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where vg = g0+ 05/48.,
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b=0%T?, x0=¢6T, a=m/T.
For

eo/ T <05/40.T <1
I(vo/ T)=In(vo/T).

4.2. Field absorption in ferromagnets

We will pass over to the discussion of the problems related to the employment of the kinetic
equations (2.49) for the calculation of the imaginary part of the high-frequency magnetic susceptibility
x". As before we will give only the results concerning the nonresonance parallel pumping for 27> 1.

The field energy absorbed per unit time is calculated as TS where S is the derivative with respect to
the time from the entropy S of the nonequilibrium magnon gas

S=22{10+f)n(1+£)=fInf}.

For the magnitude y” there is a relation

O=ﬁéﬂw (4.10)
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Thus, for calculating x”, it is necessary, firstly, to find the nonequilibrium distribution function of
magnons satisfying the corresponding kinetic equation and, secondly, to calculate the integral entering
the expression (4.10). A problem like this has not yet been solved completely, though for the
single-quantum or even multiquantum case [70] when it is sufficient to be confined only to the linear
approximation with respect to the introduced power, calculations of this kind were carried out in
[66, 68] for ferromagnets, and for antiferromagnets in [69].

Let us start from the single-quantum case (4.1). In a pure (without impurities) ferromagnet, as has
been stated above, the main contribution to the field absorption is made by triple magnon-magnon
interactions [66]. Their corresponding imaginary part of the high-frequency magnetic susceptibility is
equal to
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for My < H, T> &,> {2. The numerical estimates [66] of this magnitude indicate that for uM,~ 0.1K,
go~2K, T~300K, 6.~ 500K, £2~10"sec™’, "~ 107>, Such an absorption can, evidently, be easily
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observed experimentally, though, we do not know as yet any experimental works devoted to this
problem.

We will now pass over to the discussion of the magnon—impurity collisions. Since the interaction
constant U can be in its order of magnitude of the exchange energy, we can expect in this case a greater
value of absorption. In the single-quantum limit in the area of applicability of the result (4.11) the
magnitude x” due to the magnon—impurity scatterings is equal to [68]

//~_1_ /J'zni 477 MO y_ 2 I
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Still greater absorption takes place in the multiquantum limit [70]. The “rate of energy accumulation by
the magnon”, i.e. the value of energy absorbed per unit time by the unit volume Q is calculable only in
the multiquantum case under the condition that {2 < uho< g, [70]. At sufficiently high temperature,
T > g4, we have

0~ (nw) () (E2LY' (uhoy (4.13)

4.3. Nonresonance parallel pumping in the conditions of parametric resonance

We will discuss here the results pertained to the case of (2 >2¢, i.e. to the situation where an
external field quantum can create two magnons. However, we will dwell on the situation under which
precisely the main channel of magnon creation is provided by the nonresonance processes that are
guaranteed by the alternating magnetic field effect on the elementary acts of magnon interactions.

Let us assume that a ferromagnet is available whose magnon-impurity scatterings are essential. We
will estimate then the probability of creation of two magnons ‘‘via impurity”, for example, in the case of
single-quantum processes. The estimations made below are rather crude and necessary only for the
explanation why during parametric resonance, in a number of cases, one may neglect the purely
resonance excitation of spin waves and consider only the nonresonance processes. As is evident from
the Hamiltonian (2.46), the probability of creation of two magnons via the impurity is proportional to

(who/02)* UN;

where N, is the number of impurities per elementary cell. The probability of creation of two magnons
due to the direct resonance action of the field is proportional to (umho)’. Thus, if, for example,
0N~10"sec™ and U~10"sec™ [132], it may be expected that with N;>10"* the nonresonance
processes of creation of magnons are the principal ones. Indeed, as was shown in [68], the condition in
question is more rigorous and takes on the form of

.Q 280
(n,vo)\/ 280 > 20,

i.e. the condition is defined not only by the concentration of impurities n;, but also by the width of the
source of nonequilibraty by the magnitude (2 — 2éy).
In the case when the main mechanism of spin waves scattering is governed by the chaotically
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arranged dislocations, the magnon pumping takes, in the main, the nonresonance way [68] when

R 0 (0-28)\"
(nde) 03/2 1/2( 2806()) >102.

If the relative width of the source of nonequilibraty (12 — 2&0)/2e, > 0.1, then the specified inequality is
attained beginning with ng~ 10°cm™, R ~ 10~ cm, b ~ 10 @, 6. ~ 500 K. It should also be stressed that
the resonance mechanism [96] of the spin waves pumping is of threshold character, which, too,
distinguishes it from the nonresonance one. And, lastly, the character of the arising nonequilibrium
states in both cases is different. The parametric resonance leads to the magnon pumping in the region
with energy width in the order of =;' near (2/2, whereas the nonresonance creation of magnons
develops in the interval (&, {2 — £o) which exactly is determined by the notion of “width of the source”
adopted above.

We will furnish now the results of the calculation of the imaginary part of the high-frequency
magnetic susceptibility. In contrast to the example of (2 <2¢g, studied in section 4.2, it is of practical
value to survey only the single-quantum processes. This is connected with the fact that ordinarily when
the value of the constant magnetic field H is of the order of or more than 1kOe and, consequently,
g0= 10" sec™!, for obtaining the inequality who> (2 (uho>2e,) experimentally, the following am-
plitudes of the alternating magnetic field are needed: ko, = 10° Oe. High-frequency magnetic fields of this
amplitude, at least currently, are rather exotic.

The value of y” stemming from the processes of type {2 ¢, + &, which develop in the impurities, is
equal to [68]

(nlvo)( o!l> lz;'(") Ii(xo, w) (4.14)

where xo = eo/T, 0 = YT, {1~ 1071,

W= X0
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At room temperatures when {2 < T we have

£ (A2) (L) Smibaf T_(02e0) 619
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For the case of chaotically arranged dislocation rings we obtain the following result
. 16{1 b2R3 u’ ) 4ruM, Y T?
X= g (UO 5 1_&_4;)._003 Lo, ) (4.16)

where

w—xQ
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The magnitude (4.16) can be estimated at T > {2. Then

2473 2 MMO 2 T 1 +4.(280 4.90 ]
"= ngb -0]. 4.17
¥'= 2 )( )(UOQ . ] —— (4.17)

Even with not too strong concentrations of dislocations n4 the value of x” due to the nonresonance
pumping may be rather big. For example, for ng~10°cm™, R~10"cm, b~ 10%a, 6.~ 500K,
0 —2¢,~ 2¢, the value of y"~ 107'-1072,

The energy absorption of the alternating field produces nonequilibrium states in the system of
magnons which are characterized by the excessive number of quasiparticles (magnons) as compared to
the equilibrium state. This, in its turn, determines kinetic and thermodynamic parameters of the
nonequilibrium ferromagnet. In particular, the nonequilibrium increase in the number of spin waves, as
follows from formula (4.2), decreases the magnetization of the sample [68] under nonresonance
pumping of spin waves. Here are some results concerning the change in the magnetization M.

The kinetic equation for the zeroth harmonic of the isotropic part of the magnon distribution
function f, for M, < H including the nonresonance creation of magnons ({2 > 2¢,) under the parallel
pumping proceeding from (2.46) acquires the form

Ze = (o) L (ke -\/(%—)(1 ot fa )@ )+ LI+ LA, G18)
where ¢~ 107", L{f} is the source of nonequilibraty describing the processes of redistribution of
magnons under the action of the field and coinciding in its form with the right-hand side of equation
(4.5), Z.{f} stands, as before, for the usual collision integrals for magnons.

