs.
[18,19,2,20,3,4] for a more detailed discussion:

2.2. The discrete problem

The domain £ is often irregular. Moreover,
sharp gradients occur in the doping profile, N, as
well as in the solution variables. In particular, N
may change by ten orders of magnitude in a small
spatial region. Generally, there is no expectation
that N and the solution variables change primarily
in one variable at a time, that is, YN need not be
primarily parallel 10 one of the coordinate axes

when || WA ||, is large. This implies that spatial
discretizations based on tensor-product grids tend
to waste grid points over a more general grid-gen-
eration procedure. (Tensor-product grids have
been used in a number of device simulators, for
example, see ref. [21].)

We have found general triangular grids to be
effective when 2 € R? is polygonal [19,22,10]. This
technology has been proven for single elliptic
equations in Bank’s PLTMG code [23,24]. The
advantages include: (1) the ability to deal with
sharp changes in the solution without realigning
the grid; (2) ease of locally refining the grid; and
(3) the use of substantially fewer grid points as
compared to tensor-product grids. The disad-
vantages include: (1) sensitivity to the angles in
the triangulation [23]; (2) the introduction of
grid-orientation effects [11]; and (3} an increase in
the implementation complexity. We believe the
advantages outweigh the disadvantages. These
techniques have been employed in the PADRE
device simulator being developed within AT&T
Bell Laboratories (which is a successor to the
DEVICE [8,10] and PISCES [26,27] simulators)
and the GENSIM simulator being developed at
the Integrated Systems Laboratory of the Swiss
Federal Institute of Technology (which is also a
successor to DEVICE).

The traditional method of discretizing egs.
(—(6) (or egs. (1)-(12) for that matter) is
through a box-method generalization [28] or a
finite-element scheme [18]. For the Poisson egs.
(1) and (6), either a box or finite-element discreti-
zation [28,25] can be used for discretization as
long as the charge terms, g(r —p — N), are well
represented. The difficult equations to discretize
are the continuity egs. (2)—(5). The problem is that
the solution may change dramatically over a small
interval; by small, we mean that there may be
dramatic changes over distances of @(1077) cm
while a linear dimension of 2 may be #(10™%)
cm. However, it is known that the current densi-
ties, Jy. in eqgs. (4) and (5) vary slowly - locally,
they can be approximated by a constant. Schar-
fetter and Gummel [29] took advantage of this
property to construct an exponentially-fitted
method that is exact in one-dimension if, on each
interval, p,, D, and J, are assumed constant.
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This method can be generalized to two (and three)
dimensions [18,10].

The Scharfetter—Gummel discretization in two
dimensions is known to be sensitive to the angles
in the triangulation {30,22]. For general polygonal
domains, it is difficult to insure that the triangula-
tion is nonobtuse (no triangle having a obtuse
angle), which is a sufficient condition for the
stability of the discretization. It is possible to
penerate a noncbtuse triangulation [31], but the
adaptive-grid techniques used make this approach
problematical. There is a corresponding problem
for tetrahedral grids in three dimensions, 2 C R>

[32]; it is extremely difficult to generate a graded -

tetrahedral mesh with specialized geometry prop-
erties to stabilize the Scharfetter-Gummel discre-
tization,

Given that the Scharfetter—-Gummel discretiza-
tion interacts poorly with the underlying triangu-
lation, some effort has been made to develop
another method that is much more resistant to
bad triangle properties [33]. This method is related
to the upwinded streamline-diffusion algorithm
[34]. It also resolves an important problem by
making it easy to accurately evaluate ¥y +J, on a
triangular grid; this quantity is often incorporated
in the mobilities, p,, and is difficult to approxi-
mate with Scharfetter—Gummel. This approach,
unlike Scharfetter—Gummel, can add an arbitrary
off-diagonal contribution to the linearized systems
that arise with Newton methods (section 3). Hence,
the additional stability of this discretization can
give rise to more poorly conditioned matrices,

