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A b s t r a c t - - I n  this note we show how to use the 2D perspective projection of a rectangle of unknown size 
and position in 3D space to determine the camera look angle parameters relative to the plans of the 
rectangle. All equations are simple. In addition, if the size of the rectangle is known, it is possible to 
compute the exact 3D coordinates of the rectangle. 
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l .  INTRODUCTION 

Determination of surface orientation is one of the 
important tasks of a computer vision system. In this 
note we show that there is sufficient information 
in the 2D perspective projection of a rectangle of 
unknown size in 3D space to determine the camera 
look angle parameters. This in essence gives the 
relationship of surface normal of rectangle to camera 
viewing direction. We also show that if the size of the 
rectangle is given, then its exact 3D coordinates can 
easily be computed. 

In photogrammetry it is widely known that given 
the coordinates of three 3D points and the corres- 
ponding positions of their perspective projection, then 
it is possible to compute the position of the camera 
as well as its look direction. A complete set of such 
relationships for a triangle of 3D points is given in 
Fischler and Bolles. 12) Certainly, the corresponding 
computation is possible for four points. However, if 
it is only known that the four points are in a 
rectangular configuration in a plane with unknown 
size for length and width of rectangle, then it is not 
immediately clear that the look angle is computable. 
The existence of the relationships derived in this note 
undoubtedly play a strong role in why people are 
able to accurately perceive the surface orientation of 
rectangular planar surfaces from man made objects. 

The algebra used in the derivation is not particu- 
larly noteworthy. However, the resulting formulas are 
simple, of general use, and interesting since they seem 
not to appear in any known or convenient place in 
the literature. 

2. THE PERSPECTIVE PROJECTION 

We assume that the camera lens is the origin and 
that the lens views down the y axis. The image plane 

is a known distance f in front of the lens and is 
orthogonal to the optical lens axis. The abscissa axis 
of the image plane is parallel to the x axis and the 
ordinate axis of the image plane is parallel to the z 
axis. 

To permit the camera to be viewing into the 
3D world in an arbitrary direction, we rotate the 
coordinate system so that in the rotated coordinate 
system the optic axis of the lens is the rotated y axis, 
the abscissa axis of the image plane is the rotated x 
axis and the ordinate axis of the image is the rotated 
z axis. Thus, we first counter clockwise rotate around 
the z axis by the pan angle 0, then counter clockwise 
rotate around the x axis by the tilt angle qb, and finally 
counter clockwise rotate about the y axis by the swing 
angle ~. This convention as well as some of the other 
relationships we use here can be found in Haralick ~1) 
and for reference purposes is shown in Fig. 1. 
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Fig. 1. Illustration of the convention for positive or counter- 
clockwise rotation of axes. 
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The perspective projection (x*,z*) of a 3D point 
(x, y,z) is given by 

(1) 

where 

x’=f 
xcos0 + ysin0 

- xcos&in0 + ycosf#~cosfJ + zsin4 

z’=f xsin&ine - ysin&ose + zcos# 
- xcos&ine + yc0s4cose + zsin+ 

If the perspective projection (x*, z*) is known then 
the ray of 3D points having (x*,z*) for its perspective 
projection can be determined. The ray is given by 

(2) 

for some 1 and where 

(:) = (::; -::;)(::)}. 
3. THE CAMERA PARAMETERS FROM THE PERSPECW’E 

PROJECTION OF RECTANGLE 

Suppose that a rectangle lies in the z = zi plane 
and has unknown width Wand length L. We assume 
that the corners of the rectangle are given by 

P.=(;J +;+“) 

where y, > f, and that the corresponding perspective 
projection of these corners are 

w 
Fig. 2. Illustration of the position of the :ectangle in 3D 

space. 

Figure 2 illustrates the rectangle as it lies in the 3D 
world. Figure 3 illustrates the perspective projection 
of the rectangle. 