In [68] eq. (4.18) for the stationary case was studied in the r-approximation for the collision integral
L{f} and as a result the following expression was obtained for 8M for small departures from
equilibrium (02, &, < T)

M _ ¢4 U’m (uho> (I) (42— 2eoL{ (0% 1}, (4.19)

Mo 477( i O) —1_03 .() 0\/8'(-)'(:(‘)_ 80) 480(.()_ 80)

The suppression of magnetization in a ferromagnet having dislocations is described by the formula
(T > .Q > 280)

350 () (55 () @0 () =g

y {((2 _ 280)2 [_()2+ 2(() - 80)50] [\/.{) \/60] [Q + 4\/80(0 — 50)]} . (420)
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Similar phenomena may also be developed in antiferromagnets. However, for this case the situation
of 2>24, (we remind that 4, is the activation energy of low-frequency magnons) has been analyzed so
far only with allowance for the parametrically resonance processes. We will furnish below the results
concerning antiferromagnets with magnetic anisotropy of the ‘“light plane”-type for which the
equations given in section 2.4 are valid.
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4.4. Mechanisms of absorption of a nonresonance field in antiferromagnets

Similarly to the previous sections, we will restrict our discussion to single-quantum processes
changing over in eq. (2.49) to the limit of uh, < (2.

The basic processes that control kinetic and relaxation phenomena in an antiferromagnet with
magnetic anisotropy of the “light-plane” type, have been studied in section 2.4. Here we will supply the
results [69] enabling comparison of the effectiveness of various elementary processes for magnons
during the absorption of the nonresonance alternating magnetic field ({2 <24,). Let us remember that
the energy absorption of the field is characterized by the imaginary part of the high-frequency magnetic
susceptibility y”. Taking into account the structure of the kinetic equation (2.49), the expression for x”
can be represented as a sum

X"= X5t Xas T Xopt X7t Xa
where each of the terms describes the contributions due to triple, quadruple magnon-magnon,

magnon-phonon, magnon—-impurity interactions, magnon scattering on dislocations.
For triple magnon—-magnon interactions we obtain the result [69]

e () () (52 () (D) (& (2 ot =

where J; is the constant of the homogeneous exchange interaction,

—Al/T‘,B =A§/2A%,CL)H = M(2H+HD),

dx exp(— Bx)
x(e*—

o(81,8)= f {(x+Vx*- 8 exp(BVX*- 83) - (x — Vx> - 82 —62)“exp( BV —8%)}.

Expression (4.21) is obtained in the approximation T ~ 4, <4, which is attainable experimentally.
Under these conditions, as can easily be seen, the function ¢ is exponentially small.

The effect of nonresonance parallel pumping on the quadruple magnon-magnon interactions yields
the following value in the order of magnitude (T ~ 4,)

- () @) G () @) 42

Magnon-magnon processes determine the single-quantum absorption of the field which can be
described by the imaginary part of the high-frequency susceptibility of the type

3R (B (2 () ) (o =

where B is the magnetostriction constant, 6 = pvec?®, p is the density of the matter, ¢ is the sound
velocity,
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A(S) = f dxf c lef ] iy cth x -2}

When analyzing the spin waves scattering on the impurities in antiferromagnets, two mechanisms are
normally distinguished. The first one, which can be termed as an exchanged one, is due to the fact that
exchange interaction in a sample with impurity may be represented as [133]

{1+ I'vyS 8(r- ra)} MM,

where r, are impurity coordinates, I is the dimensionless constant of homogeneous exchange, and M;

and M, are magnetizations of sublattices. The other mechanism, which may be termed as a striction

one, consists in magnon scattering on the field of deformations produced by the impurity in the lattice.
For the contribution to x” from the magnon scattering on impurities we obtain [69] the expression

v () () () (32) e (24

where « = (1+ ¢)/(1— o), o is the Poisson coefficient, B = 4M3Asvp, A3 is the magnetostriction constant,

oc

2 g2
) = ! dx (x*— 61 ‘

31

Magnon scattering on dislocations plays an essential role in the relaxation processes in antifer-
romagnets with the magnetic anisotropy of the “light plane”-type [129]. In a variety of cases it is
magnon-dislocation interactions that determine the effective damping of spin waves. These interactions
certainly play a significant part as the mechanism of stochastization of magnons under nonresonance
parallel pumping.

In the model of chaotically distributed ring dislocations for the contribution to y” we have [69]

vim st ) (2 (32) (2 (2 o s

where

v=13(y*- 1) 2y*-3)+2, ¥’ = n/(A +21),

A, 5 are the Lame coefficients.

For the antiferromagnet MnCO;, beginning with very low concentrations ng~ 10° and b/a ~ 3+ 10,
R ~10"2cm, y"~ 1073+ 1072 For the increased concentrations when ng~ 10°+ 10", the value of y
amounts to the values observed during parametric resonance. As for absorption in an ideal (without
defects) antiferromagnet, the values of y” are essentially smaller than those for a ferromagnet (section 4.2).
This may be attributed to the fact that, firstly, the interaction with the nonresonance field in an
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antiferromagnet is weaker than in a ferromagnet and, secondly, antiferromagnets are ordinarily studied at
lower temperatures.

4.5. Damping of ultrasound in nonequilibrium antiferromagnets

In this section we will supply an example where the high-frequency magnetic field (27> 1) can
change radically the kinetic properties of phonons interacting with magnons in the antiferromagnet
having the magnetic anisotropy of the “light-plane” type. We will demonstrate that in the antifer-
romagnets in which the sound velocity ¢ exceeds the spin wave velocity s with the nonresonance
alternating magnetic field applied parallel to the constant field ({2 >24, 4 = 4;), the phonon damping
due to the phonon-magnon interactions can be negative [134]. In other words, amplification of
ultrasound phonons is perceivable under nonresonance parallel pumping.

It is well-known [91] that in antiferromagnets of the light-plane type the sound damping with the
frequency w, >24 (where w, = cq) assuming that ¢ >s (let us remember that the spin wave velocity
enters the magnon spectrum in the following fashion, &, = V42 + (sk)*) stems only from phonon—-phonon
interactions. It is attributed to the fact that the magnon—phonon processes of the type w, = & + €4-x
are forbidden by the laws of energy conservation (w, <24) and as for the processes of the type
Wg * & = €421, the laws of energy and momentum conservation are incompatible because of the
condition ¢ >s (MnCOs is an example of such an antiferromagnet).

The impact of the external alternating magnetic field (for £2r > 1, 7 is the magnon relaxation time)
manifests itself in the development of new processes in which the external field quanta participate
(section 2.4). In the single-quantum approximation such impact on the magnon-phonon interactions
consists in the development of processes of the type w, = 2 - & + £ 4_x and w, + &x = 2 £ ,.,. Note
that if <24 and w, <24, processes of the type w, x> &+ 4 and w, + & + 2> €, are
forbidden, whereas the process w, + &, — {2 € 4.« may result in damping other than zero even on the
condition that ¢ > s.

In the situation when the external nonresonance ({2 >24) alternating magnetic field applied parallel
to the constant field lying in the basal plane of the crystal, the equation for the phonon damping
coefficient (g/>1) of the type below follows from the kinetic equation for the phonon distribution
function which is written similarly to the one for magnons (see section 2.4)

o, =4 E 2 "P(q’ pp+t q)lz Ii(Ap,pH) (fo—fora) O(epsg— €5~ wg + nl) (4.26)

where ¢(q, p, p + q) is the amplitude of the magnon—phonon interactions,

A = Bhoon <L_L>
pprtq 0 Epiq Ep '

Further on we will analyze the single-quantum limit A <1 (though who = {2 is also possible). We will
remark here also that in the external field square approximation the equilibrium distribution functions
for magnons must be substituted in expression (4.26), the phonon damping at the expense of
magnon-phonon processes being determined only by (4.26) (certainly on the condition that w, <24).

The expression for damping is simplified to the following type under the above cited conditions
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o
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where

£.= 3w, — 2)+ 300, \/1+ 447 a=3<1
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This expression is valid if a’w?2 > ({2 — w, )%, which defines the interval of phonon energies at which the
process in question is permitted by the laws of energy and momentum conservation:

Ql+a)' <o, <N1-a)".

As is evident from expression (4.27) within the interval of phonon energies 2(1+ a) ™' < w, < {2 the
magnitude o, is negative, while within the interval 2 < w, <2(1-a)™", a, >0. The change of sign of
a, takes place at the point w, = {2.

When o, 2<4 <T and 2(1+ @) <w, <L in the order of magnitude we have [134]

___JiB’wh prho\* (02 — w!
% = 5- 23779F9N (9N> ( N ) (q )
where

e(g%) = eXqs—elqy+imleiqy+elql),

el is the vector of phonon polarization, ¢° = g/q, 7 is the ratio of the striction constants.

