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Abstract—In this note we show how to use the 2D perspective projection of a rectangle of unknown size
and position in 3D space to determine the camera look angle parameters relative to the plans of the
rectangle. All equations are simple. In addition, if the size of the rectangle is known, it is possible to
compute the exact 3D coordinates of the rectangle.

Perspective projection camera calibration

1. INTRODUCTION

Determination of surface orientation is one of the
important tasks of a computer vision system. In this
note we show that there is sufficient information
in the 2D perspective projection of a rectangle of
unknown size in 3D space to determine the camera
look angle parameters. This in essence gives the
relationship of surface normal of rectangle to camera
viewing direction. We also show that if the size of the
rectangle is given, then its exact 3D coordinates can
easily be computed.

In photogrammetry it is widely known that given
the coordinates of three 3D points and the corres-
ponding positions of their perspective projection, then
it is possible to compute the position of the camera
as well as its look direction. A complete set of such
relationships for a triangle of 3D points is given in
Fischler and Bolles.'® Certainly, the corresponding
computation is possible for four points. However, if
it is only known that the four points are in a
rectangular configuration in a plane with unknown
size for length and width of rectangle, then it is not
immediately clear that the look angle is computable.
The existence of the relationships derived in this note
undoubtedly play a strong role in why people are
able to accurately perceive the surface orientation of
rectangular planar surfaces from man made objects.

The algebra used in the derivation is not particu-
larly noteworthy. However, the resulting formulas are
simple, of general use, and interesting since they seem
not to appear in any known or convenient place in
the literature.

2. THE PERSPECTIVE PROJECTION

We assume that the camera lens is the origin and
that the lens views down the y axis. The image plane
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is a known distance f in front of the lens and is
orthogonal to the optical lens axis. The abscissa axis
of the image plane is parallel to the x axis and the
ordinate axis of the image plane is parallel to the z
axis.

To permit the camera to be viewing into the
3D world in an arbitrary direction, we rotate the
coordinate system so that in the rotated coordinate
system the optic axis of the lens is the rotated y axis,
the abscissa axis of the image plane is the rotated x
axis and the ordinate axis of the image is the rotated
z axis. Thus, we first counter clockwise rotate around
the z axis by the pan angle 8, then counter clockwise
rotate around the x axis by the tilt angle ¢, and finally
counter clockwise rotate about the y axis by the swing
angle £. This convention as well as some of the other
relationships we use here can be found in Haralick'"
and for reference purposes is shown in Fig. 1.
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Fig. 1. Illustration of the convention for positive or counter-
clockwise rotation of axes.
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The perspective projection (x*,z*} of a 3D point

(x,y,z2) is given by
sinf \ [ x'
cosé) <z’> (1

(x"‘ _( cosé
z* ) \ —siné

where
X = xcosf + ysinf
— xcos¢sing + ycosgcosh + zsing
r=f xsingsind — ysingcost + zcos¢

—xcos¢sinf + ycos¢cost + zsing

If the perspective projection (x*, z*) is known then
the ray of 3D points having (x*, z*) for its perspective
projection can be determined. The ray is given by

x x x'cosf — fsinfcos¢ + z'sinfsing
y y ) =4[ x'sinf + fcosficos¢ — z'cosfsing
z z Sfsing + z'cos¢

2

for some A and where

(x')_ cose —siné (x"‘
2] \siné  cosf/\z*

3. THE CAMERA PARAMETERS FROM THE PERSPECTIVE
PROJECTION OF RECTANGLE

Suppose that a rectangle lies in the z = z, plane
and has unknown width W and length L. We assume
that the corners of the rectangle are given by

X4 x,+ W
Pi={ N P2={ N

Zy 2

X1 X1 + w
pa=|y»+L pa=|n+L

zy zy

where y, > f, and that the corresponding perspective
projection of these corners are
x3
* _ .
& ()

xt x3 x§>
* _ * — *
141 <z‘f> pz (z; p3 2t

Note that this knowledge implies that it is known
that the line segment from (x¥}, z¥) to (x%, z%) is caused
by the side of the rectangle of length W. If this
information is not known, the calculations must be
repeated once under the assumption that the length
of the side of the rectangle is W and once under the
assumption that the length of the side of the rectangle
is L. Our assumption about the position of the
rectangle implies that the x and y axes of the coordi-
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Fig. 2. Illustration of the position of the rectangle in 3D
space.