3. Algorithms for the nonlinear problem

There are two basic approaches that have been
used to solve the discretized versions of egs. (1)—(6)
or (10)—(12): Newton-like and Gummel (Nonlin-
ear Gauss—Seidel) iterations. (We will refer to
these as the coupled and plug-in approaches, re-
spectively.) The nonlinear equations are of the
form:

(¢, n, p}=0, (13)
gy, n, p)=0, (14)
g:{¥, n, p)=0. (15)

The Newton-like (coupled) methods that e
have advocated in the past [35,18] are dampeg
methods for the solution of the coupled form o
eqs. {13}-(15),

g(z) =0, (16) |

where z=(¢", #', pT)T and g(z) = (gl(z)
£2(z), g3(z)". Given an initial guess z,, the
algorithm solves

8i Aze=—g (17
where g, = g(z,) and g, =¢"(z,), and then com.
putes an updated value

Ty = I+ 5,2, {18)
The damping parameter, 0 <5, < 1, is chosen to

satisfy a sufficient-decrease condition

s

> €445y, 19
gell oM (19)

‘where €, is the machine epsilon. There are vari-

ous strategies for selecting s, to satisfy eq. (19)
[35,36). This algorithm is known to be globally,
and quadratically, convergent if |[(g/} ' || <M <
oo and certain other technical assumptions are
met [35]. There is also a two-parameter method
where eq. (17) is replaced by

(getAcllgellf) Az = —g,. (20)

The one-parameter {egs. (17) and (18)) and two-
parameter (egs. (20) and (18)) damped-Newton
methods have been proven effective in device and
circuit simulation [18,36,8,10,37).

It is not necessary to solve eq. (17) or (20)
exactly. For example, eq. (17) can be replaced by
an inner iteration

M, {4z, — Azy i) = —(g Azp o1+ 8).
(21)

where Az, =0 and Az, =4z, for some m,
This inner iteration is terminated when

I8k Az + il _ ( [EA )‘*

2
Al 2ol ()

where 0 <a <1 and 0 < 8 <1 are experimentally
determined. This Newton-Richardson procedure
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is expected to converge superlinearly with a (1 + 8}
Q-rate of convergence if ||7-— M 'g/|l<p<1
or all ¥ [35] (also see ref. [38]). Less costly, but
more slowly convergent, methods may also be
gsed, such as a chord method [38].

The plug-in iteration due to Gummel is the

- second major approach [39] in the device model-

ing literature; it is known as nonlinear
Gauss—Seidel in the numerical analysis literature
(38]. The procedure starts with an initial guess
(%0 Mo» Po) aitd then improves the solution by
successively solving each equation in (13)-(15) by

g (¥es B Pi) = biess) =0, _ (23)
Sz((‘!’kﬂa Hys Pr) '_’"kﬂ) =0, (24)
g (1 Pasrs Pe) o Prar) =0 (25)

Here, the variables to the left of — are input and
the variable to the right is being solved for. This
amounts to applying a damped-Newton method to
eq. (23) for ¢, then solving eq. (24) for », and
finally solving eq. (25) for p. (Once again the same
technique is applicable to the system in guasi-
Fermi variables, egs. (10)-(12).) It is well-known
that the convergence of the this (decoupled) plug-in
iteration deteriorates when the equations are
tightly coupled, which corresponds to high-current
regimes.

Finally, it should be noted that including the
derivatives of the mobility functions, p, from egs.
(4) and (5), in the Jacobians can cause conver-
gence difficulties with the one-parameter damping
method, egs. (17) and (18). These difficulties arise

when the Jacobian and residual are evaluated for

an iterate far from the solution. Most codes ex-
clude the derivatives of the mobilities until the
iterates are sufficiently close to the solution. This
amounts to using an approximate Newton method
in either the coupled or plug-in case.