So, we see that nonresonance parallel pumping may result in the effect of sound amplification if the
above mentioned conditions are satisfied and |a,| > y&" (y2" is the total sound damping in respect of all
possible mechanisms). In the case of 2 - w, ~ aw, we get

a, = 231#:’0—05;—0‘;’—*’(’“‘}‘0) o(q )[“ ai” _! ] expi—aw ATV eP0i— (- w )} . (428

In conclusion, we will provide numerical estimates. For example, for uhy~ 2~ A4, B~ T ~ 1-10K,
6p/6x ~ 3, also for w, ~ £ - 0.75, |a,| ~ 10°-10* sec™"' which under the given conditions is much bigger
than at least the damping caused by the phonon anharmonisms. Note that the effect described here is
largely analogous to the one surveyed in section 3.3.

5. Kinetics of bosons interacting with electrons in a strong constant electric field

As has already been said in section 2.5, the impact of a strong constant electric field on the electron
and bosons interacting with them (phonons, magnons, plasmons) is far more complicated than it is
inferred from a usual kinetic equation of the Boltzmann type. Electric field affects electrons not only
between collisions, but also during their interaction with other quasiparticles. The latter consideration
that has long been ignored in the studies covering kinetics in a strong electric field, can play an essential
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part while investigating the peculiarities of nonequilibrium states. The thing is that for the time of
interaction of the electron with some other quasiparticle the electron changes its state appreciably
because of the acceleration in the field. Even if the energy acquired by the electron in the field for the
time of interaction is much smaller than its change in the energy owing to the emission (absorption) of,
say, a phonon or a magnon, all the same, the account taken of the explicit dependence of the collision
integrals (2.54) and (2.55) on the field is essential. And such an account does not imply very often only
small corrections for the already known effects. For the sake of illustration we may supply the following
example. Let some process with the electron participating in it be forbidden in the absence of the field
due to the incompatibility of the laws of energy and momentum conservation. The very law of energy
concentration of the interacting quasiparticles is the consequence of the assumption about the
instantaneous character of the interaction. It is for this reason that the collision integrals which appear
while constructing the theory in the second order of the perturbation theory with respect to interaction,
contain the corresponding &-functions. In the absence of the field such an approximation is justifiable in
those cases when the widening of energy caused by the interaction itself can be neglected. Otherwise, as
is known, instead of §-functions there appear Lorenz’s functions. The effect involving the widening will
not be considered here assuming that they are negligibly small. We will study only the field impact. The
electric field affecting the process of interaction, as is clear, for example, from the equations (2.54) and
(2.55), permits only those processes that could be forbidden without field. In the situation like this,
certainly, even a very weak field plays a cardinal role in the kinetics involving the “forbidden’ processes
and defines the possibility of the kinetic processes themselves.

Unfortunately, in view of the complexity of the kinetic equations (2.54) and (2.55), there is not any
possibility as yet of studying consistently the properties determined by electrons. We mean here such
properties as the phenomenon of transport, high-frequency effects, etc. The theory still lacks a serious
study of “‘electronic effects” in wide-band semiconductors. The problem of investigating the electronic
properties lies mainly in the determination of the nonequilibrium distribution function satisfying an
equation of the type (2.54). However, as for the kinetic properties of phonons [56,57] and magnons
[57], a number of basic conclusions can be made without having to solve the kinetic equation for
electrons.

In this section we will tackle only one problem, namely, the conditions of instability of acoustic,
optical phonons, magnons interacting with electrons under a strong constant electric field. It will be
demonstrated that owing to the impact of the electric field on the interactions for the time of their
duration, a new type of instability is possible which, regarding its physical mechanism, is close to
instability with respect to the Ginzburg-Frank transition emission (see, for example, [135]). We will
show that such non-Cherenkovian mechanism of instability may prove to be much more effective than
the Vavilov—Cherenkov mechanism during the amplification of sound waves, of the flux of optical
phonons, of spin waves.

The results presented below will pertain, as before, only to the case when one can neglect the
interband tunnelling of electrons [31] and the effect of Stark’s quantization [51]. For wide-band
conductors these two effects are usually realized at ‘“‘superhigh” intensities of the electric field
(E >10°-10° V/cm). As for the effect of acceleration of electrons for the time of interactions, it can be
substantial, as has been stated, for any, even small, value of the field.

5.1. Instability of acoustic phonons in semiconductors and semimetals

As is well-known, the analysis of the conditions for instability is based on the calculation of the
corresponding coefficient of damping. Let us see how the effect of electronic acceleration for the time of
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its interaction with a phonon and the effect of time nonlocalities of these interactions influence the sign
of this magnitude.

According to the kinetic equation for plasmons (2.54), the phonon damping vy, may be represented
by

Yo =M@ > f d7e" (fprepr—q — fpreEr) cos[(a,,_,, — &, + wy)T— %% 72] (5.1)

where M(q), for example, in the model of deformation interaction, is equal to
AV g/ Vps ;

here A is the deformation potential constant, V is the volume of the system, and p is the density.

When calculating the damping, it is convenient to make a formal substitution in the expression (5.1):
p + eET—p. As can be checked easily, in the cosine argument the sign of the electric field volume E
changes to the opposite. The main problem now is to choose the form of the, generally speaking,
nonequilibrium distribution function of electrons f,. In the present section we will first consider the
weak field limit, in particular,

s | q
p\/m|e|E>1 (5.2)

where p = m®, D is the mean electron velocity.

For choosing the model of the distribution function f, in the weak field limit, we will make the
following simplifying assumptions. Firstly, we will assume that we deal with the steady regime (¢ > 7,
see section 2.5) and therefore neglect the nonlocality in respect of the explicit dependence of functions
f. We will also assume that the collisions of electrons with each other are the most frequent ones. Since
owing to the law of momenta conservation of electrons during the electron—electron collisions, the field
drops out explicitly from the kernels of the electron-electron collision integral, the zeroth ap-
proximation is the quasi-equilibrium distribution function with the drift velocity u [56]. One may
presume here that the value of the drift velocity is determined through the electron—impurity collision
integral. Assumptions like these are not necessary if the field under study is a pulsed one with the pulse
duration 7, satisfying the inequality

TP e

where 7 is the electronic relaxation time. Under the given condition the field for the phonons may be
regarded as constant (7,> w™'), on the other hand, for the time 7, (7> 7,) the quasi-equilibrium
distribution of electrons does not manage to vary. This signifies that one may use the equilibrium form
of the distribution function when calculating (5.1). Actually, as will be seen below, the phonon damping
dependent of the electric field impact on the elementary acts of the electron-phonon interactions is
weakly sensitive to the form of the function f, and the condition of nonequilibraty is defined not by the
value of the drift velocity, but explicitly by the magnitude and the direction of the electric field.

We will first analyze the degenerate case. After integrating in (5.1), the result for y, can be
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represented by the difference of two expressions of the same kind containing the functions @ and @,
akin to the Fresnel integrals [57]

P
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Do is the Fermi momentum.

The result (5.3) is rather complicated for the analysis, however, it may be simplified [57] in the weak
field limit. As is evident from (5.2) and (5.3), the asymptotics of the expressions for @(x) and Py(x) at
|vx| > correspond to this limit. For realizing this limit, obviously, one needs the simultaneous

fulfilment of our inequalities
|potkv>1. (5.4

If the condition (5.2) is satisfied, inequalities (5.4) can be fulfilled beyond the vicinity of the solutions to
the equations po* k. =0 for ¢g. The zeroth term of the asymptotic expansion y© in respect of the

parameter (5.4) will take on the form
M(g)f m
Yy = %ﬂ; [(p5— «3) 0(p5— k1)~ (p5— k2) O(pa— k2)] (5.5)

where, as before, 6(x) is the step function, and with p,>|x.| (as a rule, it is an ultrasound region) we
have the well-known expression

2 2
yp = DLV () gy, (5.6)

The next term of the asymptotic expansion y§” is proportional to the first degree of the electric field
E (it should be noted here that the terms proportional to V'E cancel each other during the expansion of

(5.3)):
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As is seen from (5.5), formula (5.7) describes in the case of p,> |k.| only a small correction for the
“basic” damping (5.6) which describes the possibility of the Cherenkovian method of amplification of
sound waves: v <0 if qu > . Another opportunity immediately attracts attention when p, < |k.|. In
this case y$’ =0 and the “conventional” expression for damping (5.6) is nonexistent. Thus, we face an
extremely interesting situation when the phonon kinetics dictated by the electron—phonon interactions is
defined by the field presence in the system. Before embarking on the analysis of a case like this, we will
dwell in more detail on the ‘““conventional” situation p,> |«.|.

