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HIGH-FIELD ELECTRONIC CONDUCTION
IN INSULATORS
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Abstract—The quantum theory of electronic transport phenomena in large electric fields in highly dissipative media
is critically examined. Serious conceptual problems and computational difficulties arise because neither the field nor
the dissipation can be treated as a perturbation. We review a decade-old calculation of the velocity acquired by an
electron in a finite electric field in a polar crystal and subsequent work which expanded our understanding of our
method and results. A key feature of the earlier work was that in a single curve of electric field vs velocity, all the
expected phenomena appeared, including a threshold field for producing hot electrons, in quantitative agreement
with experiment, and a decreasing rate of energy loss with velocity for very fast electrons. A more recently studied
problem, that of electron acceleration below the threshold field will be discussed. This problem is very important
since such acceleration is the necessary precursor of ionization and breakdown. The physical significance of
dissipation processes far from thermal equilibrium will also be mentioned.

1. INTRODUCTION

The purpose of this review is to discuss several general
calculations of electronic transport in insulators at high
electric fields[1-7]. While we are motivated by problems
arising in the study of device physics(8,9], these prob-
lems are discussed here in the general framework of
insulator physics. Focusing on the primary differences
between insulators and semiconductors, we examine the
necessity of using somewhat more involved analytic
methods in order to approach these problems without
making unsupportable approximations. We then consider
the problem of the steady-state velocity acquired by an
electron in a finite (subthreshold) electric field in a dis-
sipative medium, e.g. polar insulator. Here the
effectiveness of the material to dissipate the energy an
electron acquires in falling through a large electric field
leads to a very interesting steady-state problem requiring
a fully quantum mechanical treatment. While high elec-
tric fields and dissipative media are usually very difficult
to treat in the Schroedinger or Heisenberg picture, they
are readily included in the path-integral method
developed by Feynman[10-15].

Having treated this steady-state problem, we turn to
another subthreshold problem, that of the transition rate
of electrons from quasi-steady states to accelerating
states. This “tunneling in momentum space” can provide
a source of hot electrons for ionization (and hence
breakdown) or for cold-cathode emission. A simple
expression is given to determine the relative acceleration
efficiencies of various materials. For reasons of sim-
plicity the acceleration problem is discussed for weak
coupling in the context of the Boltzman equation. A
discussion for more realistic coupling can be found
elsewhere[7]. We also note several problems associated
with the relaxation approximation and scattering rates in
applied fields.

Topics discussed are, of course, only a very small
sample of the muititude of interesting problems presen-
ted by dynamic, steady-state phenomena well away from
thermal equilibrium[16, 17]. As these problems become

amenable to solution, we shall be in a much better
position to understand the role of intrinsic insulator
properties on the fundamental limitations of electronic
devices.

2. GENERAL FEATURES

The semiconductor physicist tends to picture an in-
sulator as a semiconductor with a large (> 3eV) band
gap, somewhat hard to grow in a crystalline, nearly
impurity- and defect-free form. While such a picture may
be convenient at times, it is often more appropriate to
regard the insulator, as a distinct entity, that is, as one of
the three states of crystalline solids. While this is cer-
tainly the case for electronic properties such as surface
states, photo emission, and optical absorption(18], it is
also the case for electronic conduction, as we shall see.

Consider first the concept of a Fermi level, which,
together with the concepts of a band gap and of electrons
and holes, is one of the most important conceptual tools
in semiconductor physics. The Fermi level can play only
a minor role in discussing insulators for the following
reason. If the energy level of the trapping state is more
than about SOKT (1.25eV at room temperature) away
from a band edge, then the dependence of the Fermi
level Er on the trapping level E, becomes inordinately
large even for otherwise negligibly small concentrations.
For example, consider a level above the Fermi level:
E, <E-<E, <E.. Assuming for simplicity that N, =
N¢ = N, a simple calculation yields

y=03EHdE, = %(l +(NINp) exp — (Ec ~ EDIKT)™".
.1

Ordinarily in semiconductors y <1 at room tem-
perature. However, suppose E.—E;=14eV and
NIN. =10®/cm® (1 impurity per cm®), then y=0.48,
barely less than the maximum value of 0.5. Now it is
clear that one impurity or defect per cubic centimeter
cannot affect physical properties at room temperature in
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any significant manner. It follows that any entity which is
strongly dependent on such a variable, cannot enter into
the physics of the problem. Mention need hardly be
given to what the above implies about the utility of an Ex
in the presence of “natural” defects randomly spread
throughout the material.