4. Algorithms for the linearized probiem

4.1. Data structure

Let a triangulation T of the domain { be given.
The discretization (section 2.2} provides linkages

(edges) between the vertices of 7. The mairices
that arise are nonsymmetric but the pattern of
nonzeros is symmetric, that is, the matrices are
said to be structurally symmetric (a,, # 0 implies
a,; # 0). The data structure that we have used for
some time {8,10] is a variant of the Yale Sparse
Matrix Package (YSMP) data structure [40,41].

Let 4 €R"™" be a sparse matrix associated
with the discretization of a single equation on T.
{(Here, n is the number of vertices in T not
associated with Dirichlet boundary conditions, that
is, n is the number of unknowns.) Let n be the
number of nonzeroes in the strict upper triangle of
A. Our data structure consists of a single integer
array JA of length n + # + 1 and a real array A of
length » + 1 if the matrix is diagonal, 7 +n + 1 if
the matrix is (value} symmetric, and 25 +n + 1 if
the matrix is nonsymmetric.

Let r, be the number of nonzeroes in the strict
upper triangular part of row { so 5 =2X]_,r. Then
the entries of JA and A are defined as follows:

JA,=n+2, (26)

JA,,  =JA,+r, forl<i<n, (27)

A=a, forl<i<n, (28)
—1 for diagonal matrices,

A, =00 for symmetric matrices, (29)
] for nonsymmetric matrices,

JA, =/ (column index of a,;)
for JA, <k <JA,,,,1<i<n. (30)

Ag=a;; forJA;<k<JA.,,1<i<n, (31)

and if the matrix is not symmetric

Apap=a; forJA, <k<JA,,, 1<i<n. (32)

JA, through JA ., capture the same informa-
tion as YSMP’s 1A array. The remainder of JA
corresponds to YSMP’'s JA array for symmetric
matrices. Since A has a symmetric nonzero struc-
ture, the column indices for the upper triangle are
identical to the row indices for the lower triangle
and, hence, need not be duplicated. The matrix
type is specified by A, .. ‘In A, the diagonal is
stored first, followed by the strict upper triangle
stored row-wise. If the matrix is nonsymmetric,
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the strict lower triangle stored column-wise com-
pletes A.

Up to this point, we have discussed storing an
AeR"™" that arises from the discretization of a
single elliptic equation. The semiconductor equa-
tions are a coupled system of 3 equations so the
global Jacobian associated with eq. (16) is a 31 X
31 matrix,

Al‘l A12 A13
G=|4dy Ap Ay
Ay Ay Ay

(33)

With the traditional YSMP data structure, JA
would be expanded to include the grid connectiv-
ity and equation interdependence embodied in G.
With our data structure, JA only represents the
grid connectivity; rather, there are 9 (3x3) 4
arrays that capture the corresponding elements of
A;; from above. It is also possible to specialize the
type of each 4, in eq. (33) above so some can be
diagonal, symmetric or nonsymmetric.

In earlier work, we have discussed how this

data structure facilitates a high performance sparse.

direct solver, based on Crout reducticn [6], on a
vector computer [8,10]. We also discussed the ap-
plication of such procedures to general routines
for forming Gv or G'v given v, computing incom-
plete factorizations [42—44] (also see refs. [5,45]),
and for preconditioned ORTHOMIN acceleration
[46] (also see refs. [5,7]).

Preconditioned iterative methods do not always
perform well on vector architectures, such as the
Cray X-MP. In 1932, Schreiber and Tang sug-
gested graph coloring [47] as a method of vectoriz-
ing preconditioned Krylov-subspace methods [48]
{also see refs. [49-51]). Given the grid connectiv-
ity, we color the graph associated with a single
equation using a ‘greedy’ algorithm [47]. This re-
sults in a block matrix with tightly banded blocks
[49] and is highly vectorizable. On a single
processor of a Cray X-MP, ‘coloring” can decrease
processor times by over a factor of ten; this run-
time improvement overcomes the possible increase
in the number of iterations necessary because of
the reordering [49,50,52]. The coloring ideas can
be extended to the block system, eq. (33).

