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Based on the optical deflection method, the resonant characteristics of a microcantilever under
various pressure have been observed at room temperature to understand the pressure-dependent
dissipation effect. Especially, the quality factor of the cantilever has been measured for up to fourth
harmonic mode of cantilever resonance as a function of pressure between 0.1 and 1000 Torr.
By considering the intrinsic dissipation present in the system at 0.1 Torr, the pressure-dependent
fluidic quality factors were determined for the multiple cantilever resonant modes. The inverse of the
fluidic quality factor appears to follow two different asymptotic behaviors at high and low pressure
limits, which indicates that the dynamics of the fluid, due to the oscillating cantilever, changes from
Newtonian to non-Newtonian with decreasing pressure. The experimentally observed transition of
the fluidic dissipation effect agrees well with the recently proposed rapidly oscillating flow model
based on the Boltzmann equation, regardless of the different mode shapes.
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1. INTRODUCTION

Recently, miniaturized mechanical systems such as nano-
electromechanical systems (NEMS) and microcantilevers
have regained much attention along with the advances
in fabrication techniques.'™ They posses much improved
mechanical properties, such as high resonance frequen-
cies and quality factors in their resonant modes, com-
pared to previously-studied bulk mechanical systems.
Based on these superior mechanical characteristics, these
miniaturized systems have been proven to be promis-
ing in many of technological applications. For exam-
ple, the micro-fabricated AFM cantilever has been most
commonly used for the precise determination of var-
ious surfaces.* Also, the microcantilevers and NEMS
devices have been explored as sensing elements in sensor
applications.>®

The energy dissipation effects are always present in
these mechanical systems and there have been theoretical
and experimental attempts to address this issue originat-
ing from various mechanisms.”'? Typically, when one uses
the mechanical sensing element, the detection sensitivity
is closely related to the quality factor of the mechanical
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system.!! Therefore it is imperative to understand the dis-
sipation effect in these miniaturized mechanical systems
operating under various gas or liquid flow to achieve the
optimized detection sensitivity under various conditions.
Under moderate vacuum, the damping of these mechan-
ical systems will be dominated by the intrinsic dissipa-
tion effect. However, with increase in flow, one has to
assess the additional fluidic dissipation factor affecting the
motion of the mechanical system.

The fluid dynamics coupled with an oscillating mechan-
ical element can be characterized with the oscillation fre-
quency () of the mechanical element and the relaxation
time (7) of the fluid. For o < 1/, the flow due to the
motion of the mechanical element follows the Newto-
nian approximation, but for w > 1/7, this approach is no
longer valid. The expected break-down of the Newtonian
approximation has been considered with a model of an
rapidly oscillating plate based on the Boltzmann equation,
where the fluidic dissipation factor-has been given as a
universal function of the Weissenberg number w7.!? Fol-
lowing this theoretical description, the pressure-dependent
dissipation effect in a wide range of wrt has been
investigated experimentally using doubly-clamped beams
and cantilevers, mostly in their fundamental resonance
modes.!* :
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Here, we present an investigation of the dissipation
effect in a microcantilever under various pressures ranging
from 0.1 to 1000 Torr. The changes in the quality fac-
tor due to the fluidic dissipation are measured up to
the fourth harmonic of the resonant mode. To see the
effect of different mode shapes on the fluidic dissipa-
tion, the experimentally observed dissipation factors in five
resonant modes are compared to the recently proposed dis-
sipation model in non-Newtonian limit.

2. EXPERIMENTAL DETAILS

The resonant modes of a silicon microcantilever with
dimensions (I x w x ) of 520 um x 40 um x 4 um have
been identified up to fourth harmonic by measuring the
amplitude of the photodiode output due to the change
in the position of the optical beam on a dual-element
photodiode, reflected from the cantilever inside of a small
vacuum chamber as it moves.'* This optical deflection
measurement was carried out at room temperature through
an optical window in front of the vacuum chamber with a
He-Ne laser with a wavelength of 632 nm, and the pressure
inside was adjusted by carefully introducing N, gas into
the chamber. The cantilever was placed on top of a piezo-
electric actuator and actuated by applying ac voltage to
the actuator near the resonance. The resonance frequency
(@,,) and the quality factor (Q) for each mode were deter-
mined by fitting the resonance spectrum to Lorentzian
curve as shown in the inset of Figure 1 and the values
of w,, and Q for each mode at 1000 Torr are listed in
Table I. The values of w,, are close to the theoretically
predicted values for a monolithic cantilever beam based
on the observed resonance frequency at the fundamental
mode.!S Once the fundamental and higher harmonic res-
onance modes of the cantilever were identified, we have
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Fig. 1. Quality factor O of a microcantilever at multiple resonant modes

