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Abstract-The quantum theory of electronic transport phenomena in large electric fields in highly dissipative media 
is critically examined. Serious conceptual problems and computational difficulties arise because neither the field nor 
the dissipation can be treated as a perturbation. We review a decade-old calculation of the velocity acquired by an 
electron in a finite electric field in a polar crystal and subsequent work which expanded our understanding of our 
method and results. A key feature of the earlier work was that in a single curve of electric field vs velocity, all the 
expected phenomena appeared, including a threshold field for producing hot electrons, in quantitative agreement 
with experiment, and a decreasing rate of energy loss with velocity for very fast electrons. A more recently studied 
problem, that of electron acceleration below the threshold field will be discussed. This problem is very important 
since such acceleration is the necessary precursor of ionization and breakdown. The physical significance of 
dissipation processes far from thermal equilibrium will also be mentioned. 

1. INTRODUCTION 

The purpose of this review is to discuss several general 
calculations of electronic transport in insulators at high 
electric fields[l-71. While we are motivated by problems 
arising in the study of device physics[8,9], these prob- 
lems are discussed here in the general framework of 
insulator physics. Focusing on the primary differences 
between insulators and semiconductors, we examine the 
necessity of using somewhat more involved analytic 
methods in order to approach these problems without 
making unsupportable approximations. We then consider 
the problem of the steady-state velocity acquired by an 
electron in a finite (subthreshold) electric field in a dis- 
sipative medium, e.g. polar insulator. Here the 
effectiveness of the material to dissipate the energy an 
electron acquires in falling through a large electric field 
leads to a very interesting steady-state problem requiring 
a fully quantum mechanical treatment. While high elec- 
tric fields and dissipative media are usually very difficult 
to treat in the Schroedinger or Heisenberg picture, they 
are readily included in the path-integral method 
developed by Feynman [ M-151. 

Having treated this steady-state problem, we turn to 
another subthreshold problem, that of the transition rate 
of electrons from quasi-steady states to accelerating 
states. This “tunneling in momentum space” can provide 
a source of hot electrons for ionization (and hence 
breakdown) or for cold-cathode emission. A simple 
expression is given to determine the relative acceleration 
efficiencies of various materials. For reasons of sim- 
plicity the acceleration problem is discussed for weak 
coupling in the context of the Boltzman equation. A 
discussion for more realistic coupling can be found 
elsewhere[7]. We also note several problems associated 
with the relaxation approximation and scattering rates in 
applied fields. 

Topics discussed are, of course, only a very small 
sample of the multitude of interesting problems presen- 
ted by dynamic, steady-state phenomena well away from 
thermal equilibrium [ 16,171. As these problems become 

amenable to solution, we shall be in a much better 
position to understand the role of intrinsic insulator 
properties on the fundamental limitations of electronic 
devices. 

2. GENERAL. FEATURES 

The semiconductor physicist tends to picture an in- 
sulator as a semiconductor with a large (> 3 eV) band 
gap, somewhat hard to grow in a crystalline, nearly 
impurity- and defect-free form. While such a picture may 
be convenient at times, it is often more appropriate to 
regard the insulator, as a distinct entity, that is, as one of 
the three states of crystalline solids. While this is cer- 
tainly the case for electronic properties such as surface 
states, photo emission, and optical absorption[l81, it is 
also the case for electronic conduction, as we shall see. 

Consider first the concept of a Fermi level, which, 
together with the concepts of a band gap and of electrons 
and holes, is one of the most important conceptual tools 
in semiconductor physics. The Fermi level can play only 
a minor role in discussing insulators for the following 
reason. If the energy level of the trapping state is more 
than about 50 kT (1.25 eV at room temperature) away 
from a band edge, then the dependence of the Fermi 
level EF on the trapping level EL becomes inordinately 
large even for otherwise negligibly small concentrations. 
For example, consider a level above the Fermi level: 
Ev < EF < EL < EC Assuming for simplicity that N, = 
NC = N, a simple calculation yields 

7 = aEJaE, = f (1 t (N/N,_) exp - (EC - E,)/kT)-‘. 