4.2, Irerative methods

A number of Krylov-subspace methods gy,
been suggested for solving a nonsymmetric sysiey
of linear eguations

These methods are all based on forming Ap or
A'p, given v, and include: BICG [53,54]. ORTHQ.
MIN [46], IOM [55,56], GCR [5], GMRES [57
CGS [538], and many others as well as extensioy
to the basic methods [5,7]. We will not diseyg
each methed m detail, but note that a number of
these methods have been applied to the drift—djf.
fusion equations [59,22,60]. Flman [3] and Saag
and Schuliz [54,7] have developed an appropriate
framework for studying the various methods.
Until recently, we favored the ORTHOMIN(%)
algorithm, possibly increasing the number of back
vectors & when convergence difficulties arise. The
method has a local minimization property and is
simple to implement. There is substantial interas
in the GMRES algorithm, which also has a nice
local minimization property. Moreover, Kerkho-
ven and Saad [60] have produced some interesting
results using GMRES( k) and suggested a nonlin-
ear variant. Hence, we have conducted a study of
the methods listed above as applied to the semi-
conductor equations.
. We summarize our experience here, although
section 5 describes some of our computational
experiments. The BICG and CGS algorithms are
remarkably robust, even at the start of the nonlin-
ear iteration (coupled Newton or plug-in — see
section 3} when the matrices are poorly condi-
tioned. The other algorithms sometimes fail to
converge for hard problems unless a large number
of back vectors are included, such as GMRES(%)
for £ =35 or 10 [60]. We believe that our triangular
(non-tensor-product) grids, discretization methods
(section 2.2), ordering techniques (section 4.3} and
variable mobilities, u,, make these equations ex-

tremely difficult to solve.

Given our experience, we will summarize the
BICG and CGS algorithms. Let x, be the given
initial solution guess and set ry = b — Ax,. Follow-
ing ref. [54], we note that the BICG method i

deri\’ed from the
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.ved from the Lanczos algorithm [61] and pro-

dert .

duces & solution, x4 + z,, such that z, €
=1

span{ 7o: Args ..., A" ') and (5 — Az,) L

span{ To: A" (ATY" ). The algorithm, as
prescnted by Fletcher [53], starts by setting j, = 7
The following is then iterated for & =0,

15 g?p r[:;ntil done:

w,= e P/ PaA By (35)°
Xpa1 = Xe T O Dy {36)
Al o, Apy, (37}
Fes1= e ™ a0 ATpys - (38)
Bk-‘="kT+1Fk»1/’”;-st _ : (39)
Prs1 =Tes1 T B by (40)
Feo1 =Fert T BB (41)

This procedure compuies

m

x, =X+ 2 AT ©(42)

=1

such that, for j=1, 2,...,m,

oom T B
(TO_A > YiAi_l"U] ((AT)j_l"U) =0. - (43)
i=1
The preconditioned form of this algorithm re-
quires two matrix multiplications per iteration and
six vectors of length n. (See refs. [53,54} for fur-
ther details regarding BICG.)

The CGS algorithm essentially squares the apti-

mzl polynomial in eq. (43} but requires an ad-
ditional #-vector [58,59]. For completeness, we
now describe the algorithm in some detail. Let

go=p_; =0. The following is then iterated for

k=0,1,2,... until done:
T .
iy Py if k=0,
B= . T . (44)
(ro e )/( o Fe o 1) otherwise,
he=re+ B, _ (43)
Pr=1, + B g + By Pin), (46)
M= 1o T/ AD (47}
By =ty — o Ap,, (48)
rk+]=rk_akA(uk+Qk+1)v {49)

X1 =X + o (1 + guy 1) (50)

The advantages of the bi-conjugate methods
include: (1) simple recurrence relations; (2) (low)
fixed storage requirements; and (3) extreme
robustness. The low storage requirements are be-
coming more important as three-dimensional
simulators are being constructed. The disad-
vantages include: (1) no local descent property so
termination criteria can be subtle; and (2) less
satisfying theoretical understanding. Nevertheless,
we believe the bi-conjugate methods are to be
preferred for these problems.

