phys. stat. sol. (a) 89, 617 (1985)

Subject classification: 20.1; 13.1; 22.1.2

Laboratoire de Phase, Centre de Recherches Nucleaires, Strasbourg¹)

Determination of the Electron Effective Mass and Relaxation Time in Heavily Doped Silicon

 $\mathbf{B}\mathbf{y}$

A. Slaoui and P. Siffert

Two models are considered to describe the near infrared (NIR) reflectance spectra of doped silicon. By comparing these calculated results to those found experimentally in the wavelength range from 0.8 to 2.6 μ m, basic physical constants of silicon, like effective electron mass m_e^* and relaxation time τ may be determined. This procedure is applied to heavily doped silicon, obtained by laser annealing of high dose dopant implantation. A new relationship is established between m_e^* and τ for these hyperdoped silicon layers. Differences in behaviour as a function of doping level are observed above 10^{21} cm⁻³, which will be discussed.

Dans ce travail, nous proposons deux modèles pour décrire les spectres de reflectivité dans la région proche infrarouge du silicium dopé. En comparant ces résultats calculés à ceux trouvés expérimentalement dans l'intervalle (0,8 à 2,6 μ m), des constantes physiques de base telles que la masse effective des électrons m_e^* et le temps de relaxation des porteurs peuvent être déterminées. Cette procédure a été appliquée au silicium hyperdopé obtenu par recuit laser de silicium implanté à forte dose. Pour les niveaux de dopage au dessus de 10^{21} cm⁻³, la masse effective augmente sensiblement alors que le temps de relaxation reste pratiquement constant. Ces résultats sont largement discutés.

1. Introduction

Infrared techniques are widely used both in semiconductor research and industry to get information of impurity level and band structure. In particular, transmittance and plasma reflectivity experiments allow the determination of the effective mass of electrons m_e^* and for probing the dopant profile parameters [1 to 6].

However, in silicon, by contrast to many other semiconductors [2], high carrier densities are needed to observe an effect on the reflectivity spectra, which may indicate a change in the effective mass.

Recently, new doping procedures, such as ion implantation followed by pulsed laser annealing, have allowed to reach active impurity concentrations in silicon well above the normal equilibrium solubility [7].

The goal of this paper is to show that it is possible to determine the electron effective mass and relaxation time accurately simply from the measurement of the reflectivity spectra in the NIR region for these heavily doped silicon samples. However, in this case, a theoretical model of the reflectance of an optically inhomogeneous material is needed. In the literature at least two models based on Drude's theory are, generally, considered:

(i) the first model assumes an almost uniform doped layer and determines m_e^* from the relationship giving the plasma frequency as a function of carrier concentration [2, 3]. It should be noticed that this model neglects the imaginary dielectric constant, which can be important at the experimentally determined plasma frequency;

¹⁾ B.P. 20, F-67037 Strasbourg Cédex, France.

618 A. Slaoui and P. Siffert

(ii) the second model assumes that the carrier profile versus depth is modelled by a sequence of uniformly doped layers [4, 6].

In this paper, we used the two former models, with the following modifications:

- (i) in the first model, we took into account also the imaginary part of the dielectric constant;
- (ii) in the second model, we considered that the active carrier concentration profile after implantation and annealing varies exponentially with depth.

These calculated values have been compared to the experimental spectra and we deduced m_e^* and τ as a function of carrier concentration. These values are discussed and compared to other results given in the literature [1, 3].

2. Experimental Conditions

Polished 1.5 Ω cm p-type, (100)-oriented silicon wafers were implanted with As ions at 80 keV and doses up to 5×10^{16} cm⁻². The samples were annealed with a repetitive Q-switched YAG laser ($\lambda = 0.53 \,\mu\text{m}$), having a beam diameter of 100 μ m, a pulse duration of 100 μ s, and a repetition rate up to 5 kHz at 2.5 J/cm².

Sheet resistivity measurements indicated very low values, showing a good doping incorporation in the lattice. Rutherford backscattering measurements (RBS) confirmed the high concentration of dopants, well in excess of the thermodynamic solubility limit [7].