(2.1) 

Ordinarily in semiconductors ye I at room tem- 
perature. However, suppose EC - E,_ = 1.4 eV and 
N/N, = 10Z3/cm3 (I impurity per cm3), then y = 0.48, 
barely less than the maximum value of 0.5. Now it is 
clear that one impurity or defect per cubic centimeter 
cannot affect physical properties at room temperature in 
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any significant manner. It follows that any entity which is 
strongly dependent on such a variable, cannot enter into 
the physics of the problem. Mention need hardly be 
given to what the above implies about the utility of an & 
in the presence of “natural” defects randomly spread 
throughout the material 

Whether or not the problem of obtaining high-purity 
insulators is intrinsic, owing to the large band gap and 
ionicity usually present, or merely fabricational, if one 
postulates a pure insulator other differences from semi- 
conductors immediately arise. The most important of 
these is electron-phonon scattering, especially optical 
phonons in insulators with large ionic polarizabilities [ 191. 
The coupling constant o rises from 0.02-0.04 in such 
“ionic” semiconductors as InSb and GaAs to l-3 in SiO, 
and A1203. Also in these large gap materials the band- 
effective mass is of the order of the free electron mass. 
Mean free paths then fall to the order of Angstrom or 
tens of Angstroms. This stronger scattering in turn im- 
plies higher fields are needed to accelerate the electrons. 
The moderately large scattering renders perturbation 
theory and quasi-particle approaches unworkable, while 
the Boltzman equation can be expected to give a qualitative 
picture at best. In addition we note in Appendix A how the 
presence of the electric field alters the scattering rate 
usually obtained from Fermi’s Golden Rule. 

Concerning the Boltzman equation, while it is well- 
known that in its usual form 

Jf(P, t) + P Jf(P, 0 
at t ’ ap = z$ [NP, P’)f(P’, t) 

- R(P’, P)f(P, 01 

the scattering rate R(p,p’) from p’ to p must be 
weak[20], a 4 1, what is not widely appreciated is that 
the electric force F,, must also be weak[7] and very 
slowly time varying[21]. Provided the scattering remains 
weak, oscillatory F, necessitate a convolution of a scat- 
tering function and f(p, t)[7,21], while a large, static F, 
as mentioned above, introduces, among other things, a 
modification in R[7]. Finally, while a relaxation-time 
approximation is often made for the right-hand side of 
(2.2), for optical phonon scattering it is neither accurate 
nor necessary (Appendix B) and leaves out important 
physics (Section 4). 

From this brief summary it is clear that the study of 
electronic transport, especially in the presence of 
high fields, requires a somewhat different point of view 
than a similar study in semiconductors. This will be 
apparent in the theoretical work reviewed here. The 
point to be made at this juncture is that the additional 
complexities which enter when treating insulators 
necessitate the more involved treatment which follows. 

3. HIGH-HELD TRANSFORT, DIUFI- 

My initial interest in &he general problem of the motion 
of an electron in a dissipative medium under the 
influence of finite electric and magnetic fields arose in 
attempting to understand theoretically the very high rate 
of loss of energy (0.03 eV/A) observed in AI-A120rAl, 
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cold-cathode structures [8,9]. While most scattering 
mechanisms could account for only a small fraction of 
this loss, it was possible that owing to the large ionic 
polarizability present (a = 3) in the oxide, the electron 
could dissipate all the kinetic energy it acquired from the 
applied electric field to the longitudinal optic phonons, 
even for electric fields of the order of 3 MV/cm. A new 
type of calculation was necessary since the mean-free 
path of 4A and the mean-free time of 10-‘ssec implied 
by such a high loss rate could not be handled realistically 
by existing perturbation methods. 

Before embarking on any calculation, a model and a 
quantity to calculate must be chosen. In choosing a 
model we made a number of approximations. (1) We 
ignored the interaction of the electron with the static 
lattice potential. This is reasonable since scattering from 
a static lattice can result in no loss of energy, and since 
the electron’s energy, even when heated, is expected to 
be less than about 0.2 eV. A lattice mass should, there- 
fore, adequately encompass this effect. (2) We assumed 
that the electron couples only to the local polarization, 
which is first order in the ion’s displacement. This is 
reasonable since at the energies of interest the electron’s 
wave function is expected to be about 40A wide and, 
therefore, the fine details of the scattering potential are 
not seen. (3) We assumed that in the absence of the 
conduction electrons, the longitudinal optic phonons 
oscillate as perfect harmonic oscillators. This is 
reasonable since the IR absorption is reasonably sharp, 
at least when compared with the electron’s mean-free 
time. (4) We ignored the interaction of the conduction 
electrons with each other as they are so few in number 
and as their mutual scattering can result in no total 
energy loss. (5) We also ignored the interaction of the 
conduction electrons with the electrons of the insulator. 
So long as the lattice is effective in dissipating the energy 
acquired from the field, the electron’s energy will be at 
most 0.2 eV and, hence, incapable of ionizing the in- 
sulator’s electrons. Thus this interaction is also non- 
dissipative and, therefore, of subsidiary importance. 
Questions of energetic electrons, ionization, etc., will be 
touched upon in Section 4. For the cold-cathode problem 
suffice it to say that the entire voltage drop across the 
device is insufficient to produce an electron capable of 
ionization. We should stress, however, that we made no 
approximation regarding the size of the coupling con- 
stant, temperature, or electric field. 