4.3. Preconditioners

We will now mention three preconditioners that
may be used to precondition Krylov-space al-
gorithms: (1) SSOR [28]; (2) incomplete factoriza-
tions (ILU) [42-44,545]; and (3) an alternate-
block factorization (ABF) [62]. (Appropriate mod-
ified incomplete factorizations represent another
possible class of preconditioners.) We normally
precondition on the right so the system is of the
form:

Ax=[AP][P x| =Ay=b. (51)

Our current implementations of SSOR and incom-
plete factorization are based on the ideas pre-
sented in section 4.1 and refs. [8,63,10]. Hence, we
will not go into detail here. Note that our non-
tensor-product grids make line SSOR precondi-
tioners [59] less attractive.

Let us now consider the ABF idea, proposed by
Bank and Smith, by examining a 2X 2 block
system as would arise from a system of two partial
differential equations,

[An Ay, x1‘= by’ (57)
Ay Az |1 Xy ’ h

by
where each 4,, € R"*". Let DeR*"**" be the
block 2 X 2 matrix made up of the diagonals of
the blecks, that is,

_ [diag(A”)

diag( A;,)

diag( Az ) . (33)

diag( Ay}
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There is a permutation matrix, P, such that

An Ay Ay,
A=papr=|n Az ’I?"—, (54)
A;m fi‘nz A~m.

where
EU:[(AH}U (Alz)u:leﬂlxz. (5
(Azl)u (Alz)!j

Here, A is the matrix blocked by equation while A
is blocked by grid point; A represents the alrer-
nate blocking, Let

D= PDPT. (56)

Obviously, D' can be computed using dense
matrix techniques since it consists of 2 X 2 matrices
on its diagonal. Assuming D' exists, the ABF
preconditioned matrix is

AD '=A4(PTDP)

(A11D22_A]2D21)6 (A12D11 —A-“D]'z)ﬁ
(Alezz —A22D2])8 (Azan - A21D12)8 |
(57)
where
6=(D11D22_‘D21D12}71 (58)

The basic idea of ABF is to partially decouple
the system by reducing the effect of the off-diago-
nal blocks. For the one-carrier semiconductor
equations, the matrix in eq. (52) becomes

-A 7
-l =
where A is a discrete Laplacian, M is symmetric
and positive definite because of physical consider-
ations, and € is a discretization of the
convection-diffusion term that arises from the
drift-diffusion equation. For a tightly coupled
system, the effect of the preconditioner given by
eqs. (57) and (58) is to de-emphasize the nonsym-
metric portions of the diagonal blocks in eq. (59)
while reducing the size of the off-diagonal blocks.

We will discuss ABF in more detail and Zene,.

ality, including a nonlinear variant, later [62).
SSOR and ILU are applicable as precong;,

tioners for the linear systems that arise from eithey

the nonlinear plug-in or coupled Newton Methg |

(section 3). The ABF preconditioner is though
applicable to the coupled Newton method sip,
the underlying linear system then has a natyy
3 X 3 block structure; in that case, we always solye
the preconditioned system with (3 X 3) blog
Gauss—Seidel. A sparse direct or preconditione

iterative method is used for the inner Gauss-Seidg :

solves arising from the coupled-ABF procedure,

5. Applications and conclusions

Before discussing applications, let us conside
some of the details of the specific algorithms
applied. With one exception, the equations are
discretized using the Scharfetter—Gummel methag
{section 2.1). The one-parameter damping methed,
eqs. (17) and (18), is used for both the coupled-
Newton and plug-in nonlinear algorithms (section
3). The nonlinear iterations are terminated when z
relative 2-norm error of 10~ is obtained in the
solutions. The Newton-Richardson methaod, egs.
(21) and (22), is used to control the number of
Gauss—Seidel iterations for the coupled-ABF
method (section 4). After limited experimentation,
we currently believe that #=0 and a modest
value of «, say 0.5 <a <1, are the appropriate
values to use in eq. (22); by this, we mean values
that minimize the overall nonlinear solve time. We