The optical reflectivity measurements were performed in the 0.8 to $2.5\,\mu m$ range, using a Beckmann spectrometer, under nearly normal incidence. Typical results are shown on Fig. 1. It appears that the wavelength at which the reflectivity curve shows a minimum λ_{min} shifts towards shorter wavelength when the implanted dose (or the active carrier concentration) is increased.

3. Analysis of the Results

3.1 Determination of the effective mass and relaxation time

The presence of the arsenic atoms in subtitutional silicon lattice sites leaves electrons in the conduction band. According to the Drude theory [8], the dispersion and absorption of free carriers are given in terms of the real and imaginary parts of the dielectric constant as follows:

$$\varepsilon^*(\omega, x) = \varepsilon_r(\omega, x) + i\varepsilon_i(\omega, x)$$

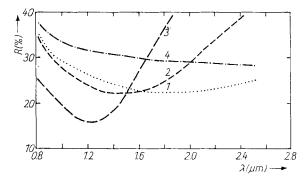


Fig. 1. Reflectivity spectra of ion-implanted (As⁺, 80 keV) Si at several doses ((1) 5×10^{15} , (2) 10^{16} , (3) 5×10^{15} cm⁻²) and YAG laser annealing. The reflectivity spectrum of undoped Si is also reported (4)

where

$$egin{align} arepsilon_{
m r}(\omega,x) &= arepsilon_{\infty} - rac{4\pi N(x)\ e^2 au^2}{m_{
m e}^*(\omega^2 au^2+1)}, \ arepsilon_{
m i}(\omega,x) &= rac{4\pi N(x)\ e^2 au}{m_{
m e}^*(\omega^2 au^2+1)}. \end{align}$$

In these equation, N(x) is the density of free carriers, m_e^* the electron effective mass, and τ the relaxation time, ε_{∞} denotes the dielectric constant due to the highly bound core electrons and ω is the angular frequency.

For two situations of doping versus depth — uniform or exponential — the model yields the following results:

3.1.1 Inhomogeneous doping

In this case the model is founded upon the solution of the following equation:

$$\frac{\mathrm{d}^2 E_y(x)}{\mathrm{d}x^2} + \left(\frac{\omega}{c}\right)^2 \varepsilon^*(\omega, x) E_y(x) = 0 \tag{2}$$

which describes the propagation of the light in the medium, where E_y is the intensity of the electric field.

As the arsenic concentration profile, after implantation and pulsed laser annealing, has been found experimentally to be asymmetric and non-homogeneous in depth, especially by SIMS [3, 9], we used for N(x) the following expression:

$$N(x) = N_0 + N_{\text{max}} \exp \left[-\alpha (x - d)^2 \right] \quad \text{for} \quad x \ge d ,$$
 $N(x) = N_0 + N_{\text{max}} \exp \left[-\beta (x - d)^2 \right] \quad \text{for} \quad x < d ,$
(3)

where N_0 is the doping of the subtrate, $N_{\rm max}$ the maximum concentration of dopants in the profile, and d the depth location of this maximum from the surface. α and β are adjustable parameters.

The value of the relaxation time τ appearing in (1) has often been assumed constant in the literature [1 to 4]. Here, we used the values of τ given empirically from Lambert's measurements [10]. The solution of (2) for this model yields the following value for the reflection coefficient [11]:

$$R(\omega) = \frac{[V(0) - 1]^2 + (cW(0)/\omega)^2}{[V(0) + 1]^2 + (cW(0)/\omega)^2}.$$
(4)

This coefficient depends on two unknown quantities V and W at the surface (x=0), determined from the differential equations

$$\frac{\mathrm{d}W}{\mathrm{d}x} + W^2 - \left(\frac{\omega}{c}\right)^2 [V^2 - \varepsilon_{\mathrm{r}}(\omega, x)] = 0 , \qquad \frac{\mathrm{d}V}{\mathrm{d}x} + 2WV - \left(\frac{\omega}{c}\right)^2 \varepsilon_{\mathrm{i}}(\omega, x) = 0 . \tag{5}$$

The Milne numerical resolution method of these equations allows the calculation of V and W along the doping profile: one begins the calculation from the substrate, where the concentration N is constant and step by step one progresses towards the surface [11].