The result (5.7) has the simplest form if the inequality po > |«.| [56] is satisfied

YO = uaﬂ_V m (E ){1+3(q < [3(w quy + <ﬂ’%>2]} (5.8)

where v, is the Fermi velocity.

Expressions (5.6) and (5.8) indicate that if the time nonlocal effect of the electric field on the acts of
the electron-phonon interactions (i.e. the electronic acceleration for the time of its interaction with a
phonon) is taken into account, a new condition for instability [56] consequently arises

2B, (5.9)
T mupy

It differs formally from the Cherenkovian condition. We would like to emphasize that in spite of the
fact that we are concerned here with a small correction for damping, we can speak of a new type of
phonon instability since for qu < when the Cherenkovian instability is not observed, the sign of the
damping can become negative precisely due to the effect of nonlocality of the interaction and the
electronic acceleration for the time of its interaction with a phonon. As might be expected, the relative
value of the shift of the Cherenkovian instability point is small.

We will supply now the results for the nondegenerate case assuming that p > |x./,

MV
=MLY ek (5.10

where n. is the concentration of the electrons.
The expression for y$ has the standard form

(o) I_QQ)J_V (2 T) He exp{—’z?—qz [(w - qu)2+ (zq%)z]}

X {exp[:,)‘l? (w— qu)] - exp[;—]l,(w - qu)]} . (5.11)
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Before proceeding to the study of the strong field limit and of the situation when v’ = 0, we should
note an important consideration. The shift value of the curve y, = y,(E) in reference to the point
w = qu, as is clear, for example, from expression (5.8), is inversely proportional to vy, i.e. the shift
increases with the decreased concentration of conduction electrons. This fact has long been known
experimentally and for its explanation rather artificial hypotheses have been advanced. The asymmetry
of the curve y, = y,(E) in the suggested approach develops naturally and is easily explained by the
effect considered above.

Of great interest is the case when we are concerned with the maximum nonconservation of energy in
the acts of electron-phonon collisions, i.e. when the field cannot basically be neglected in the collision
integrals [56].

In contrast to the case of the weak field which actually corresponds to the expansion of the collision
integral in powers of the small value of the field, we will study the opposite limiting case

palV mleEg] <1. (5.12)

It may seem initially that such a condition is inconsistent with the case of a strong field since, if, for
example, § ~ u the right-hand side of the inequality decreases with the increased field and there is no
physically interesting interval for g. However for the reasonable values of the field (smaller than
Ziener’s breakdown) this is not the case. In fact, in the model u = uE (u is the mobility), when & ~ u one
can study the fields

E<lel

mau*

which at g ~ 10 cm™, u ~ 10* cm®/sec - V, m ~ 1072 gr amounts to E <10° V/cm, i.e. smaller than the
value of Ziener’s breakdown.

Under the condition (5.12) a fundamental question arises concerning the form of the strongly
nonequilibrium electron distribution function. Here, in contrast to the previous section, there are not
any grounds to be restricted to the simple drift approximation, though, as earlier, we may take
advantage of the considerations about the pulsed field. The method of integration of the expression
(5.1), considered above and using the electron distribution function in its explicit form, will not be
applied here. It turns out that in the calculation of y, in the limit (5.12) the nonequilibrium distribution
function enters the results only in the form of its moments [56]: the concentration of electrons n., the
drift velocity u, the mean electron energy &, etc.

_1 1 _ 1l ¢p
ne—ng,,, mu—Vnegpf,, e_Vne§2mf"'

As can be easily verified, such moments appear in the course of series expansion of the parameter (5.12)
of Fresnel’s integrals (see formula (2.56)) obtained in the 7-integration of expression (5.1).
Let us write out the result restricting ourselves to the first two terms in the expansion 1y, [56],

yo = ~ M) Vre 2[1— \/%(w—qu)].

eEqg 1 (5.13)
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We will emphasize here that the second term in brackets is the result of the expansion and therefore it
is by far smaller than a unit.

Thus, in the case (5.12) the magnitude v, is determined predominantly not by the drift velocity, but
by the electric field. The damping becomes dependent of the drift velocity, as is clear from (5.13), only
in the terms of high order of smallness. In the situation considered the instability (y, <0) that occurs at
eEq >0, cannot be called, in principle, a Cherenkovian one since the condition of instability does not
contain the relation between the wave velocity.

Here are some numerical estimates. Inequality (5.12) for parallel and antiparallel directions of ¢ in
respect of E can be re-written as

E[V/em] > 1073£[K] g[cm™].

For ¢*é/|eEq|~0.1, w ~ 5% 10%sec”™’, s ~5x 10°cmsec™" the value of the deformation potential
A~10""erg, n.~10”cm™>, £~ 300K, we obtain |y|~ 10°sec™". This corresponds to the field E ~
300 V/em.

We have shown above that if the relation between u and s is arbitrary, but the inequality (5.12) is
fulfilled, the phonon instability is governed by the effect of electronic acceleration by the field for the
time of the electron—phonon interaction. The inequality (5.12) is formally possible even with u <s (for
sufficiently small g), then the only mechanism of instability is the one determined by the effect of
electronic acceleration. Though, for the interval of wave vectors (ultrasound and upwards), interesting
from the physical point of view, formula (5.13) describes only the behaviour of y(E) under strong fields
preceded by the proper Cherenkovian phonon instability. That is why the result (5.13) is of no
importance in terms of the practical application of non-Cherenkovian mechanisms of phonon instability
in not too strong fields. Let us return to the case of weak fields.

We have attracted the reader’s attention above (formula (5.5)) to the fact that within the weak field
limit, but with |k.| > p, the damping 1y, is different from zero only due to the explicit dependence of the
collision integral on the electric field. Formally this may be seen from the fact that in the given
conditions the expression for ¥ vanishes whereas the first term of the field expansion (5.7) is not equal
to zero. Let us analyze this case in more detail. The inequality

w_ 9| 5.14
‘ q N “om Vo ( . )
can be realized, in principle, in a wide interval of wave vectors g if s> vo. However in a more real
experimentally situation (v,>s) the condition (5.14) is associated with the hypersound region. In a

sufficiently weak field when u <s, the condition (5.14) is perceivable if, for example, g =10"cm™,

m~ 10" gr, vo~ 10°cmsec™".
We will now show that a substantial increment may be obtained for the phonons satisfying the
inequality (5.14) in rather weak fields. We will simplify formula (5.7) for the case |«.|> p,. Then we

have [57]

_2[M@FV (eEq) mug[3(w — qu)’ +(g°/2m)] (5.15)

Va3 Quy q*[(gR2my — (s — ug/q)]*

Before proceeding to numerical estimates we will analyze the sign of the magnitude 7,. As is evident
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from formula (5.15), with the given sign of the magnitude eEq (for definiteness we will speak so far
about the positive value of this magnitude), in principle, both a positive and a negative value of y, is
possible, keeping to the limits of the inequality (5.14). This depends on the relation between the change
in the electron velocity while interacting with a phonon and the wave velocity (including the Doppler
shift). If the change in the electron velocity owing to acceleration in the field for the time of the
electron-phonon interaction exceeds the wave velocity, the wave as though breaks off backwards (in
reference of eE), so we have to deal with instability with respect to the “backward” irradiation. In this case
the sign of vy, is determined by the signs of eEq. If the change in the electron velocity is inferior to the wave
velocity, the wave breaks away ‘“forward” (in reference to the direction of eE), we confront instability with
respect to the forward irradiation, the sign being dictated by the sign of —(eEq). The considerations given
above are analogous to those which usually explain the effect of instability as related to the transition
irradiation (see [136]) for spatially homogeneous systems. Therefore the instability considered here and the
new method, related to it, of amplification of hypersound phonons (formula (5.15)) may be treated as
another kind of instability in reference to transition irradiation.