as a function of pressure. The inset shows the fundamental resonance
line shape at 1000 Torr. The solid line is a Lorentzian fit with @ /27
of 25.9 kHz and O of 65.
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Table I. .
quality factor Q of five resonant harmonic modes at 1000 Torr. wf)
is the predicted resonance frequency at each harmonic mode, calculated
for a monolithic cantilever beam based on the experimentally determined
fundamental resonance frequency. Also, the fluid-dependent coefficient
a in Eq. (1), obtained from the fit, and the predicted transition point p,
(wr = 1) are shown.

The observed resonance frequencies w¥ and the values of
lheo

Mode  «%°/27 (kHz) «h/2m (kHz) 0] « p. (Torr)
Fund. 25.9 — 65 0.18 0.3
Ist 162.9 162.0 250 0.17 1.9
2nd 456.1 453.7 384 0.20 53
3rd 894.0 889.0 398 0.22 104
4th 1475.3 1469.6 405 0.20 171

measured the resonance frequency and quality factor for
each resonance mode as a function of N, gas pressure
between 0.1 and 1000 Torr.

3. RESULTS AND DISCUSSION

The observed changes in quality factor @ at multi-
ple resonance modes are shown as a function of pres-
sure in Figure 1. With decrease in pressure, the value
of O increases due to the diminishing damping effect,
as expected. However, the experimentally determined
O-values do not fully describe the pressure-dependent dis-
sipation effect present in this rapidly oscillating gas flow,
since the observed Q-values contain both intrinsic and flu-
idic dissipation terms. The motion of the cantilever under
the presence of the gas can be simplified as of a forced har-
monic oscillator with a corresponding equation of motion
of i+ (Yo + Vguo) X + @h, x = f, where the ¥, and vy, are
intrinsic and pressure-dependent damping factors, and f
is the drive force per unit mass. Since the damping factor
is inversely proportional to the quality factor, the fluidic
quality factor Q,,, which is the measure of the damping
of the motion of the cantilever due to the surrounding gas,
can be determined from 1/Q,, = 1/Q ~1/Q, where Qo
is the pressure-independent intrinsic quality factor, present
regardless of the external environment, and Q is the total
value measured at each pressure. Here, O, is taken to be
the value measured at 0.1 Torr, where the damping due to
the surrounding gas is negligible.

Figure 2 shows the inverse of the fluidic quality fac-
tor 1/Q,, at multiple resonant modes as a function of
pressure between 0.1 and 1000 Torr. They exhibit simi-
lar pressure dependencies with two different asymptotic
behaviors at low and high pressure limits. A recent the-
ory by Yakhot and Colosqui'? predicts that this apparent
change in the pressure dependence is due to the transi-
tion of the fluid flow from viscous flow at high pressure
with small 7 to viscoelastic fluid flow at low pressure
with large 7, where the Newtonian approximation breaks
down. .
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Fig. 2. Inverse of the fluidic quality factor 1/Q,,; as a function of pres-
sure for (a) fundamental, first and second harmonic modes, and (b) third
and fourth modes. The lines are fits to Eq. (1) and the expected transition
points p, are indicated with the arrows for the corresponding resonant
modes. The insets in (a) and (b) show the fundamental and fourth har-
monic resonances at 0.1, 1, 5, and 50 Torr. The nonlinear response of the
fundamental resonance at low pressure can be seen with the broadened
resonance line shape.