Whether or not the problem of obtaining high-purity
insulators is intrinsic, owing to the large band gap and
ionicity usually present, or merely fabricational, if one
postulates a pure insulator other differences from semi-
conductors immediately arise. The most important of
these is electron-phonon scattering, especially optical
phonons in insulators with large ionic polarizabilities[19].
The coupling constant a rises from 0.02-0.04 in such
“ionic™ semiconductors as InSb and GaAs to 1-3 in SiO,
and Al,O;. Also in these large gap materials the band-
effective mass is of the order of the free electron mass.
Mean free paths then fall to the order of Angstrom or
tens of Angstroms. This stronger scattering in turn im-
plies higher fields are needed to accelerate the electrons.
The moderately large scattering renders perturbation
theory and quasi-particle approaches unworkable, while
the Boltzman equation can be expected to give a qualitative
picture at best. In addition we note in Appendix A how the
presence of the electric field alters the scattering rate
usually obtained from Fermi's Golden Rule.

Concerning the Boltzman equation, while it is well-
known that in its usual form

@) p . P
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the scattering rate R(p,p’) from p’ to p must be
weak[20], « <1, what is not widely appreciated is that
the electric force F,, must also be weak{7] and very
slowly time varying[21]. Provided the scattering remains
weak, oscillatory F, necessitate a convolution of a scat-
tering function and f(p, £){7, 211, while a large, static F,
as mentioned above, introduces, among other things, a
modification in R(7]. Finally, while a relaxation-time
approximation is often made for the right-hand side of
(2.2), for optical phonon scattering it is neither accurate
nor necessary (Appendix B) and leaves out important
physics (Section 4).

From this brief summary it is clear that the study of
electronic transport, especially in the presence of
high fields, requires a somewhat different point of view
than a similar study in semiconductors. This will be
apparent in the theoretical work reviewed here. The
point to be made at this juncture is that the additional
complexities which enter when treating insulators
necessitate the more involved treatment which follows.

3. HIGH-FIELD TRANSPORT, DRIFT

My initial interest in the general problem of the motion
of an electron in a dissipative medium under the
influence of finite electric and magnetic fields arose in
attempting to understand theoretically the very high rate
of loss of energy (0.03eV/A) observed in Al-ALOs-Al,

cold-cathode structures[8,9]. While most scattering
mechanisms could account for only a small fraction of
this loss, it was possible that owing to the large ionic
polarizability present (@ =3) in the oxide, the electron
could dissipate all the kinetic energy it acquired from the
applied electric field to the longitudinal optic phonons,
even for electric fields of the order of 3MV/cm. A new
type of calculation was necessary since the mean-free
path of 4 A and the mean-free time of 10™'"° sec implied
by such a high loss rate could not be handled realistically
by existing perturbation methods.

Before embarking on any calculation, a model and a
quantity to calculate must be chosen. In choosing a
model we made a number of approximations. (1) We
ignored the interaction of the electron with the static
lattice potential. This is reasonable since scattering from
a static lattice can result in no loss of energy, and since
the electron’s energy, even when heated, is expected to
be less than about 0.2eV. A lattice mass should, there-
fore, adequately encompass this effect. (2) We assumed
that the electron couples only to the local polarization,
which is first order in the ion’s displacement. This is
reasonable since at the energies of interest the electron’s
wave function is expected to be about 40 A wide and,
therefore, the fine details of the scattering potential are
not seen. (3) We assumed that in the absence of the
conduction electrons, the longitudinal optic phonons
oscillate as perfect harmonic oscillators. This is
reasonable since the IR absorption is reasonably sharp,
at least when compared with the electron’s mean-free
time. (4) We ignored the interaction of the conduction
electrons with each other as they are so few in number
and as their mutual scattering can result in no total
energy loss. (5) We also ignored the interaction of the
conduction electrons with the electrons of the insulator.
So long as the lattice is effective in dissipating the energy
acquired from the field, the electron’s energy will be at
most 0.2eV and, hence, incapable of ionizing the in-
sulator’s electrons. Thus this interaction is also non-
dissipative and, therefore, of subsidiary importance.
Questions of energetic electrons, ionization, etc., will be
touched upon in Section 4. For the cold-cathode problem
suffice it to say that the entire voltage drop across the
device is insufficient to produce an electron capable of
ionization. We should stress, however, that we made no
approximation regarding the size of the coupling con-
stant, temperature, or electric field.