We will emphasize again that amplification of hypersound in semiconductors (g >2p,) exposed to a
constant electric field, is not, possibly, associated with the sign of the magnitude (w — qu) even if u <s.
In the model of deformation potential in (5.15) for A ~5x10%sec™’, s~5x10°cm-sec”™, p~
dgr-cm™, m~10"2gr, vo~ 10°cm - sec™’, g ~3x 10°cm™', E ~ 100 V/cm, the value of the increment
of v, in its order of magnitude equals 10° sec™'. As is clear, the method of amplification of hypersound
based on the use of instability close to its mechanism to the one related to transition irradiation, has
great advantages over the Cherenkovian method. The main asset is that we do not need here great
mobilities of current carriers. It is obligatory only to fulfil the inequality (5.14) as well as the condition
for |y,| be superior to the phonon damping caused by the phonon—-phonon anharmonisms.

5.2. The problem of amplification of optic phonons

For the realization of the Cherenkovian method of instability in a conductor normally great
mobilities of current carriers and high intensities of the constant electric field are needed to attain the
drift whose velocity exceeds that of the wave. For the case of acoustic phonons whose phase velocity s,
as a rule, is of the order of 10° cm sec™, the appropriate fields and materials (semiconductors) have long
been created and used (see, for example, [137]). At the same time, for other types of waves whose phase
velocities may be far superior to that of sound, the problem of their amplification arises since mobility
of carriers in solids is limited and, hence, very high intensities of the field are necessary which may
simply destroy the sample. One of the examples where we face the problem of realization of the
Cherenkovian mechanism of amplification, is the optic phonons. Let us see what possibilities may be
gained from the mechanism of instability suggested in section 5.1 for amplification of optic phonons flux
in semiconductors exposed to a strong constant electric field. We will note that we are not familiar so
far with the experiments aimed at the amplification of optic phonons.

Similar to the case of acoustic phonons, the damping of optic phonons is calculated using formula
(5.1) where, though, one must bear in mind that w, is the spectrum of optic phonons. The weak field
limit is represented by the inequality

_ E N -
v>‘£n‘l—ro, 7o = max{(dq) ", w;'} . (5.16)
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We will study this case in more detail. As a model for the electron distribution function we may choose
the quasi-equilibrium function with drift velocity when the frequency of electronic collisions is the
highest one in the system (see also the analogous considerations in section 5.1). Let us neglect the
phonon dispersion assuming that w, = wo and restrict ourselves to the analysis of the degenerate case
[138]. The result for the first two terms of the expansion (5.1) with respect to the parameter (5.16) is
similar to the formulae (5.5) and (5.7) from the previous subsection where, however, by the magnitude s
we mean the phase velocity of optic phonons s = we/g. We will dwell on the most interesting case when
Po<|k.| and, therefore y$ = 0. For g < mawo/p, we have [138]

¥9 = M@ % L p3 < (eE). (5.17)

If the inequality g > p, [138] is fulfilled,

2
79 = L IM@)P 22 % pieEn). (5.18)

Thus, in the case of even small drift velocities (we must stress here that in the limiting cases (5.17) and
(5.18) the magnitude u does not even enter these results) and not too strong fields there is a possibility
of amplification of optic phonons (y, <0), this possibility being due to the mechanism considered in
section 5.1. Here are some numerical results, for instance, for the deformation potential of the electron
interaction with optic phonons

IMIZ 92/2pw0

where & is the deformation potential. Assuming that % =10°eV/em, p =Sgr/cm’, g=10°cm™,

wo=10"sec™", po=10°cm™', we obtain in the case (5.17)
|74l ~ 10°E[V/cm] sec™ ; (5.19)
under these same conditions but with g = 10" cm™" when the situation (5.18) is realized, we have

|7l ~ 10*E[V/em] sec™" . (5.20)

5.3. Damping of spin waves in ferromagnetic semiconductors

We will supply one more example of instability of waves interacting with electrons under a strong
constant electric field. Let us examine the spin waves damping in a ferromagnetic semiconductor taking
into account the field effect on the electron-magnon interactions [57, 139], using extensively the results
of sections 2.3 and 2.5.

Generalizing equation (2.54) for the case of magnon-electron interactions we will write the kinetic
equation for magnons in the form
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0
4 .
E‘L = 2 f dre” N’3‘2 {(1 + Nq) (1 - fp+eE‘r~q. T)fp+eE'r. I Nq(l - fp+eE-r. { )fp+eE-r~q. T}
4 —

X COS[(€p—q1 — £,y + wy)T — eEqr’2m] , 7—+0 (5.21)

where the notations of the magnitudes that appear here are given in section 2.3.

As in the preceding examples, our main interest will be concentrated on the peculiarity of the
magnon damping due to the electric field. Therefore, as in sections 5.1 and 5.2, where the phonon
damping has been discussed, we will need here the kinetic equation for electrons. We will only take
advantage of the fact that in a sufficiently weak field in the case of most effective electron-electron
collisions the distribution function will be chosen by the quasi-equilibrium one with the drift velocity u
whose value is defined by the electron-impurity collisions. As follows from (5.21), the collision integral
being explicitly dependent on the field, which is the case for phonons, too, brings about the situation when,
generally speaking, the laws of energy and momentum conservation should not be necessarily observed
simultaneously in the elementary acts of interaction, i.e. the electric field allows only those processes which
would be forbidden in a certain region of the g-space in the absence of the field. For the first time the
problem of the spin waves damping was discussed in [140] where within the framework of drift
approximation for a nondegenerate case the authors obtained the condition of instability of the
Cherenkovian type: o, < qu. Below we will give some results including the spin splitting between the
subbands. We will also consider a degenerate semiconductor involving the difference in the electron
occupation numbers in the subbands. In so doing, we will, similar to sections 5.1 and 5.2, take into account
the effect of electron acceleration for the time of the electron-magnon interactions and their time
nonlocality. The damping coeflicient for a spin wave after the substitution of the derivatives p + eEr > p is
given by

Ye = "/’3,2 2 f dre" (fp-q1 — fo l) COS[(EP | T €p—qr— wq)T - eEqTZ/zm] . (5-22)
p -0

Repeating all the reasoning and making the calculations, analogous to those from section 5.1, we
arrive at the formula coinciding with (5.3). The only difference is that the matrix element of the
electron—-phonon interaction should be replaced by the matrix element of the s—d exchange interaction,
the expression for k., by

g, ma E‘L)
o= 2 +m(q s (5.23)

where s is the spin wave velocity. Instead of the magnitude p, in the expressions for A, and A_, we
have respectively

p-=V2m(eot34),  (e0>34) (5.24)

where &, is the Fermi level.
When the inequalities are fulfilled [57]

|p=trelv>1 (5.25)
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the first two terms of the asymptotic expansion v, are given by [57]

YO = %—f’T—L [(p% - 63) (P2 — kD)= (p2 = k2) 6(p2 — k)], (5:26)

(1>__=%Lm _Di __ P P p- | (k) (pot k)
S(eEq){p ke petee o e M (pe o) (p k) } 5.27)

In the region where both @-functions are other than zero, we get a conventional result [140]

b2 Klyym Icl/sl —(w qu). (5.28)

The expression (5.27) in this case describes the shift of the Cherenkovian instability point [140]. Let us
dwell in more detail on the situation when y$’ =0. Formula (5.27) under the condition |k.|> p. is
greatly simplified [57, 139]. If the inequalities

(L)0<A, u<A/q

are fulfilled that are reduced to the conditions q> p. or g <md/p. we obtain expressions of the
type

v LY ) (24 52). 0> 529
‘J—l—— 2(eEq)3(—];’T, <'Zf. (5.30)

The physical interpretation of the mechanism of instability (which, as is clear from (5.29) and (5.30),
under the present conditions is possible only for (eEq) <0) and of the sign of the coefficient y, cannot
be presented so vividly as in section 5.1. This is attributed to the fact that the classical language that we
have used to explain the phonon instability is not, generally speaking, applicable here (at least for the
case (5.30)) since electron—magnon processes are accompanied with the change in a purely quantum
magnitude (spin flip). Still, if we determine the change in the electron velocity proceeding from the
change in its energy while interacting with a magnon, then, as both in the case (5.29) and in the case
(5.30), we will find that the change in the electron velocity (along eE) exceeds the wave velocity, i.e. the
instability in reference to the “backward” irradiation of spin waves (relative to the direction eE) takes
place.