As in equation (2) we let 

where we understand that 5 is an unknown. 
By equation (2) we must therefore have that for 

some lt, A,, 1, and A.+ 

x;cOse - fsin&os~ + z;sinfIsini$ 

&sin+ + z;coQ 

x;sin0 +~COS~COS~$ - z;cosf&ir@ 

fx;cose - fsin&oQ + z;sinf%infp \ \ 

p:=(;;) p:=(;;) p:=(;;) d=(Z). \ 
x;sin0 + fc0sec0s4 - z;cos&in$ 1, = y, + L 

fsin4 + ~$0~4 I \z1 I 

Note that this knowledge implies that it is known 
that the line segment from (x7, z:) to (xz, zz) is caused 
by the side of the rectangle of length W. If this 
information is not known, the calculations must be 
repeated once under the assumption that the length 

of the side of the rectangle is Wand once under the 
assumption that the length of the side of the rectangle 
is L. Our assumption about the position of the 

(5) 

(6) 

rectangle implies that the x and y axes of the coordi- Equations (3), (4), (5) and (6) are sufficient to solve 
nate system are parallel to the sides of the rectangle. for 0, d and r with I,, A,, &, L,, x,, y,, zl, Wand 
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P, 

(a) (b) 
Fig. 3. (a) Illustration of the perspective projection of the rectangle when viewed from a position above 
the rectangle. 0 = 30 °, ~b = 40 °, ~ = 0 °. (b) Illustration of the perspective projection of the rectangle when 

viewed from a position below the rectangle 0 = 30 °, ~b = 40 °, ~ = 0 °. 

L all unknown.  Notice that equations (3) and (5) and 
equations (4) and (6) have identical first and third 
components on the r ight-hand side. The first and 
third components of equations (3) and (5) can be used 
to establish that 

c o s O s i n c k f ( x ~  - x ' 3 )  + s i n O f ( z ~  - z '3)  

+ c o s O c o s c b ( x ~ z ' 3  - x ' 3 z ~ )  = 0 (7)  

Multiplying (7) by (x~ - xj,) and (8) by (x'~ - x~) 
and subtracting yields 

s i n O f [ ( z ' a  - z ' 3 ) ( x ' 2  - x ~ )  - ( z '2  - z ~ ) ( x ' l  - x~)] 

+ c o s O c o s 4 ~ [ x ~ z ~  - x~z '~ ) ( x '~  - x : , )  

- ( x ; z : ~  - x a z ; ) ( x ~  - x ~ ) ]  = 0 .  ( 11 )  

From (11) there results 

0 = t a n -  1 cosq~[(x~z~ - x ' 3 z [ ) ( x ' 2  - x~ , )  - ( x ' 2 z J ,  - x ' 4 z ' 2 ) ( x ' x  - x~)] 

f [ ( x i  - x ; ) ( z i  - z~) - ( x l  - x k ) ( z l  - z ; ) ]  

In an identical manner,  the first and third components 
of equations (4) and (6) can be used to establish that 

c o s O s i n ( a f ( x ' 2  - x~ , )  + s i n O f ( z ' 2  - z ~ )  

+ c o s O c o s 4 ~ ( x ' ~ z : ~  - x : , z ; )  = 0.  (8)  

Multiplying (7) by (z~ - z~) and (8) by (z~ - z~) and 
subtracting yields 

c o s O s i n d p f [ ( x ~  - x ' 3 ) ( z ~  - z '4 )  - ( x ~  - x : , ) ( z ~  - z])] 

+ c o s O c o s 4 ~ [ ( x ~ z ;  - x ' 3 z ' l ) ( z ;  - z : , )  

- ( x ' z z l  - x ~ z ' 2 ) ( z ~  - z;)] = 0. (9) 

Dividing out the cos0 from (9) and solving for q~ yields 

(12) 

The solution for 0 in equation (12) has an inherent 
ambiguity of 180 ° . The correct and unique value for 
0 can be determined by selecting that value between 
- 9 0  ° and + 90 ° since angles outside the range from 
- 9 0  ° to +90  ° make the camera pan so much that 
the camera is looking in the hemisphere behind itself. 