Figure 2 illustrates the rectangle as it lies in the 3D
world. Figure 3 illustrates the perspective projection
of the rectangle.

As in equation (2) we let

x{\ [cos¢& —sin \(x} .
(z{ ) - (siné,r cosé) (z;")’ i=1234

where we understand that £ is an unknown.
By equation (2) we must therefore have that for
some A‘l’ Az, }.3 and 14

x1c0s8 — fsinfcos¢ + zisinfsing Xy
xisinf + fcosBcosp — zicosOsing |4, ={ y,
fsing + zicos¢ z,
3
x3c0s0 — fsinfcos¢ + z3sinfsing’ X, + W
x4sinf + fcosOcos¢ — zjcosfsing A, =| y;
fsing + z5cos¢ z4
)
x3c0s0 — fsinfcos¢ + z3sinfsing Xy
x3sin@ + fcosfcosp — zicosfsing A3 ={ y, + L
fsing + zicos¢ z4
(3)
x4cos8 — fsinfcos¢ + z;sinfsing x + W
x4sinf + fcosfcosdp ~ zgcosfsing |Ay = y, + L
fsing + zcos¢ z,
(6)

Equations (3), (4), (5) and (6) are sufficient to solve

nate system are parallel to the sides of the rectangle. for 0, ¢ and & with A, 4,, A3, A4, X1, ¥y, z,, W and
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(b)

Fig. 3. (a) Illustration of the perspective projection of the rectangle when viewed from a position above
the rectangle. § = 30°, ¢ = 40°, ¢ = 0°. (b) IHlustration of the perspective projection of the rectangle when
viewed from a position below the rectangle 8 = 30°, ¢ = 40°, £ = 0°.

L all unknown. Notice that equations (3) and (5) and
equations (4) and (6) have identical first and third
components on the right-hand side. The first and
third components of equations (3) and (5) can be used
to establish that

cosfsingf(x; — x3) + sinff(z; — z3)

+ cosfcosd(xizy — x321) =0 )]

0 = tan

- 1€080[(x123 — x321)(x3 — X4) — (x324 — Xaz3)(x1 — X3)]

Multiplying (7) by (x5 — x4) and (8) by (x] — x3)
and subtracting yields
sinff [(z1 — z3)(x; — x4) — (22 — z4)(x] — x3)]
+ cosficosd[x1z5 — xjz7) (x5 — x3)
— (x223 — Xxa23)(x; — x3)] = 0.

(11)

From (11) there results

(12)

In an identical manner, the first and third components
of equations (4) and (6) can be used to establish that

cosOsingf(x; — x4) + sinff(z; — z4)
+ cosfcosd(x3z4 — x425) = 0. (8)

Multiplying (7) by (z; — z4) and (8) by (z; — z3) and
subtracting yields

cosfsingf[(xi — x3)(z2 — z4) — (x2 — x4)(z3 — z3)]
+ cosficosd[(x123 — x321)(z3 — z4)
— (x2z4 — x422)(z1 — 23)] =0. (9

Dividing out the cosf from (9) and solving for ¢ yields

f =tan~

STy — x3)(z2 — za) —

1 (¥224 — x422)(23y — 23) — (xi25 — X321)(25 — 24)

(x2 — x4)(z1 — z3)]

The solution for 6 in equation (12) has an inherent
ambiguity of 180°. The correct and unique value for
@ can be determined by selecting that value between
—90° and +90° since angles outside the range from
—90° to +90° make the camera pan so much that
the camera is looking in the hemisphere behind itself.