Turning now to the quantity to be calculated, we 
approach the heart of the matter. The standard approach 
of calculating a distribution is unsatisfactory because the 
concept of a distribution is suspect. The electron is 
always entangled, so to speck, with the lattice: it never 
has a well-defined momentum as it does, for example, 
between collisions in weakly scattering material. We can 
determine the steady-state velocity as a function. of the 
applied electric field by calculating the expectation value 
of the velocity operator in the presence of the field. For 
sufficiently large electric field, of course, no solution is 
possible, the lattice being no longer able to arrest the 
electron’s acceleration. Such an approach was actually 
carried out originally[l], however, it involved an exces- 
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sive amount of intuition to arrive at a realistic result. 
This was primarily because the velocity operator p/m 
contains no physics specific to the problem of interest 
the wave functions or density matrix used must, there- 
fore, carry all the information about the solution. By 
contrast, by calculating the expectation value of the 
operator equation for the conservation of momentum 

p = i[z-z, jJ/f 

one can obtain at once a relation for the field E in terms 
of the steady-state velocity v, without demanding as 
specific a solution as needed in calculating G/m). This is 
because in the commutator a gradiant of the potential 
specific to the problem arises, and, hence, less detail of 
the interaction is needed in the solution. 

Knowing what to calculate, while essential, is of 
course not enough: one must know how to calculate as 
well. On this point we shall not go into great detail as 
adequately detailed treatments are available[2-71. The 
essentii features, however, must be outlined. The two 
principal dithculties in calculating the expectation value 
of (3.1) fully quantum mechanically are the presence of 
the finite electric field and the highly dissipative nature of 
the system. It is an outstanding feature of the Feynman 
path-integral approach[lfLlSl that both these important 
effects can be included routinely. Furthermore, the 
phonon coordinates can be eliminated exactly. While no 
approximation need be made regarding the electric field, 
the exact influence functional remaining after integrating 
out the phonons must be approximated; however, it can 
be approximated by a similar, dissipative, influence 
fluctional. Since the approximate solution (zero-order 
solution) already contains the basic features of the prob- 
lem, the finite field and dissipation, we are again in a 
position to consider perturbation theory, this time in the 
difference between the exact and approximate influence 
functionals, both qualitatively similar to each other. 

The result obtained for the expectation value of (3.1) 
under steady-state conditions is the following. 

(3.2) 

where F = qE the electric force, H is the magnetic field, 
and 

T,(t) = e-(1 - e-&)-I + emi4(e” - l)-’ (3.3a) 

4riG(- 4 $ (1 -e’*) (3.3b) ” 

Z, = - m(v + ie)2 - i( y + k)gH 

+4 
I 

-d[(l -e’*)Zm(G*(t)) 
0 

(3.3c) 

G*(l) = i 2 ]C&kT.,(& e-““f e-k’U”“’ (3.3d) 
Ilk 

G(v) = 
I 

2 e’*G(,$) (3.3e) 

all of which arise from the Hamiltonian 

+ z &,n&a~.n 
n* 

+ V-“2 x (Ck..a,., e”“+ Cz,na:,n e-“‘“) 
n* 

(3.4) 

setting rh = c = V = 1, m is the fixed lattice mass men- 
tioned above; @= l/U, T being the lattice temperature. 
Here mlr.” is the dispersion of the nth phonon branch at 
wave vector k, A is the vector potential corresponding to 
the constant magnetic field H, V is the volume of the 
system. Expressions (3.3b-e) are a self-consistent set of 
equations from which &) can be obtained by iteration, 
for example. 

Certain physical aspects of the derivation of (3.2) 
should be mentioned. Prior to introducing the approxi- 
mate influence functional, the electronic system is shif- 
ted to a coordinate system translating with velocity v, the 
steady-state velocity of the electron: x, = y, + vt. In this 
drifting system the above mentioned approximation is 
made; that is, the exact influence functional is replaced 
by a distribution of oscillators characterized by G(u), the 
oscillator strength at frequency v. In order to determine 
this strength, which is a function of v and H and hence 
qE = F, a small probe field e, is applied in the drifting 
frame. From the a.c. response to this probe field the 
dynamic self-consistency of (3.3b-e) for t, Z and G 
arises. Requiring this self-consistency yields approximate 
solutions which satisfy several optical sum rules [22,23] 
as well as more stringent frequency-by-frequency 
criteria[5,6]. Such solutions also simplify higher order 
perturbation expressions [7]. The above mentioned con- 
nection between the small-signal a.c. response in the 
drifting frame and the self-consistent influence functional 
representing the dissipative system for the drifting elec- 
tron in a finite F represents yet another novel feature of 
this approach. 