From equations (10) and (12) it is apparent that 
once ~ is known, then q5 and 0 can be solved for. And 
it is the case that ~ can be solved for. Notice 
that equations (3) and (4) have second and third 
components equal and equations (5) and (6) have their 
second and third components equal. Thus, using 
similar manipulat ions to the ones just  discussed we 
can determine an alternate and independent 
expression for ~b 

0 = t a n -  1 ( x ' 2 z ~  - -  x ~ z ; ) ( z ~  - -  z '3 )  - ( x ] z ;  - x ' a z ' O ( z ' 2  - z : , ) .  (10) 
f[(x'a -- x ' a ) ( z ' 2  - z j , )  - -  ( x ' 2  - -  x ~ , ) ( z ~  - z;)] 

~b = t a n -  1 ( x ~ z ' 2  - x ' 2 z ~ ) ( z ' 3  - z : , )  - ( x ~ z ' 4  - x ~ z ' 3 ) ( z ~  - z '2)  

f [ ( x ;  - -  x ' 4 ) ( z '  1 - -  z ' z )  - ( x ~  - x l ) ( z ' 3  - z,~)] 

The solution for 4~ in equation (10) has an inherent Equations (10) and (13) imply 
ambiguity of 180 ° . The correct and unique value for 

(13) 

( x ' 2 zJ .  - -  x J ,  z ' 2 ) ( z ~  - -  z ; )  - -  ( X ' a Z ~  - -  X '3Z 'x ) ( z '2  - -  z '4)  ( x [ z ' 2  - -  x ~ z ' l ) ( z ;  - -  z ~ )  - -  ( X ~ Z j ,  - -  x j . z ~ ) ( z ' l  - -  z ~ )  (14) 
m 

f [ ( x ~  - -  x ' 3 ) ( z ' z  - -  z~,) - -  ( x ' z  - -  x ' 4 ) ( z ~  - -  z~)] 

tk can be determined by selecting that value between 
- 9 0  ° and + 90 ° since angles outside the range from 
- 9 0  ° to + 90 ° make the camera tilt so much that the 
camera is looking in the hemisphere behind itself. 

f [ ( x ' 3  - -  x ' 4 ) ( z ' l  - -  z l )  - -  ( x l  - -  x l ) ( z ;  - -  z~)] 

Everything in equation (14) is known except ~ and 
we may now solve for 4- This is an easier problem 
than at first sight because many of the terms are 
rotationally invariant. Specifically, 
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x ~ z ~  - x~ , z~  = (x~'cos~ - zl'sin~)(x*sin~ + z*cos~) 

- (x[cos~ - z~,sin~)(x*sin~ + z*cos~) 

= ( x 2 z 4  - x~z~')cos2~ + ( x ' ~ z *  - x*z*)sin2~ 

~ -  X 2 Z  4 - -  X 4 Z  2 . 

In a likewise manner  the denominators  are rotat ion- 
ally invariant. Equation (14) thus becomes 

Once z a is determined x~ and y~ can be determined 
from equation (2) 

x ~ c o s 0 - f s i n 0 c o s ~  + z~sin0sin~b (17) 
xl  = z~ fsingb + z~cosq~ 

x'~sin0 + fcos0cosq~ - z~cos0sin4~ 
Yl = Zl  ( 1 8 )  

fsin4~ + z~cos4~ 

( x l z 3  - x $ z T ) [ s i n ~ ( x $  - x $ )  + cos~(z~' - z$)] * * - x $ z ' ~ ) [ s i n ~ ( x *  - x '~ )  + cos~(z~' - z$)] - * * (X224  

f [ ( x ~  - x ] ) ( z *  - z~,) - ( x *  - -  x * ) ( z *  - -  z~')] 