only show results for the BICG and CGS al

gorithms as the linear solvers for both plug-in and
the Gauss—Seidel blocks in coupled-ABF. The
BICG and CGS algorithms are stopped when 1
scaled 2-norm residual is less than 10°%; this
could be improved. The nonlinear iterative meth-
ods are all started with an tnitial guess based ona
physically-motivated ‘quasi-neutral’ approxims-
tion. In each case, two initial plug-in loops are
used to ‘smooth’ the initial guess, but the work
required for this smoothing procedure is not in-
cluded in the reported results. (In practice, it is
common to use 5 or 10 plug-in loops to smooth
the initial guess before a coupled Newton al

gorithm is a
fied by Ker
ally Impro
method.) W
the metheds
{wo SEMLCOTY
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gorithim is applied, which h:}s recently been justi-
fied DY Kerkhoven [64]; this procedure substan-
jally improves the performance of the coupled
method.) We will now consider the application of
the methods described above to the simulation of
\wo semiconductor devices.

The first device simulated is a 0.5 pm MOSFET
with a structure typical for an advanced submi-
cron YLSI technology [65]. The boundary condi-
tions associated with egs. (1)-(6) are such that the
MOSFET is in saturation, a high-current state
that is difficult for the plug-in iteration. The un-
derlying spatial grnid is a typical one for the
pumerical simulation of a single two-dimensional
device. In table 1 we have summarized the im-
portant data as obtained for solving a static prob-
lem using different iteration schemes. The
nomenclature used in the table is simple: “cou-
pled” and “plug-in"” refer to the nonlinear iter-
ation schemes and, in some of the cases, ABF has
been applied as an outer conditioner. The solution
of the linear system of equations has been achieved
by either sparse direct or iterative methods with
an ILU preconditioner. For the coupled case, the
entry in the *Nonlinear iterations” column is just
the number of coupled Newton iterations; for the
plug-in case, the entry is just the number of plug-in
iterations. The “Normalized run time” column
shows CPU times normalized by the time required
for the coupled Newton algorithm with sparse
direct methods — remember that the timings are
subject to substantial measurement error and the
detail of the implementation and machine archi-
tecture.

Table 1

The results of table 1 ¢an be analyzed in terms
of the number of nonlinear and linear iterations as
well as the normalized run time. Given the rela-
tively small number of grid points, the plug-in
methods are attractive even if sparse direct meth-
ods are used. However, for a more demanding
problem like a bipolar transistor in the high-injec-
tion regime or CMOS latch-up, the coupled direct
algorithm can outperform the plug-in direct al-
gorithm since the convergence behavior of plug-in
deteriorates. The coupled and plug-in procedures
based on iterative methods for the linear systems
are obviously attractive. The coupled-ABF block-
iterative method is attractive, even for the case of
a direct solution of the linearized blocks in the
(auss—Seidel inner iteration.

An increase in the number of grid points shifts
the advantage more in direction of plug-in and
coupled-ABF block-iterative methods (table 2). In
this case, the ABF approach with inner BICG or
CGS iterations is the clear winner. The CGS al-
gorithm takes fewer iterations than BICG in com-
parable cases in both tables 1 and 2, but there is
little observed difference in CPU time for our
particular implementation and computer.