Returning to the result (3.2) itself, for H = 0 we obtain 
a relation between the electric force F on the electron 
and its expectation steady-state velocity. In this single 
expression is contained all the physical features expected 
of the result including the nonlinearities inherent in this 
transport problem. We obtained with increasing velocity 
first the strongly temperature dependent, low-field 
mobility, as found by FHIP[24] in the limit of zero 
frequency of the applied field. Then, for initial lattice 
temperature below the reststrahlen energy, there is a 
rapid increase in the rate of energy loss as the electron’s 
translational kinetic energy approaches this optical- 
phonon energy. This is followed by a temperature-in- 
dependent threshold FT, or maximum loss of energy with 
distance. For F > Fr no steady-state velocity is possible. 
Finally, as the velocity increases further, a temperature- 
independent decrease in energy loss as In (u)/v’ is 
obtained as expected. For initial lattice temperatures 
above the optical phonon energy, the low-field linear 
region passes smoothly through a broad temperature- 
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dependent threshold which portrays the dominance of 
scattering from existing optical phonons. For very large 
velocities, the weak coupling limit of the solution gives 
the expected perturbation result. Thus, in a single family 
of field-velocity curves with temperature as the 
parameter, all the expected physical phenomena appear. 
Agreement with experiment is obtained for phenomena 
occuring in the vicinity of the threshold. We concluded 
that optical-phonon scattering can produce the large loss 
of electron energy observed in tunnel-emission devices. 

What is of greater interest in the cold-cathode problem 
is the number of electrons accelerated to high energies, 
several eV. Such a calculation done on the level of the d.c. 
and a.c. transport problems discussed above is beyond the 
scope of this review. Fortunately a simple derivation, 
qualitatively accurate, can be given. This we present in 
Section 4. 

4. HlGBFlJ3LD TRANSPORT, ACCELERATION 

While I shall not develop the point, any article on 
high-field conduction in insulators is expected to say 
something about electronic breakdown. Such breakdown 
is often pictured as resulting from a (slow or fast) 
sustained ionization or even avalanche multiplication. 
The only comment I wish to add to this picture is to 
suggest that, since on the one hand accelerating electrons 
must overcome an energy-loss barrier at about 0.1 eV 
and on the other hand must accelerate to IOeV before 
impact ionization can occur, the problem should be 
treated in two parts: (I) the acceleration to ionizing 
energies, and (2) the ionization process itself. In nearly 
all cases (2) is treated in detail while hardly any attention 
is given to (1). In this section (I) will be considered in 
some detail. 

It should come as no surprise that when an electric 
field in excess of the threshold field is applied to an 
insulator, any electron in the conduction band of the 
insulator will accelerate to ionization energies, the lattice 
being unable to dissipate the energy acquired from the 
field. What I have not seen stated before is that for 
applied, subthreshold fields there is still a probability 
that an electron can accelerate to ionizing energies. Such 
a possibility can come about as follows. If the electron 
can go without scattering for a sufficiently long time that 
it can accelerate to a velocity at which the scattering rate 
has passed its maximum and greatly diminished, then it 
can continue to accelerate with only a small probability 
of further energy loss. For small applied fields, the 
chance for this to occur is, of course, very small. As the 
field approaches the threshold field, however, the prob- 
ability approaches unity. Thus, whereas classically the 
probability goes abruptly from 0 to 1 in passing through 
the threshold field, quantum-mechanically a continuous 
transition is possible. Because of its vague analogy to 
tunneling through an energy barrier in position space, we 
can refer to this phenomena as a tunneling in momentum 
space. Unfortunately, no analogy in calculation carries 
over. 

For the purposes of this article it will suffice to treat 
this phenomena using the Boltzman equation (2.2). A 
treatment on the level of Section 3 is extremely involved 

and at present not nearly as welLdeveloped[7]. The 
Boltzman approach will, of course, apply directly to 
weak-scattering problems as commonly arise in semi- 
conductors. The real reason, however, is to exhibit this 
new phenomenon as clearly as possible without 
sacrificing the important qualitative features of the prob- 
lem. The general idea is this. We shall calculate the rate 
at which electrons transition from low energy, quasi- 
steady states to accelerating states of relative high 
energy by calculating the time rate of change of the 
electron distribution function at high energy. The latter, 
in turn, will be expressed in terms of the quasi-static 
distribution at low energy, which can be calculated by 
standard means. 

Thus, we begin by writing (2.2) for a constant field. 