= - - - - ( x ~ z , ~  - x ~ , z ' J ) [ s i n ~ ( x ' f  - x ' ~ )  + c o s ~ ( z l '  - z ~ ) ]  ( x ~ z z  x ' ~ z * ) [ s i n ~ ( x ' J  x ,~)  + cos~(z~' z~)] * * 

f [ ( x ' ~  - x * ) ( z *  - z ~ )  - ( x *  - x ~ ) ( z ' ~  - z*)] 

In essence, this states that a linear combinat ion of the 
sine and cosine of ~ equals 0. Therefore, the swing 
angle ¢ is given by 

= t a n -  1 [ A ( z ' ~  - z'~) - B ( z ' ~  - z * )  - C ( z ' ~  - z'~) + D ( z ~  - z,T)] 

[ / l ( x *  - x~)  - n ( x ~  - x l )  - C ( x *  - x*)  + O(x '~  - x * ) ]  
t15)  

where 

h ~ * * ( x 2 z 4  - -  x ~ , z ~ ) / E  

n _ ~ .  * *  ( x l z 3  - x ' ~ z ' t ) / E  

C ~ _ * *  ( x 3 z  4 - x * z ~ ) / F  

D =  * *  ( x l z 2  - x ' ~ z T ) / F  

E = f [ ( x *  - x * ) ( z ' ~  - z,~) - i x *  - x * ) ( z *  - z~)] 

F = f [ ( x ~  - x ' ~ ) ( z *  - z * )  - ( x ~  - x , T ) ( z *  - z~')]. 

The solution for ~ in equation (15) has an inherent 
ambiguity of 180 °. Thus if the arctangent function is 
taken to yield the principal value, then the second 
possible value for ~ is ~ + 180 °. Both values for ~ are 
legal and corresponding to each value of ~ is a value 
for 0 and q~ given by equations (10) and (12). 

4. D E T E R M I N A T I O N  O F  T H E  P O S I T I O N  O F  T H E  
R E C T A N G L E  G I V E N  ITS  S I Z E  

In this section, we suppose that  the sides W and L 
of the rectangle are given. On the basis of the 
calculations of the previous section the camera view- 
ing parameters  0, 4~ and ¢ can be determined and are 
now assumed known. Once ~ is known, (x', z') can be 
computed from the observed (x*, z*) by (2). F rom the 
second and third components  of equations (3) and 
(5), we can solve for z l :  

5. R E C T A N G L E  I N  A y = y j  O R  x -- x I P L A N E  

If the rectangle is considered to lie in a y = Yl plane 
instead of a z = zl plane, the same technique can be 
used with a minor  modification. Solve the problem 
as if the rectangle is in the z = zl plane. In effect, this 
sets up a coordinate  system for the problem solution 
in which there is a prior  rotat ion of +90  ° or - 9 0  ° 
about  the x axis. The choice of +90  ° or - 9 0  ° taken 
depends on keeping the corners of the rectangle in 
front of the image plane. The solution yields angles 
0', q~' and ~'. From,  0', ~b', and ~', we can determine 
new angles 0, q~, and ~ so that  a rotat ion around the 
z axis of 0, followed by a rotat ion around the x axis 
of ~b, followed by a rotat ion around the y axis of 
gives the same effective rotat ion as a rotat ion around 
the x axis of + 90 °, followed by a rotat ion around 
the z axis of 0', followed by a rotat ion around the x 
axis of q~', followed by a rotat ion around the y axis 
of ~'. 