From equations (10) and (12) it is apparent that
once ¢ is known, then ¢ and 6 can be solved for. And
it is the case that ¢ can be solved for. Notice
that equations (3) and (4) have second and third
components equal and equations (5) and (6) have their
second and third components equal. Thus, using
similar manipulations to the ones just discussed we
can determine an alternate and independent
expression for ¢

SLx1 = x3)(z3 — z4) — (x3 — x4)(zi — z})]

.(10)

¢ = tan

The solution for ¢ in equation (10) has an inherent
ambiguity of 180°. The correct and unique value for

~1xizp — xp2i)(25 — zg) — (X324 — Xaz3)le1 — 22) (g3

ST0es — xa)(zi — 22) — (xi — x3)(z3 — 23]

Equations (10) and (13) imply

(x1z3 — x221)(z3 — z4) — (X324 — Xa23)(21 — 23) (14)

STt — x3)(z5 — z4) — (x2 — x4)(z1 — 23)]

¢ can be determined by selecting that value between
—90° and +90° since angles outside the range from
—90° to +90° make the camera tilt so much that the
camera is looking in the hemisphere behind itself.

x3z4 — Xaz3)(z1 — 23) — (X123 — X321)(22 — 24)
224 4Z2)42, 3 —

Sl = x4)(zy — 22) — (%1 — x2)(z3 — z4)]

Everything in equation (14) is known except ¢ and
we may now solve for £. This is an easier problem
than at first sight because many of the terms are
rotationally invariant. Specifically,
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X324 — x425 = (x3cosé — z¥sinf)(x%siné + zfcosé)
— (xfcosé — zIsiné)(x¥siné + z¥cosé)
= (x¥z¥ — x¥z¥)cos2¢ + (x3z¥ ~ x3z¥)sin?é
= x3¥z§ — x%z%.

In a likewise manner the denominators are rotation-
ally invariant. Equation (14) thus becomes

x¥z% — x2z$)[siné(x¥ — x¥) + cosé(zt — z%)] ~ (x¥z% — x¥zf)[siné(x} — x3) + cosé(z} — z3)]
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Once z, is determined x, and y, can be determined
from equation (2)

xjcos8 — fsinfcosg + zjsinfsing (17)
fsing + zjcos¢

It

X1 1

x1sinf + fcosBcos¢p — zicosbsing

Sfsing + zicos¢ (18)

W=z

SO = x3)(zF — z3) — (xF — xQ)(zt — 23]

_ (xtz3 — x3zD)[sing(x§ — x3) + cos¢(z} — z3)] — (x3z% — x3z¥)[sin{(x} — x}) + cos¢(zt — z3)]

SIx3 — x3)(z} — 23) — (¢t — x3)(23 — 23)]

In essence, this states that a linear combination of the
sine and cosine of ¢ equals 0. Therefore, the swing
angle ¢ is given by

_1 _[AGY — 23) — B(z§ — z3) — C(z} — 23) + D(z — z3)]

A = (x3z% — x323)/E
B = (x}z} — x3z1)/E
C = (x3z¥ — x3z3)/F
D = (xtz3 — x321)/F
E = fl(xt — x3)(zF — 22) — (x§ — x2)(zT — 23]
F = fl(x} — x3)(z3 — z3) — (xF — xZ)zt — 23)).

The solution for & in equation (15) has an inherent
ambiguity of 180°. Thus if the arctangent function is
taken to yield the principal value, then the second
possible value for £ is & + 180°. Both values for £ are
legal and corresponding to each value of £ is a value
for 8 and ¢ given by equations (10) and (12).

4. DETERMINATION OF THE POSITION OF THE
RECTANGLE GIVEN ITS SIZE

In this section, we suppose that the sides Wand L
of the rectangle are given. On the basis of the
calculations of the previous section the camera view-
ing parameters 6, ¢ and ¢ can be determined and are
now assumed known. Once ¢ is known, (X', z') can be
computed from the observed (x*, z*) by (2). From the
second and third components of equations (3) and
(5), we can solve for z,:

(fsing + zjcosd)(fsing + zicos¢)L

[A(xT — x%) — B(x¥ — x¥) — C(xt — x§) + D(x} — x3)]

(15)