V(Pt t) + F Jf(P* t) - 
dl 

. ap - T’“‘p, P')~(P'> t) - R(P’,P)~(P, t)l. 
(4.1) 

Ordinarily one sets f(p, t) = f(p) and ignores the first 
term. As we shall see, this is not correct except under 
unusual circumstances. The driving force F, however 
small and even though static, eventually drives the dis- 
tribution to higher energies. This is readily seen if we 
solve (4.1) by the method of characteristics[25]. If we 
define 

and consider the variables; t(s), p(s); 

d/ds = dtlds ddt + dplds a/aP (4.3a) 

so that 

dtlds = I, t(s) = (s - sg) + to (4.3b) 

dp/ds = F, p(s) = F(s - so) + pO, (4.3c) 

then (4. I) becomes 

df(ds), t(s)) + f@(s), t(s)) = c R(p(s) p~)j(pt t(s)) 

ds T(P(S)) p' ' ' . 
(4.4) 

Solving (4.4) as an ordinary differential equation in s. we 
find 

f(p(s), t(s)) = f(p(s,), t(s,)) exp [ I,: ds”ii(p(s”))] - 

+ Is: ds’ exp [ - [I ds%(S.)] T RW’), p”)f(p”, t(0). 

(4.5) 

Relations (4.3b,c) specify a collection of characteristics 
in (p, t). By choosing the appropriate characteristic, we 
can recover f(p, t) from f(p(s), t(s)). Choosing so = t, 
yields t(s) = s. Relabelling s by t converts (4.5) into 

f(p, t) = f(p - F(t - to), t,,) exp 
[ I’ 
- dr”/T(P - F(l - t”)) 

+[Idr’exp [-~~d~i.(p~F(,-,~),] 

1 

x z WP - W - 0, P"MP", t') 
(4.6) 
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which describes the time evolution of f(p, t) under the 
influence of the applied field F. 

Before proceeding we must understand the physics 
expressed in (4.6). The first term is the transient term. It 
states that time t an electron initially at p - F(t - to) has 
arrived at p without scattering, an event which occurs 
with transition probability P@; t, to), where 

P(p; t, t’) = exp 
[I 

- ’ dt%(p - F(t - t”)) 
I 
. (4.7a) 

1’ 

While the transient term generally plays only a neghgi- 
ble role in the acceleration problem, we note that a 
similar transition probability enters into the second term 
in (4.6). This term states that if an electron at p’ scatters 
at t’ into p-F(t - t’), then at t it will arrive at p with 
probability P(p; t, t’). It should be noted that had (4.1) 
been solved at the relaxation-time approximation only 
the relatively unimportant transcient term would arise. 

If we take F = Fir, then we can write 

P(p; t, t’) = exp dpVM, pJ 1 . (4.7b) 

Written this way it is evident that the probability P that 
an electron injected at rest can transition from a quasi- 
steady state to acceleration state is 

[I 

_ 
P,=exp - dpZ/PT(p:, 0) 

0 1 . (4.8) 

This simple result has the following significance. If the 
integral in the exponent diverges, then the scattering rate 
is sufficient to effectively prohibit transitions to 
accelerating states. In this case one is justified in drop- 
ping the time derivatiue in (4.1), and a steady-state solu- 
tion is valid. Naturally a cold-cathode could not be made 
from material which renders P,,= 0. If the integral in 
(4.8) is finite, then transitions are possible. Knowing the 
maximum F at which a specific insulator can be operated 
and the scattering rate l/~(p), one can calculate P,, for 
each insulator of interest in order to determine the most 
efficient accelerator of electrons. 

Returning now to (4.6), an integral equation for f(p, t), 
we must now determine the actual transition rate to 
accelerating states. Let F>(px’, t) be the probability at t 
that px > pi. Take to = 0. Clearly 

ca 
F’(P,‘, t) = 

I I PX’ 
dp, dp,.h 0. (4.9a) 

A more convenient form for f(p, t) can be obtained by 
using (4.7b) in place of (4.7a) in (4.6) and by changing the 
px variable in (4.9a) to pi = pX - Ft when integrating the 
transcient term and to pi = px - F(t - t’) for the second 
term. It follows that 

P&.,, = /V;,_ndPx[ dpf(p, W(P, + Ft, px; PJ 
.^ 

dp, 3 P(P, r’)f(p’v f) 

x P(p, + F( t - t’), px; PJ (4.9b) 

P(hP,;p,)=exp - [I ‘* dpxlFT&, P,)]. f4.9cj 
PI 

Where we have in addition replaced p: by px. For 
reasons that will become evident shortly, we must fur- 
ther manipulate the J dt’ _f dp, in (4.9b). Thus 

dp, 

d&p, -(p: - F(t - t’))] 

x[dt’u[P/(p;-P(f-1’))). 

If we choose p: sufficiently large that R(p, p’) is negligi- 
ble, then we can ignore the pl to m integration in px. If 
we let T=t’+(px’-pJF, then changing from dt’ to d7 
above we find 

= dp,. 