This determinat ion of 0, 4~, and ~ from 0', ~b', and 
~' is simple. Choose 0, 4~, and ¢ to make the entries 
of the corresponding composite rotat ion matrices 
equal. Fo r  the case where the prior  x axis rotat ion is 
+ 90 °, we must have 

(fsin~b + z~cos~b)(fsinq~ + z[eos4))L 
z l  = f ( x ~  - x~)sin0sin~b + ( z [  - z ~ ) f c o s O  + ( x ~ z ' l  - x ~ z ~ ) s i n O c o s ( o "  

(16) 
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cos¢'cosO' + sin~'sinck'sinO' 

- cosq~'sin0' 
- s i n ~ ' c o s 0 '  + cos~'sinqS'sin0' 

- sin~'cos$' 
- sin~b' 
-cos~'cos¢' 

cos~'sin$' - sin~'sin$'cos0"~ 

cos4,'cos0' ] 
- sin~'sin0' - cos~ ' s in#cos0 ' / /  

/ /  cos¢cos0 + sinCsin~bsin0 
= [ - c o s ~ b s i n 0  

\ -  sin~cos0 + cos~sin4~sin0 

cos~sin0 - sin~sinqScos0 

cosq~cos0 
- sin~sin0 - cos~sinqScos0 

sin¢cos4~ '~ 

sin~b 1 .  
cos~cos~,/ 

From this there results 

~b = s in-  l(cos#cos0') 

0 = t a n -  t(cos~b'sin0'/- sin4¢) 

= t an -  l((cos~'sin# - sin~'sin#cos0') /  

( - sin~'sin0' - cos~'sin4¢cos0')). 

To determine y~ we use 

W(x~sinO + fcos0cos4~ - z'2cosOsinck).(x~sinO + fcos0cos~b - Z'lCOS0sinqS) 

(x~ - x~)fcosq~ + (x~z'2 - x~z'Osin4~ 

Then from Yl we can determine x 1 and zt by 

x~cos0 - fs in0cos~ + z[sin0sin4~ 
Xl = Yl x'lsin0 + fcos0cos4~ - z~cos0sin~b 

fsinqb + z'lcos4~ 
zl = Yl x~sin0 + fcos0cosq5 - z~cos0sin~b" 

In a similar manner,  if the rectangle is assumed to 
lie in a x = x~ plane, then by a 90 ° clockwise rotation 
around the y axis we can make it lie in the z = Xl 
plane in the rotated coordinate system. Determination 
of the viewing angles 0', # ,  and ¢' in the rotated 
coordinate system proceeds as given in Section 3. 
Equating the combined rotation matrix having the 
prior 90 ° rotation around the y axis with the rotation 
matrix for the desired 0, ~b, and ~ yields 

q~ = s in-  1(cos#sin0') 

0 = t a n -  1( _ s in#/cos#cosO')  

= t an -  l((cos¢'cosO' - sin~'sin#sinO')/ 

6. C O N C L U S I O N  

We have shown that if an observed quadrilateral 
is a 2D perspective projection and is known to have 
arisen from a rectangle situated on an unknown plane 
in the 3D world then the camera viewing parameters 
0, ~b and ~ can be simply determined in closed 
form. If additional information about  the size of the 
rectangle is known, then the exact position of the 
rectangle in the 3D world can be determined. The 
significance of these results is that from the observ- 
ation of one rectangle, the surface orientation of the 
rectangle can be determined relative to the camera 
viewing direction. The only ambiguity in the determi- 
nation is whether the camera is looking up and seeing 
the rectangle from below on one side or whether the 
camera is looking down and seeing the rectangle from 
above on the other side. This ambiguity is similar to 
the ambiguity in the perception of the Necker cube. 

(sine'cos0' - cos~'sin~'sin0')). 

To determine x~ we use 

X 1 = 
W(x'~cosO - f s i n 0 c o s ~ b  + z*sin0sin4~. (x 'cos0 -fsin0cos4~ + z*sin0sin4~) 

(x* - x~')fcos~b + (z* z*) fs inO + * * - (XlZz - x*z*)sinqb 

Then on the basis of equation (2) we can determine 
Yl and zl from 

x ' s in0  + fcos0cos~b - z*cos0sin4~ 
Yl = x l x ' cos0  -fsin0cosq~ + z*sin0sinq5 

fsinq~ + z 'cos0 
Z 1 ~ X 1 

x*cosO - f s inOcosc  k + z*sinOsin~b" 
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