Here are some numerical estimates for CdCr,Se,, for example, in the conditions (5.30). For
g0~ 10"sec™, 4 ~10%sec™’, m ~ 107 gr, g~ 10°cm™", E ~ 10> V/cm, |y| ~ 10° sec™" which under the
chosen conditions is much superior to the damping due to the magnon-magnon processes.

6. Kinetic theory of the phenomena in tunnel junctions as an example of exact account of intense external
excitation

Another system that may be related to the problem discussed in the given report is a tunnel junction
of two metal films separated by a thin insulating layer (N;—I-N,). In a system like this tunnelling current
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flows if the voltage V is applied to the junction. As was established in [141], as a result of electron
tunnelling from one electrode to the other, nonequilibrium distributions of electrons come to be
realized in N; and N,. The character of these distributions is determined by the transparency of the
tunnel barrier, the voltage applied and the electron relaxation times [49].

To describe the tunnelling processes in nonequilibrium states of the electron and phonon subsystems
of metal films, kinetic equations can be formulated (see [49, 142]) which take exact account of the
external excitation acting on the system. This excitation is produced by the voltage applied to the tunnel
junction. As this takes place, one can derive equations resembling very much those which were
constructed in the study of the high-frequency field effect on the processes of interaction between
quasiparticles. It is easy to see the analogy if one analyzes the Hamiltonian of the system in question.

While constructing kinetic equations we can make use of the tunnel Hamiltonian [143]. Let us
assume that the complete Hamiltonian of the system may be represented as [49]

%=%l+%2+%v+%'r+%'r1+%c (61)

where #; and #, are complete Hamiltonians of the left and right electrodes,

~ZePaiant B MOPP) anas bR+ 0+ T 0RbRL.

P —p=K,0A
Hom 3 eBubert S MP.q)Bibas G2+ 0%+ S 026262,
qo g —q=K,0,A

(o, a), (B, B) are ¢lectron creation and annihilation operators of the left and right film, respectively, o
is the spin index, (b, b) are phonon operators of each film, A is the phonon polarization index,

M {(k, k') are the matrix elements of the electron—-phonon interaction in each film (1, 2), £{’ = E{’— u,
where E{ characterizes the law of electron dispersion in the i-film, u; is the electron chemical
potential, the Hamiltonian #,, describes the voltage applied to the junction:

Hy=eV(t) D aptp, 6.2)
po
the elastic tunnelling channel [143] is described by the term

Hr= TopBe +he.

p.gCc
*

where T ,, is the matrix element of the tunnelling interaction, T, 1,1 = T_, -4, the momenta p and ¢q
will refer afterwards to the left and right films, respectively. The inelastic tunnelling channel is described
as [144]

%Tl = 2 T(l)a(k) pcr:Bqa \/ (b(l) (2))+ h.c.

p.q.k.o.A

where k is the phonon wave vector; the matrix element of the inelastic tunnelling interaction is defined
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as

Too(k) = [ dr explikr) 42 ¥2(0)

where the single-particle wave functions ¢?(r) are those for electrons incident on the barrier from the
left and right, respectively.

The Hamiltonian . describing the external circuit is usually discarded assuming that the main effect
is to conserve the electric neutrality of the electrodes (with eV# 0) by the transfer of charge excess in
the external circuit. Let us also note that the separation of phonons into “left” and “right” introduced
above refers only to phonons of frequency w > w,~2ms/d (s is the sound velocity, d is the film
thickness). However, precisely these phonons are also affected by the “redressing” of electrons through
tunnelling, i.e., it is reasonable to consider the change of electron and phonon states in each film under
the action of the source due to the inelastic tunnelling channel. It follows from the results [144] obtained
in the determination of the dependence of TS, on k that the contribution of phonons with wave vectors
k <2m/d can be neglected.

As is clear, the Hamiltonian (6.1) refers precisely to the case that has been considered in section 2
and for which the “external field” V/(¢) can be exactly allowed for in the kinetic equations. The result
(2.27) is completely applicable to the case (6.1), (6.2). We will pass over to the description of the
programme for constructing kinetic equations which was accomplished in [49]. We will start with the
case of constant voltage applied to the junction.

6.1. Elastic tunnelling channel under constant voltage

We will first consider the kinetic equations without taking r; into account. For making calculations
in (2.27) with the accuracy of up to the second order of the perturbation theory in the interaction ¥r,
the following pairings between operators must be regarded as different from zero:

+
+ _ + _ D R0y — (A
A poXpe = f‘;"SW, ’ quﬂq'o - fgaaqq’ s bg,)\b,:,\ - N'i')c .

—_ | I Cered

Further on we should take into consideration that in the approximation of “specular’” penetration of
particles through the tunnel barrier the component of the momentum parallel to the barrier is preserved

’I“WI = Tqu:(pll) 8]’11.‘711 :

In view of the fact that the Hamiltonian #, commutes with ¥, the electron—phonon collision integrals
for each electrode have the usual form. Therefore it is sufficient to consider only the collision integrals
due to the tunnelling. These collision integrals may be given by

(L2) = -2m ST (13- 1) 86 - £9+ V) 63

(%2>T ==2m DTl (fa = £3) 8(e°— eP + eV). (6.4)
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The formulae given above enable the judgement about the character of nonequilibrium states
emerged during tunnelling [49, 142].

To investigate the nonequilibrium states of the electron—phonon system of a metal induced by the
tunnelling current, it is necessary, as is evident, to solve an extremely complex system of equations.
Specific difficulties are also associated with taking account of boundary conditions. In the present
section we only show that tunnelling between two films of normal metals can lead to essentially
nonequilibrium electron states. We assume that the thickness of the films d;, d, is less than the phonon
mean free path Ay, and consequently we are justified to consider only the electron equation. Let the
film thickness also satisfy the inequality A, <€d; <A, (A, is the electron mean free path with change of
momentum, A, is the diffusion length). The right side of the inequality permits the study of the spatially
homogeneous problem without taking account of the boundary conditions, whereas the left side admits
an approximation isotropic in momenta

fe=flex).

In passing from summation to integration in (6.3), (6.4) we take into account the fact that when
eV <u the momentum dependence of the matrix elements 7,, can be neglected and (| T[?) may be
taken at the Fermi surface. In this case the energy dependence of the electron density of states (at
distances eV from the Fermi surface) can also be neglected. Finally we obtain a system of equations in
the form [49]

of*(e)/0t = ~In{f*(e) = (e + eV)} + LP{f*, N} (6.5)
off (e)lat = =L f°(e) = f* (e — eV} + LH{f*, N} (6.6)

where I; ~ 2Dvo/d;, i = (i, 2), vo is the Fermi velocity, £:° are the electron—phonon collision integrals.

The first of the equations, (6.5) describes the injection of holes below the Fermi surface (extraction of
electrons from the vicinity of the Fermi surface) in the first electrode, while the second refers to the
injection of electrons in the region above the Fermi surface of the right film. In the first case, due to the
electron neutrality condition, states above the Fermi surface are rearranged too, while in the second
case the occupation number of electron states below u, is changed. Stationary solutions of the system of
nonlinear integral equations (6.5), (6.6) can be found only by numerical methods. Therefore, we
consider below the case of that “tunnelling nonequilibrium” which in limiting cases admits exact
analytical solutions.