We may now write F’ in the form 

x f(P’, 7 - (px’ - P,)/WYP, + F(t - 71, px; pJ 
(4.9d) 

from which the transition rates of interest can be deter- 
mined. 

Returning to the problem in physical terms, what we 
have is a distribution of electrons which for the most 
part remain in a quasi-steady state, translating through 
the insulator with some average velocity v, as calculated 
in Section 3. Leaking off from this distribution into 
accelerating states is a certain fraction F’. If we call the 
quasi-steady state distribution f9”(p, t), then the rate per 
electron at which electrons transition from the quasi- 
steady state to the accelerating state is simply 

r(F) = dF’(p,‘, t)/dt 
I 

2 f4”“(p, t)= l/Tc#). 
P 

(4.10) 

After initial transcients, we assume that f(p, t) for the 
electrons in the quasi-steady state fesr(p, t) has the form 
f@‘(p) exp (- t/Td). Then using (4.6) f4”(p) satisfies 
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and we obtain for r(F) 

r!F) = 2 r”(~)lr,(~)/~ fqss(p) = 1MF) 
P P (4.12a) 

_ I/G(P) = 
I 

dp’R(p’, p) exp [(px’ - p3/FdlP(~~ L; PJ. 
-_ 

(4.12b) 

Here l/~Jp) has the meaning of the transition rate of an 
electron in state p. Having F’ in the form of (4.9d), the 
time derivative needed for r(F) is further simplified by 
noting that 

P(p,’ + F(t - T), px; PJ = P(P,‘> px ; P_L) 

for OC TS? by the way in which px’ was chosen. Thus 
the very physical result (4.G) emerges. (The reader not 
appreciating this point is invited to evaluate (4.10) using 
alternative expressions for F’.) 

For small fields F, T,, can be expected to be rather 
large so that rd(p) is relatively independent of TV. and 
hence T,&) can be calculated without knowledge of the 
distribution. (Note that (4.12b) does not contain f(p, t) 

explicitly.) For larger fields TV will become appreciable, 
hence one must solve for TV self-consistently between 
(4.11) and (4.12a.b). The simplest procedure is to assume 
r,,=m in (4.1 I) and (4.12b), get a r,, from (4.12a), etc. To 
be sure. this expression is most meaningful when FT* % 
pi, which is usually the case somewhat below threshold. 
Excellent solutions of (4.9) exist for Td = m[26], and their 
modification for T&m should be straightforward; for 
example, replace aflp, Q/at = 0 by af(p, t)/Jr = 

-f(P, 1)/G 
The foregoing, while providing a clear physical picture 

of the problem of electron acceleration below threshold, 
is nonetheless based on the Boltzman equation and 
hence is valid only for small electron-lattice coupling and 
small electric fields. Elsewhere[7] I have generalized the 
above derivation to include the modification of propaga- 
tion and scattering due to larger electric fields and elec- 
tron interaction with the solid. However these 
modifications are only expected to be useful for coupling 
constants a < 1. For a > 1 a direct evaluation of l/~~(p) 
may be more meaningful[7]. 

5. CONCLUSION 

In this brief review we have touched on several 
general features of insulators which distinguish them 
from semiconductors, outlined the derivation of the 
relation between the drift velocity and electric field at 
high electric fields where the relation is nonlinear, and 
introduced the problem of electron transitions from low- 
energy, quasi-steady states to high-energy accelerating 
states at high but subthreshold fields. The latter was 
regarded as a necessary precursor to ionization and other 
electronic breakdown phenomena. Looking toward the 
future we must keep in mind that significant energy loss, 
dissipation, is intrinsic in insulators, necessitating the 
high fields applied. Calculations of transport properties, 
therefore, must of necessity be such as to be valid under 
such conditions. By contrast, standard approaches to 

transport are usually geared to problems in which dis- 
sipation is a small perturbation. For insulators this is not 
realistic, and methods, ‘possibly as outlined above, will 
have to become more widely used in order to understand 
the more sophisticated experiments currently under- 
way[27,28]. Finally we note that the nature of systems 
under impressed fields, that is with energy flowing in 
from a field and out through dissipation, is potentially 
much more interesting to study than that of the same 
systems at or near thermal equilibrium[l6,17]. 
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APPENMA 

Scattering rates in an electric field 
In this appendix we calculate the scattering rate for electron- 

phonon scattering in the presence of an arbitrary, constant elec- 
tric field E. In lowest order (zero order) the electron is assumed 
to be a free particle accelerating in the applied field: 

H,=p*/2m-F.x, F=qE. (AI) 
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We shall examine the lowest order of scattering (first order) 
between the electron and the phonon bath in which it moves. The 
total Hamiltonian is as given in (3.4). 