The procedure to analyze the experimental data is, then, as follows:

(i) assume a dopant profile characterized by the α , β , d, N_{max} parameters, which are estimated from the SIMS profile [9, 11];

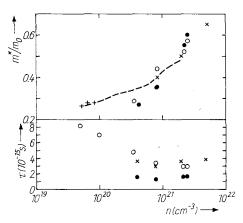


Fig. 2. Effective mass and relaxation time of free carriers as a function of carrier concentration for ion-implanted (As⁺, 80 keV) Si after pulsed YAG laser annealing. The dashed line gives the effective mass of electrons calculated from the band structure data [12]; + [1], \times [3], \bullet homogeneous profile, \circ inhomogeneous profile

(ii) suppose a relaxation time τ_0 (for $N>10^{21}~{\rm cm}^{-3}$) and an effective mass m_e^* ;

(iii) calculate the V(0) and W(0) quantities for each wavelength and deduce $R(\omega)$;

(iv) adjust τ_0 and m_e^* to minimize the deviation between the experimental and theoretical spectra for each dose value.

The parameters determined by following this procedure are shown on Fig. 2. It appears that $m_{\rm e}^*$ increases from $0.288m_0$ for $N_{\rm e}=3.5\times 10^{20}~{\rm cm^{-3}}$ to $0.57m_0$ for $N_{\rm e}=2.5\times 10^{21}~{\rm cm^{-3}}$ (m_0 is the free-electron mass). The relaxation time decreases with higher doping levels, and saturates at $\tau_0=3\times 10^{-15}~{\rm s}$, for $N_{\rm e}>10^{21}~{\rm cm^{-3}}$.

3.1.2 Uniform doping

For N(x) = N, we have

$$1 + (\omega^2 \tau^2)^{-1} \approx 1$$
 and $\alpha \omega_0^2 = 4\pi N e^2 (m_e^*)^{-1}$,

where ω_0 is a constant frequency.

Consequently, (1) becomes

$$\varepsilon_{\rm r} = \varepsilon_{\infty} - \frac{\alpha \omega_0^2}{\omega^2}, \qquad \varepsilon_{\rm i} = \frac{\alpha \omega_0^2}{\omega^3 \tau}.$$
(6)

We can write (6) as

$$\varepsilon_{\rm r} = \varepsilon_{\infty} - \alpha \left(\frac{\omega_0 \tau}{\alpha}\right)^{2/3} \varepsilon_{\rm i}^{2/3} \tag{7}$$

which gives a relation between $\dot{\varepsilon}_r$ and ε_i .

Another calculation [11] allows to write a second relation between ε_r and ε_i

$$\varepsilon_{\rm r} = -x + 0.5 \left[\frac{1-R}{1+R} \left(1+x \right) \right]^2 \qquad x^2 = \varepsilon_{\rm r}^2 + \varepsilon_{\rm i}^2 . \tag{8}$$

This equation (8) allows to draw the curves $(\varepsilon_r, \varepsilon_1^{2/3})$ for a fixed R-value. Under these conditions, m_e^* and τ are obtained as follows:

- (i) for each dose N, the curve $(\varepsilon_r, \varepsilon_i^{2/3})$ at R_{\min} corresponding to λ_{\min} , is drawn;
- (ii) at the point $\varepsilon_{\rm r} = \varepsilon_{\infty}$ and $\varepsilon_{\rm i} = 0$ the tangent to this curve is traced;

(iii) we deduce the following parameters:

$$A = \alpha^{1/3} (\omega_0 \tau)^{2/3} , \qquad B = \left(\frac{\omega_0}{\omega_{\min}}\right) \left(\frac{\alpha}{\omega_0 \tau}\right)^{2/3}$$
 (9)

which allow to determine α and τ and, consequently, m_e^* and τ ;

(iv) finally, we check that for these values the experimental reflectance spectrum is formed.