The third example (table 3) involves a Hall
sensor under conditions of high-current flow [66].
This sensor is basically a uniformly 10'S-doped
structure in a magnetic field of one Tesla biased in
a high-current regime. The addition of magnetic
field terms to the semiconductor equations adds
small changes [13,33]. The uniformity of the de-
vice makes the outer ABF conditioning particu-
larly effective; the matrices arising in the

Performance of various algorithms for a 0.5 pm MOSFET in saturation. The underlying two-dimensional grid has 1163 vertices. All
computer times are from an Alliant FX /80 with 5 computational elements, 256 Kb caches, and 112 Mb of real memory run under
Concentrix version 4 with the 4.0.28 FORTRAN compiler. The computations were done in double-precision arithmetic

Nonlinear Outer Linear Inner Nonlinear Linear Normalized
algorithm conditioner algorithm _conditioner iterations iteralions run time
coupled direct 14 14 1.00

plug-in direct 42 217 0.95

plug-in BICG ILU 42 6145 0.58
plug-in : CGS ILU 42 4775 0.55
coupled ABF direct 41 123 0.69
coupled ABF BICG ILU 41 4133 0.53
toupled ABF CGS LU 41 3113 0.49
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Table 2

Simulations of the 0.5 pm MOSFET on a finer grid, consisting of 2765 vertices

Nonlinear Outer Linear Inner Nonlinear Linear Normalized
algorithm conditioner algorithm conditioner Llerations iterations run time
coupled direct 12 12 1.60
plug-in direct 41 200 0.83
plug-in BICG ILU 41 8387 0.42
plug-in - CGs ILU 41 5698 0.37
coupled ABF direct 26 78 0.41
coupled ABF BICG ILU 26 3346 0.26
coupled ABF " CGS LU 26 1828 0.24

coupled-direct algorithm are poorly conditioned,
which may be seen in the relatively large number
of nonlinear iterations required. The plug-in al-
gorithms are not competitive with the coupled
algorithms for this problem. As an additional re-
sult, we have included figures for the plug-in case
using the new discretization for the continuity

equations introduced in ref. [33]. This discreti-

zation, while offering many advantages such as a
less severe angle dependence (section 2.2), can
produce matrices with considerably higher condi-
tion numbers than for the conventional Schar-

fetter-Gummel case. In this example, the new.

discretization only exhibits a higher cost per itera-
tion as compared to the Scharfetter—Gummel dis-
cretization.

Our general experience is that CGS (section
4.2).is as robust as BICG and CGS usually takes
fewer iterations so it is the method of choice.
However, BICG is only marginally slower than
CGS in overall CPU time on the Alliant FX /80

Table 3

we used for our experiments. ORTHOMIN¢ k)
and GMRES(4} seem to be less robust for these
difficult problems and may require more storage
than BICG, but further experimentation is needeq.
The non-tensor-product grids and other aspects of
our simulations pose nontrivial problems. We wili
defer a discussion of Krylov-subspace algorithmg
applied to the linearized equations obtained from
the coupled method, without ABF, to a later paper
[62].

From the results we have seen through the
examples above, several conclusions can be drawn
that .shed light on the performance of different
iteration schemes used in device simulation. It
seems clear that the use of physically-based.,
outer-conditioning schemes such as ABF offer a
clear advantage over the conventional coupled or
plug-in iterative methods. We estimate that this
advantage will be even larger in simulations with
transient conditions or problems involving three
spatial dimensions. For the linear eguations. the

Simulations of a magnetosensor on a grid consisting of 1173 vertices. The results marked with * use the new discretization [33].

rather than Scharfetter-Gummel

Nonlinear Quter Linear Inner MNonlinear Linear Normalized
algorithm conditioner algorithm conditioner iterations iterations run time
coupled direct 20 20 1.00
plug-in direct 104 St5 192
plug-in BICG ILU 104 4279 0.61
plug-in BICG ILU 101 4283 0.89 *
plug-in CGS LU 104 2583 0.68
plug-in . CGS ILYU 101 2455 087 *
coupled ABF direct 10 30 0.14
coupled ABF BICG - ILU 10 693 0.09
coupled ABF CGS ILU 10 413 0.09

with Mark Pin
work was supp
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