As mentioned in the text, the Feynman path-integral method 
can handle H,, exactly and conveniently, especially when com- 
pared to the Airy-function solution which would arise in a 
Bchrodinger approach. If we use the result of a previous 
calculation[3] for the scattering rate, and specialize this result to 
the free-particle H0 of (Al) we obtain for R(p’,p), the rate at 
which electrons are scattered from p to p’ = p - fik 

ihkw!” e-it.pt,m eik.Pt’12m 

W 
IfF is zero, or otherwise negligible, we obtain 

R(p’,p) = ~l&f[(l -e-@“‘k)-‘&ha+- hk . p/m + ~*k*/2rn) 

t (ea* - I)-‘a(- Ilost- 1Lk. p/m + h2k2/2m)] (A3) 

the usual Fermi Golden Rule. For F non-negligible, the _fdT 
which would normally yield an energy conserving delta function 
now yields a broadened and skewed function, which we shall 
examine briefly. 

In (A2) the first term corresponds to the emission of a phonon 
of wave vector k and the second to an absorption of -k. 
Consider the emission. The integral of interest J is 

A = ho,+ h2k2/2m - hk . p/m = Ehnp, - Einitis, (AW 

B = h*k . F/m. (A4c) 

We manipulate as follows 

J=2(j-_~,edrtj-~A’Bd,)cos(AttEf2/2) (ASa) 

= 2 
I 

m 
dx cos @x*/2 - A*/2B) - 2 

0 I 

-A,!3 
dt cos (At - Bt*/2). 

0 
(Ajb) 

The first term in I integrates to 

(?r/B)“*[cos (A*/2B) t sin (A2/2B)]-r2r8(A), B +O 

an even function of A. The second term can also be written 

I 
AI.9 

-2 dx cos (A2/2B - Bx*/2) 
0 

which is clearly odd in A and vanishes for B = 0. 
While we shall not evaluate the second term in I (it can be 

expressed in terms of Fresnel integrals), we shall observe two 
important physical implications. (I) The broadening B implies an 
energy uncertainty AE in the scattering given by 

AE = B”* = h(jk . FJ/m)“‘. (A6) 

While AE is negligible for small F, it rises to about 0.1 eV in 
AI,Os near threshold, 2.5 MV/cm, where Fjk. Note that no 
broadening arises if F 1 k. (2) The skewness introduced by the 
second term in I is also of interest. If A/B > 0, I is reduced: if 
A/B < 0, J is enhanced. For emission, where B > 0, A/B > 0 
implies En,,,, > I&,,, while A/B C 0 implies E,,,, < Eini,inl. This 
is easily understood in physical terms. In emtssion, where the 
electron is scattered against the field, the field will absorb a 
portion of the electron’s energy during the collision, and hence 
reduction in energy will be favored. The opposite effect, an 

enhancement in energy, can occur in absorption during those 
scattering events in which the electron scatters with the field. We 
conclude that the electric field can appreciably alter the scattering 
rates by broadening and skewing the energy conserving delta 
function in Fermi’s Golden Rule. 

Electron distribution in linear response 
It is often expedient in solving the Boltzman equation (BE) to 

make use of the relaxation-time approximation to simplify the 
solution. However, even for small fields in which the change in 
the distribution is proportional to the field, considerable error in 
the nature of the distribution can be made if this approximation 
is involved. For low temperatures and optical phonon scattering, 
the typical argument runs as follows. We write F = f,, t f,, sub- 
stitute into the BE, and obtain to first order in the field 

F 9 df&p)/ap = x [R(p. p’)f,(p’) - R(P’. p)f,(p)l (Bl) 
P’ 

where f&p) = A exp (- p2/2mkT), A = (2mkT?r)“*. Now we 
consider two regions in momentum space, p < pc and p > p, 
where pr = (2mhuo,)“Z, where Lo, is the energy of an optical 
phonon. Now as we have seen already (A3) the scattering rate 
R(p, p’) contains both an emission and an absorption term so that 
either p > pE and p’< pc or p < pc and p’> pc Furthermore. 
emission is impossible if p <pr. Thus in (Bl) suppose p < pr. 
Then the R(p, p’)f,(p’) term involves scattering out to p’> pc by 
phonon absorption. If f,(p’) is sufficiently small the scattering in 
term can be ignored. If p > pr, then the electron scattered in 
comes from p’ < pc. However, if by our previous argument for 

P <PC 

where 

f,(p) = - r(p)F. pf&p)lmkT, (B2) 

then 

UT(P) = c R(P’. P). 
P’ 

(83) 

2 R(P. p’V,(p’) = 0. P > PC (84) 
Pa 

if R(p, p’) = R(p, -p’). as it very nearly is. Thus for p > pc we 
also have (82); in other words (Bl) becomes 