We will consider the tunnelling structure N,-I-N-I-N, [142] in which N, are thick electrodes (and,
according to (6.5), (6.6), in equilibrium), while the central N-film is separated from the outer ones by
identical insulators. Let the same voltage eV be applied to each of the functions. Then the kinetic
equation for the distribution function of the central film f(¢) has the form [142]

af(e)at = —I,{2f(e) - F(e + eV)~ F(e — eV)} + £ 6.7)

where F(g)=(e¥" + 1) is the equilibrium distribution function. We will solve the equation obtained
for the case T =0. According to the conditions enumerated above, the stationary solutions of (6.7)
belong to a class of functions symmetrical in &, namely, f(—e) = 1— f(¢), and, therefore, it is sufficient to
seek a solution for & >0. Introducing the dimensionless quantities » = Io/ca(eV)’, x = £/eV (here
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ca = A*/d7s*pvo, A is the deformation potential constant, s is the sound velocity, p is the density (the
matrix element of the phonon interaction is expressed in the Bardeen—Pines model)), for f(x) whose

values different from zero lie below x =1, eq. (6.7), taking into account the explicit form of the
electron-phonon collision integral, can be written in the form

VAW~ 1)= (1= ) [ de' (/= 2 )

- f(x) (f dx’ (x + x') f(x") + jﬁ dx' (x—x'yY (1 —f(x’))> .

This equation may be reduced to a differential equation with boundary conditions. We denote by y(x)
the quantity

1
3
v+ f dx' (x' — x)* f(x") + %+ 2ax

where a = [y dx x f(x). A second order equation for ¢(x) may then be represented in the form
x4
W~ 3 = ﬁ-'_ ax*+v-2a’.
The boundary conditions for ¢(x) have the form ¢(0)=0, ¢x(1) =3+ 2a (the magnitude a must be

determined self-consistently), /(1) = 1. Evidently, f(x)=3—3{/'n,. We will present only the results.
When v <¢ a result is obtained which in fact corresponds to the generalized 7-approximation of eq. (6.7)

flx)= m : (6.8)

When v > 1 we obtain a solution which is described by the emergence of ““terraces” at the Fermi surface
[142]

f(x) = %[1 L 3)] .

The development of nonequilibrium electron distributions leads to some peculiar phenomena in
tunnel junctions. For example, in {141] the authors discovered experimentally the effect of self-blocking
of tunnelling current at low voltages.

6.2. Inelastic tunnelling

We will now see to what effects the allowance for tunnelling accompanied by the emission
(absorption) of phonons may lead. The electron collision integrals corresponding to these types of
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interactions are given by [49]

(L) == 3 5 ITQEFSA-1) - NOGs - ) 5+ eV =D+ 0f?), (69)

i=12 g=p+k

() =-r S 3 ITROPUAQ-F)-NOG - FN 8P+ eV-eDra)  (610)

i=1,2 g=p+k

where the phonon polarization index is included in the notation of the wave vector.

It is clear that only the inelastic tunnelling channel can serve as the source of phonon pumping in
each of the films. The calculation of the phonon collision integrals provides the following results for
kinetic equations

5N(') o i a
D n 3 TRWP - NP+ -1 12
p=q-k
X 8(eP+ eV - P+ wf) + LU, NO} (6.11
p q

where £%° are the usual electron—-phonon collision integrals.

Equations (6.3), (6.4), (6.9), (6.10) and (6.11), supplemented by boundary conditions, as well as by the
condition of electric neutrality of the films (determining their chemical potentials) constitute the
complete system for the solution of the problems of electron tunnelling in normal metals in the case
when nonequilibrium effects are important.

6.3. Oscillating voltage at tunnelling junction
We will now study modified kinetic equations for the situation where
V(t)= Vo+ Vicos (t. (6.12)
For the sake of brevity we will demonstrate here the results concerning only the elastic tunnelling

channel described by the Hamiltonian #y. The term in the kinetic equation for f3, for example,
depending on the voltage according to (2.27) is written in the form [49]

(%), = 2SIl [ arem (30~ fater )

X cos{[ef,l) +eVo-eP) 7+ %Vl [sin £2(¢ + 7) - sin .(Zt]} . (6.13)

Let us note that effects of the type (6.13) will not appear in the electron—phonon collision integrals
since in the Hamiltonian of the electron—phonon interaction the operators a, enter in the combination
@, a,, wWhile the oscillating part (6.12) does not depend on the electron momenta.

If voltage oscillations at the junction are sufficiently large (27 > 1, 7 is the electron relaxation time),
the kinetic equation for the a-film takes on the form
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where %, are collision integrals describing the relaxation processes in the a-electrode.

The kinetic equation for f? is obtained from (6.14) by a simple substitution @ 22 8. As is evident from
(6.14), the oscillating voltage is a tunnelling channel associated with the “emission and absorption
quanta” of voltage oscillations. On the basis of such analogies, the phenomenon under consideration
was called the “quantization” of voltage oscillations at a tunnel junction of normal metals [49]. This
“‘quantization” does not only determine the value of the tunnelling current, but affects also significantly
other properties dependent, generally speaking, of the electron distribution function satisfying a kinetic
equation of type (6.14). Here is an example of one of the possibilities of analyzing the nonequilibrium
distribution.

Let the constant component of the voltage vanish (V, = 0), the left film be thin (of thickness d) and
the right film thick. At the same time we assume that the thick film is at potential zero, so that only the
left film experiences chemical potential oscillations. The massiveness of the right film enables us to
assume that, owing to the efficient spatial diffusion of the electrons, it is in the equilibrium state. Let us
consider first the “single-quantum” limit eV, < (2. In the isotropic momentum approximation the kinetic
equation (6.14) is represented by

Lo —if[1-3 ()] - Fr+ 5 (5) (e Froa)= (= Foall+ 220 NI} (619)

The kinetic equation (6.15) results in the stationary case, for example, at T = 0, where I,7(eVy/02)* <1,
as was shown in [49], in the development of strongly nonequilibrium distributions - in the formation of
two “terraces’” on the Fermi step.

The experimental research into nonequilibrium phenomena in normal tunnel junctions encounters
great difficulties since in order to obtain effects anywhere near appreciable, junctions with sufficiently
small tunnel barrier transparencies must be available. This problem is rather complex, therefore the
number of experiments dealing with nonequilibrium effects is so far rather scarce.

7. Conclusion

In this report some new results obtained recently in the theory of kinetic phenomena in solids
exposed to strong external fields have been surveyed. The approach based on the accurate account of
the field taken in kinetic equations for quasiparticles proves, as has been demonstrated, to be successful
and yields some new and sometimes unexpected results. There is every ground to believe now that this
trend in solid state physics will culminate in the nearest future in a number of new and promising
results. The author has attempted to show that the development of the theory of nonlinear and
nonequilibrium phenomena in solids under intense external fields affecting substantially the quasiparti-
cle interactions, is interesting not only from the point of view of finding the possible mechanisms
causing nonequilibrium states and nonlinear properties but also as to the practical application of the
peculiarities of these nonequilibrium states for various purposes: for generation and amplification of
waves, for obtaining the necessary parameters of the systems, etc. The latter, to our mind, is very
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important for the now rapidly developing trend of creating new nonlinear elements in electronics and of
elaborating basically new technical devices.

It is not accidental that the theoretical research that has lately been carried out while investigating
the problems of the external field effects on the elementary acts of interactions, is mainly focused on
those systems (normal and ferromagnetic semiconductors, ferro- and antiferrodielectrics, and super-
conductors) which are most promising for experimental studies and practical applications. Some
problems concerning the experimental realization of quantum kinetic effects in strong fields and the use
of these effects have already been dwelt upon in this report while supplying the theoretical results. We
would like to make here some additional remarks on the experiments already available and on the
prospects of the theoretical and experimental research into the phenomena arising under the influence
of the external field on the quasiparticle interactions in solids.