The details of the pressure-dependent fluidic dissipation
effect can be further described with this rapidly oscillating
flow model based on'the solution of Boltzmann equation
for an infinite plate. In this model, 1/Q,,,, correspond-
ing to the fluidic damping coefficient, at pressure p is
given by

Q;S = a\/g(l + w272)_3/4 [(1 + wT) cos(——————tan_zl wT)
—(l—w7) sin(@)jl (1)

where « is a fluid-dependent coefficient. The experimen-
tally determined 1/Q,,; are fitted with Eq. (1) as shown
in Figure 2. The fits are obtained by varying a and con-
sidering the relation between the relaxation time and the
pressure (in units of nanoseconds and Torr), reported to
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be 7 ~ 1850 p~'.1* We have also observed the decrease
of w,, with pressure due to the mass-loading effect. Since
«this change in w,, was less than 1% in all the modes
within the range of pressure studied here, we have used
w,., at 1000 Torr for @ in Eq. (1). The resulting a from
the fits are listed in Table I and all the values from the
different modes are close since they only depend on the
surrounding fluid, which is N, gas in this work.

However, in Figure 2(a) we have noticed that at low
pressure, 1/Q,,, of the first two modes of resonance drop
much faster than expected from Eq. (1), while 1/Q,, at the
second mode only shows a slight deviation below 0.3 Torr.
At low pressure, diminishing damping leads to the larger
displacement amplitude of the cantilever and the cubic
term in the equation of motion is no longer negligible.
Above the critical amplitude, the motion becomes that of a
non-linear Duffing resonator, accompanying the broaden-
ing of the resonance spectrum as well as asymmetric line
shape due to the bistability. The presence of the strong
non-linear response, even at the lowest actuation power
tried here, in the low resonant modes (shown in the inset of
Fig. 2(a)) causes the deviation of 1/Q,,, from Eq. (1) since
the resulting value of Q at 0.1 Torr would be much smaller
than the intrinsic Q-value due to the broadened spectrum.
As the cantilever is driven into higher resonant modes, this
non-linear effect gets weaker (inset of Fig. 2(b)), result-
ing in better fit to Eq. (1). The rather smaller values of
« observed in first two modes, where the non-linearity
is most apparent, are consistent with the broadening of
the spectrum, since the nonlinear effect tends to lower the
entire 1/(Q,, curve in Figure 2.

Besides the deviation due to the appearance of the non-
linear resonance, all of our data obtained from different
resonant modes are in a good agreement with the theory by
Yakhot and Colosqui. In this theoretical attempt of explain-
ing the fluidic energy dissipation effect, the dimensionless
Weissenberg number is the only relevant dynamical param-
eter and Eq. (1), derived from this rapidly oscillating
flow model, is not expected to be a function of addi-
tional factors such as the geometrical dimensions and the
mode shape of the mechanical resonator. The fact that the
observed pressure-dependency of 1/Q,,, closely follows
the relation of Eq. (1), regardless of the mode shapes of
the oscillating cantilever, confirms the universality of the
theory. Also, the theory predicts that the transition between
the Newtonian and non-Newtonian regimes—shown as the
change in the slope of 1/Q,,; curve—occurs at 7 =1/w.
Since 7 ~ p~!, one can determine the expected transi-
tion point p, in pressure, which would be proportional to
the oscillation frequency w. These expected values of p,
for each harmonic mode are listed in Table I. Accord-
ingly, Figure 2 further shows that the observed transi-
tions appear at the expected transition points, shifting
toward higher pressure with increasing resonance mode
number.
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4. CONCLUSIONS

We have studied the pressure-dependent dissipation effect
in a microcantilever under various N, gas pressure. The
observed 1/Q,,, exhibits two distinct behaviors, suggest-
ing that the nature of the flow, generated by the oscil-
lating cantilever, changes. This pressure dependence in
fluidic energy dissipation shows the transition from non-
Newtonian to Newtonian fluid as w7 goes to zero and by
investigating them at multiple resonant modes, we have
been able to observe a range of transition points. Our
results agree well with the recently proposed model of
rapidly oscillating flow generated by a plane oscillator,
regardless of the cantilever mode shape, confirming the
universality of the theory. This study clearly demonstrates
the dramatic response of a miniaturized mechanical sys-
tem even to a slight external perturbation, which will
allow exploring the fundamental aspects of nanofluidics
and related applications.
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