P. Jf,(p)lJp = -I,(P)/T(P) W) 

the usual relaxation time approximation. As a check we return to 
p <pc to compare terms; the neglected term is again (B4) now 
with p < pc. Thus the relaxation-time approximation seems con- 
sistent. Moreover note that as p passes from p < p, to p > pc, 
f,(p) diminishes by the ratio of absorption rate to emission rate, 
which for exp (-h,JkT) 4 I, the usual case, is very small. This 
means that f,(p) for-p > pc is reduced from f,(p) for p a 0’ not 
only by the Boltzman factor exo(- o’RmkT), but by . . . 
Q,)h(p<), where p, means p > pe and p< means i < pc. Thus 
f,(p) is usually totally neglected for p > pr. Physically this means 
that the source of f,(p) for all p is the electric field, scattering 
into the distribution being negligible. 

The problem with the above argument is the relation R(p, p’) = 
R(p, - p’), which while approximately true is not true to order 
exp (- Iho,/kT). Thus physically while for p<, the source of 
f,(p <) is mainly the field, for p, 

x R(P,. P’)T@‘)P%(~‘) * P,>~,(P>) 
P’ 

(B6) 

(FjB) and hence the source of f,(p,) is not the field at all but 
phonon absorption from f,(p,). Thus 

fi(P>) = T(P>) 5 R(p,,p’)r(p’)F . p’f,(p’)/mkT (B7a) 
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while 

II = Q<)F. p<fd~<Nmk~. Wb) 

Now f,(P>)/f,(P,)tf,(~,)lf,(~,) and fi(p,) is not nearly SO 

small as implied by the relaxation-time-approximation result. 
This difference does not affect the usual calculation of the 
mobility, but is essential in a conservation of momentum or con- 
servation of energy approach. 

It is of interest that (Bl) can be solved exactly if one ignores 
F,(p) for p > (4m&)“*, which really is reasonable for 
exp(- l,]kT)* 1. The reason for this is that the energy 
exchange-(AEl= rmrho,. Hence exchanges of electrons are only 
possible between E and Et hu, , E < hm, , and E and E - &, , 
‘E> bho,. Thus the problem diiides into-pairs of shells. Also 
because of the momentum dependence of the scattering, the 
angular distribution is sufficiently simple that f,(p) has the 
general form g,(p) cos U, for Fji. While we shall not carry out 
the calculation in detail, we shall focus on its main features. 

(I) The rates given in (B I) are expressed in (A3). For optical- 
phonon scattering 

aBh’ 4nol* h 

I 1 
I/2 IL~12 = q--J. B=iz$sg WW 

lp - p’(2 = p* + p’* - 2pp’ cos v,,.. (B8b) 

(2) In order to evaluate the sum over p’ in the scattering-in 
term, it is convenient to pass to a coordinate system in which the 
i axis is taken along p. Then r,,,> in (B8b) becomes f?,., while 
expanding f,(p) in the frame where ill;, 

f,(P) = g0 dP)P,(COS r,). (B9a) 

and then for f,(p’) passing to the i(Jp frame. we have 

P,(COS 7;) = P,(COS e,)P,(cos e;) + 2 m$, s 

x P,%os e,)y(c0s ~;)COS t7dtbp -4;). Wb) 

In doing the &.., the cos m(4p - 4;) will integrate to zero leaving 
only the first product. Since this decouples (Bl) into equations 
for g,(p), one for each I, and since only I = 1 is driven by F, 

f,(p) = Q(P) ~0s 8,. (B9c) 

(3) Carrying out the integrals over t$,., & and using the delta 
functions to integrate d,,, one obtains 

FP&P<) = g,(p>) 
mkT 

2damp,l(p,* +p,*) ,($) 
I- exp (- hq/kT) 

_ g (p ) 2~B~mp,l(p<* + p>*) I(s) 
I c exp (ho,/kT) - I 

(BlOa) 

- FP,fO(P>) = &Qp,) 
mkT 

2~Bamp,l(p,* + P,*) J(s) 
exp (lio,/kT) - I 

- &?,(P>) 
2=Bamp,/(p,* + P,*) + 2~BampAp,*+ PC*) 

I - exp (- LJkT) exp (iho,/kT) - 1 1 Icsj 

(Blob) 

s = 2P<P,l(P<* + P>*) (Bloc) 

s 

J(s) = d~~(l-sr)-‘=[In(~)-2s]/s2 (BlOe) 

P7 = (p<* t Zmlio,)‘“. (BlOf) 

Solving (BlOa,b) for g,(p,) and g,(p,) yields f,(p). The physical 
picture is little altered from the discussion of (Bta,b). 