As has already been noted in the Introduction, the theory is somewhat ahead of the experiment, as
far as the problems covered in this report are concerned. On the one hand, this is likely to be associated
with the fact that the understanding of the main peculiarities of quasiparticle interactions in external
fields came comparatively not long ago and therefore the ways of the possible development of
experiments were not known before then. On the other hand, in order to observe the phenomena owing
its origin to the field action on the duration of elementary quasiparticle interactions, we need, as a rule,
rather specific conditions of the experiment. For example, for the realization of a new mechanism of
waves amplification in the conductors one needs in a strong constant electric field (section 5.1) a source
of the gigacycle (or teracycle) band as well as sufficiently low temperatures (helium ones). However, in
spite of these conditions being so specific, they are completely attainable at the present level of
development of experimental technique. Nevertheless, despite the fact that some of the effects
described in sections 2-6 still await experimental checks, one can already speak about substantial
progress not only in the theoretical, but also in the experimental research into quantum kinetic effects
under strong external fields.

One of the first experiments in which the role of the strong constant electric field was vividly
elucidated in changing the probabilities of interband transitions of electrons with the absorption of the
light field quanta were published in [145, 146]. Those studies corroborated Franz-Keldysh’s theory
[30, 31].

In narrow-band semiconductors there appears, due to the strong constant electric field a discrete
term in the electron spectrum (Wannier-Stark levels [147]) and due to this the electron kinetics can
acquire a number of interesting peculiarities*. At the resonance electron transitions nonmonotonous
areas must appear between the Stark ladders in the field current dependence. This effect is described in
detail in theoretical papers [51,52] and was experimentally observed in [149] while examining ZnS.
With the highly peculiar phenomena which could be observed when the electric field affected
considerably the electron-phonon processes, can also be grouped negative absolute [150] and differen-
tial [151] conductivity of semiconductors and amplification of hypersound caused by the electron
transitions along the Stark ladder with the emittance of phonons [152]. In particular, the last-mentioned
effect seems to be promising for practical use in that frequency range (g > 2p,) where the Cherenkovian
mechanism of amplification is impossible. This, as has been noted in section 5.1, is associated with the
fact that at g >2p, electron—phonon processes are forbidden** without taking into account the electric
field effect. It should also be noted that, as has been determined, the indirect optic exciton transitions

* The experimental proof of Wannier-Stark levels was given in [148].
** The “cutout” of electron-phonon processes under such conditions was observed in the experiments [153, 154].
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which are allowed only if the interaction with phonons is taken into consideration, can essentially alter
their character in strong constant electric field. The theory of the effects elaborated in [155] enabled the
detailed explanation of the experimental results [156].

In the case of wide-band semiconductors (or under not too strong constant electric fields: E < 10*-
10° V/cm), the main field effect on the processes of electron scattering is the acceleration of electrons for
the duration of the interactions (see the intra-collision effect in sections 2 and 5). This mechanism
appears to have already been observed in the experimental study of the polaron mobility in InSb at
77 K [157]. These results were discussed qualitatively and quantitatively in [53]. The influence of the
strong constant electric field on the electron—phonon processes is evidently important not only for
semiconductors, but also for metals. For example, in the experiments with microcontacts (see [158-160])
while studying the spectrum dependence of the electron—phonon interaction function e*(w) F(w), the
field intensity in the vicinity of the microcontact is as high as 10*-10° V/cm. Under such conditions the
non-Cherenkovian generation of phonons arises [56, 57] which is likely to result in the “backgrounds”
observed in the experimental curves a*(w) F(w) at w > wp [157]. Unfortunately, there are up till now
no direct experiments studying intra-collision effects. However, the experiments [157-160], and the
observation of the curve asymmetry of the sound damping (see [57]) in respect testify rather convinc-
ingly to the point w, = qu in favour of the considerations given in section 5. In refs. [161-163] it was
shown that the problems of the electric field effect on the collision of particles are exceedingly
important and must be taken into account in connection with the modelling of small semiconductor
devices. Basic results were also obtained in the recent work [164] which studied hot carrier microwave
conductivity in the non-zero collision duration regime. The data obtained in [164] are very essential for
analyzing the experimental results in the study of the transient response characteristics of semiconduc-
tor devices.

In section 4 we have described the results obtained by the present moment on the theoretical
research into so-called nonresonance parallel pumping in ferro- and antiferromagnets. It has been
shown that such a nonresonance way of excitation of spin waves is attainable only due to the influence
of the alternating magnetic field on the elementary acts of interactions of quasiparticles of the magnetic
subsystem. In spite of the fact that the problem of nonresonance parallel pumping is a comparatively
new one and the first theoretical results have been obtained quite recently (for more detail see the
literature cited in section 4), there are at present first experimental proofs of the theory. The experiment
[165] confirmed the effect of nonequilibrium cooling of spin waves predicted theoretically (section 4.1).
It was shown that the main mechanism to which the formation of nonequilibrium states is attributed, is
the external field effect on magnon scattering on dislocations.

The impact of external electric fields (both constant and alternating ones) on the electron interaction
with the potential barrier in metal-barrier-metal junctions may now be considered to be comparatively
well studied experimentally. In the case of a constant electric field (constant voltage applied to the
tunnelling junction) the experiment [141] vividly demonstrated that nonequilibrium states of electrons
can be realized under such conditions (section 6.1). The effect of high-frequency fields on electron
interactions with tunnel barriers leads also to a number of interesting properties (section 6.3). Some of
these properties are already widely used in technical applications for constructing frequency multipliers,
irradiation mixers of submillimeter and infrared bands and visible spectrum detectors [166, 167].

In this report we have not discussed the similar problems in the sphere of superconducting states of
metals. It should, however, be noted that it is in these very systems that one of the most spectacular
experimental proofs of the effect of external alternating electromagnetic fields on quasiparticle inter-
actions have been produced. For example, the excitation of quasiparticles in thin superconducting films
by a high-frequency field is mainly due to the field effect on electron-impurity collisions [71-73].



V.P. Seminozhenko, Kinetics of interacting quasiparticles in strong external fields 179

The processes like these may culminate in fascinating nonequilibrium effects. In particular, the
experiment [168] discovered the nonthermal destruction of superconductivity by laser irradiation. The
effect of increasing critical parameters of superconductors as against the thermodynamically equilibrium
values was experimentally discovered in [169] (see ref. [170]).

Some of the examples given above speak for the fact that the experimental research into quantum
kinetic effects caused by the influence of external fields on quasiparticles in solids promises much and it
should be expected that very soon new experimental results and proofs of the theory will appear.
However, this does not yet mean that all the related theoretical problems have been solved.

Alongside the progress already made in this sphere there is still quite a number of problems to be
solved. Therefore, to avoid a false impression made on the reader that the theory of kinetic phenomena
in strong fields may be complete, we will enumerate the problems that remain to be solved in future.

One of the principal questions in the study of nonequilibrium effects taking into account the field
impact on the elementary acts of quasiparticle interaction is that of the form of the quasiparticle
nonequilibrium distribution function since its specific properties are largely determined by the
parameters of the nonequilibrium distribution. Unfortunately, up to now, except for the r-ap-
proximation in the case of slightly nonequilibrium states, the form of the distribution functions
satisfying generalized quantum kinetic equations has not yet been found. To solve this problem numerical
methods can primarily be applied. However, even if the computer programme for the calculation of the
distribution function is accomplished, some basic questions can be solved, for example, by the method
suggested in [171].

Of great interest may be the study of collective effects and of the problems of screening in conductors
exposed to a strong constant electric field allowing for the effects considered in section 5. They are not
practically studied and one may expect here some intriguing effects.

The problem of investigation of the nonequilibrium initial stage may turn out to be of basic
importance in the case where a strong external field is switched on and also in the case of the system
evolution with time towards the nonequilibrium state. This problem has been considered so far only in
the approximation of the instantaneous character of interactions between the quasiparticles. Also
topical is the problem of spatially inhomogeneous systems in an intense external field. Finally, we think
it to be important to apply the approach considered in this report to other systems which have not yet
been studied. Some considerations on the indicated problems have already been expressed in the
literature though the review of these studies would be premature.

The author is grateful to professors V.G. Bar'yakhtar, D.N. Zubarev, M. Lifshitz, Y.M. Kagan,
E.A. Kaner, S.V. Peletminsky and G.M. Eliashberg for the discussion of some questions related to the
problem of strong fields in kinetics of quasiparticles. The author would also like to express his gratitude
to A.A. Yatsenko who participated in a great part of the author’s studies of kinetics of interacting
quasiparticles in strong external fields.
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