The values of m_e^* and τ determined in this manner are reported also in Fig. 2. It appears that the behaviour of m_e^* is similar to that found in Section 3.1.1. However, τ remains nearly constant when the doping level increases.

3.2 Discussion

As indicated above, the values of τ and m_e^* as determined by the two models are shown on Fig. 2 as function of the silicon doping level. On the same figure we report previously published results [1, 3] for arsenic-doped samples. In all cases, a significant and continuous increase of m_e^* is observed, starting at a doping level of about 8×10^{20} cm⁻³.

Recently, optical effective masses of electrons in silicon have been calculated [12] for carrier densities up to 2×10^{21} cm⁻³. These results are also shown on Fig. 2. It appears that a satisfactory agreement with our experimental data is observed.

The increase of m_e^* at high carrier concentration has often been attributed to electrons occupying a higher energy (and heavier mass) conduction-band valley, located about 0.15 eV above the conduction-band minimum. Indeed, the Fermi level reached a new valley of the conduction band, when the carrier concentration attained about 5×10^{20} cm⁻³, values beyond which m_e^* starts to increase. However, recently van Driel [12] claimed that the second band does not have a sufficiently large density of states to influence the mass value. He suggested that the electron mass behaviour, which is observed experimentally, occurs primarly because of increasing warping of the (low-density) ellipsoidal constant energy surfaces with increasing Fermi energy. This author has shown that the constant energy contour of the lower conduction band at the x point [13] has an ellipsoidal shape for the low Fermi energy and becomes more warped when this energy increases. To decide which model is correct, more precise calculations of the density of states are needed.

The optical relaxation time remains nearly constant with increasing doping (bottom of Fig. 2). Here, the main competing mechanisms are scattering by acoustic vibrations of the lattice and scattering by ionized impurity ions. As the first process is independent of carrier concentration N, while the second depends on it, it seems to us that the dominant process in the heavily doped n-type silicon is the scattering by acoustic vibrations. The absorption measurements seem to confirm this interpretation [14].

4. Conclusion

Physical fundamental constants, such as effective mass and relaxation time have been determined as a function of the free-carrier concentration, up to very high doping levels, which became possible by combining ion implantation and pulsed laser annealing. The experimental approach used was NIR reflectivity measurements on the heavily doped silicon.

The increase of m_e^* above $N \ge 10^{21}$ cm⁻³ can result either from the filling of a new valley, or to the warping of the conduction band.

The dominant scattering process in the heavily doped n-type silicon is due to acoustic vibrations.

References

- [1] L. E. HOWARTH and J. F. GILBERT, J. appl. Phys. 34, 236 (1963).
- [2] W. G. SPITZER and H. Y. FAN, Phys. Rev. 106, 882 (1957).
- [3] M. MIYAO, T. MOTOOKA, N. NATSUAKI, and T. TOKUYAMA, Solid State Commun. 37, 605 (1980).
- [4] H. Engstrom, J. appl. Phys. 51, 5245 (1980).
- [5] M. PAWLIK, private communication.
- [6] H. H. WAGNER and R. R. SCHAEFEB, J. appl. Phys. 50, 2697 (1979).
- [7] A. Slaoui, E. Forgarassy, J. C. Muller, and P. Siffert, J. Physique 44, C5-65, 1983.
- [8] T. S. Moss, Optical Properties of Semiconductors, Academic Press, 1959.
- [9] N. NATSUAKI, M. TAMURA, and T. TOKUYAMA, J. appl. Phys. 51, 3373 (1980).
- [10] L. M. LAMBERT, J. appl. Phys. 43, 4612 (1972).
- [11] A. Slaoui, 3° cycle thesis, Louis Pasteur University, Strasbourg 1984.
- [12] H. M. VAN DRIEL, Appl. Phys. Letters 44, 618 (1984).
- [13] J. R. CHELIKOWSKY and M. L. COHEN, Phys. Rev. B 14, 556 (1976).
- [14] L. N. Streltsov and V. V. Titov, Soviet Physics Semicond. 4, 605 (1970).

(Received January 17, 1985)