5. RECTANGLE IN A y = y, OR x = x; PLANE

If the rectangle is considered to liein a y = y, plane
instead of a z = z; plane, the same technique can be
used with a minor modification. Solve the problem
as if the rectangle is in the z = z, plane. In effect, this
sets up a coordinate system for the problem soiution
in which there is a prior rotation of +90° or —90°
about the x axis. The choice of +90° or —90° taken
depends on keeping the corners of the rectangle in
front of the image plane. The solution yields angles
&', ¢’ and &'. From, @', ¢', and &', we can determine
new angles 6, ¢, and ¢ so that a rotation around the
z axis of 6, followed by a rotation around the x axis
of ¢, followed by a rotation around the y axis of ¢
gives the same effective rotation as a rotation around
the x axis of +90°, followed by a rotation around
the z axis of &, followed by a rotation around the x
axis of ¢, followed by a rotation around the y axis
of &',

This determination of 8, ¢, and ¢ from 6', ¢’, and
&' is simple. Choose 8, ¢, and £ to make the entries
of the corresponding composite rotation matrices
equal. For the case where the prior x axis rotation is
+90°, we must have

2

T f(x} — x})sinfsing + (z} — z3) foosh + (x3z] — x}z3)sinfcosg’
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cos'cos®’ + siné’sing’sinf’  —sinf’cosd’
—cos¢'sinf’ —sing’
—siné’cos®’ + cosé'sing’sinf’  —cosé'cos¢’

cosécosf + sinésingsing
= | —cos¢sind
—sinécosf + cosésingsinf

cos¢cost

From this there results
¢ = sin™ Ycosg'cost’)
0 = tan~ Y(cos¢'sinf’/ —sing’)
& = tan~ }((cos&’sing’ — siné’sing'cosd’)/
(—sin&'sinf’ — cosé'sing’cosf’)).

To determine y, we use

cosé’sing’ — siné’sing’cosb’
cos¢’cost’
—siné'sind’ — cos’sing’cosd’

cosésinf — sinésingcosd

—sinésinf — cosésingcosd cosécosed
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sinécos¢

sing

W(xj;sinf + fcosfcos¢d — zicosOsing) - (x1sinf + fcosfcos — z;cosbsing)

=

Then from y, we can determine x; and z, by
xjcosf — fsinfcosg + zisinfsing
N x18inf + fcosfcos¢ — zicosfsing

Sfsing + zjcos¢
! x{sin@ + fcosfcos¢ — z;cosbsing

Xy =

=Yy

In a similar manner, if the rectangle is assumed to
lie in a x = x; plane, then by a 90° clockwise rotation
around the y axis we can make it lie in the z = x;
plane in the rotated coordinate system. Determination
of the viewing angles 8, ¢, and &' in the rotated
coordinate system proceeds as given in Section 3.
Equating the combined rotation matrix having the
prior 90° rotation around the y axis with the rotation
matrix for the desired 6, ¢, and ¢ yields

¢ = sin” }(cos¢’sinf")

0 = tan ™ !(—sing’/cos¢’cost’)

& = tan” Y((cosé’cosh’ — siné'sing’sinf’)/
(sin&’cosf’ — cosé'sing’sind’)).

To determine x; we use

W(x¥cos® — fsinfcos¢ + z¥sinbsing - (xFcosf — fsinfcosd + z3sinfsing)

(x5 — x1)fcosg + (x1z5 — x527)sing

6. CONCLUSION

We have shown that if an observed quadrilateral
is a 2D perspective projection and is known to have
arisen from a rectangle situated on an unknown plane
in the 3D world then the camera viewing parameters
0, ¢ and & can be simply determined in closed
form. If additional information about the size of the
rectangle is known, then the exact position of the
rectangle in the 3D world can be determined. The
significance of these results is that from the observ-
ation of one rectangle, the surface orientation of the
rectangle can be determined relative to the camera
viewing direction. The only ambiguity in the determi-
nation is whether the camera is looking up and seeing
the rectangle from below on one side or whether the
camera is looking down and seeing the rectangle from
above on the other side. This ambiguity is similar to
the ambiguity in the perception of the Necker cube.

Xy, =

Then on the basis of equation (2) we can determine

y: and z, from

x¥sinf + fcosfcos¢ — z¥cosbsing
' x*cosf — fsinfcos¢ + z¥sinBsing

=

. fsing + z¥cosd
! x*cosb — fsinfcos¢ + z¥sinfsing’

Zy =

(xt — x¥) fecosg + (zF — z%)fsinf + (x¥z¥ — x¥z})sing
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