Turning now to the quantity to be caiculated, we
approach the heart of the matter. The standard approach
of calculating a distribution is unsatisfactory because the
concept of a distribution is suspect. The electron is
always entangled, so to speck, with the lattice: it never
has a well-defined momentum as it does, for example,
between collisions in weakly scattering material. We can
determine the steady-state velocity as a function of the
applied electric field by calculating the expectation value
of the velocity operator in the presence of the field. For
sufficiently large electric field, of course, no solution is
possible, the lattice being no longer able to arrest the
electron’s acceleration. Such an approach was actually
carried out originally[1], however, it involved an exces-
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sive amount of intuition to arrive at a realistic result.
This was primarily because the velocity operator p/m
contains no physics specific to the problem of interest
the wave functions or density matrix used must, there-
fore, carry all the information about the solution. By
contrast, by calculating the expectation value of the
operator equation for the conservation of momentum

p=i[H,pl/k 3.0
one can obtain at once a relation for the field E in terms
of the steady-state velocity v, without demanding as
specific a solution as needed in calculating {(p/m). This is
because in the commutator a gradiant of the potential
specific to the problem arises, and, hence, less detail of
the interaction is needed in the solution.

Knowing what to calculate, while essential, is of
course not enough: one must know how to calculate as
well. On this point we shall not go into great detail as
adequately detailed treatments are available[2-7]. The
essential features, however, must be outlined. The two
principal difficulties in calculating the expectation value
of (3.1) fully quantum mechanically are the presence of
the finite electric field and the highly dissipative nature of
the system. It is an outstanding feature of the Feynman
path-integral approach[10-15] that both these important
effects can be included routinely. Furthermore, the
phonon coordinates can be eliminated exactly. While no
approximation need be made regarding the electric field,
the exact influence functional remaining after integrating
out the phonons must be approximated; however, it can
be approximated by a similar, dissipative, influence
fluctional. Since the approximate solution (zero-order
solution) already contains the basic features of the prob-
lem, the finite field and dissipation, we are again in a
position to consider perturbation theory, this time in the
difference between the exact and approximate influence
functionals, both qualitatively similar to each other.

The result obtained for the expectation value of (3.1)
under steady-state conditions is the following.

FrvxB=S kP [ T, @ e eerror
nk —oo
3.2

where F = gE the electric force, H is the magnetic field,
and

T &) =€“(1-e ™)' +e ™’ - 1) (3.3a)
(= L Liniccnga-¢9 63
Z,=—m(v+ie)’ —i(v + ie)eH

+4 f ) d£(1 - e™)Im(G*(¢) (3.3¢)

GHO =3 D, ICual MR T.0(§) 6™ 56" (33)
nk

G(r)= f ;—5e""‘c(§) (3.3e)
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setting Ai=c=V =1, m is the fixed lattice mass men-
tioned above; 8 = 1/kT, T being the lattice temperature.
Here w,, is the dispersion of the nth phonon branch at
wave vector k, A is the vector potential corresponding to
the constant magnetic field H, V is the volume of the
system. Expressions (3.3b-e) are a self-consistent set of
equations from which L(¢) can be obtained by iteration,
for example.

Certain physical aspects of the derivation of (3.2)
should be mentioned. Prior to introducing the approxi-
mate influence functional, the electronic system is shif-
ted to a coordinate system translating with velocity v, the
steady-state velocity of the electron: x, =y, +vt. In this
drifting system the above mentioned approximation is
made; that is, the exact influence functional is replaced
by a distribution of oscillators characterized by G(v), the
oscillator strength at frequency ». In order to determine
this strength, which is a function of v and H and hence
gqE=F, a small probe field e, is applied in the drifting
frame. From the a.c. response to this probe field the
dynamic self-consistency of (3.3b-e) for L, Z and G
arises. Requiring this self-consistency yields approximate
solutions which satisfy several optical sum rules[22, 23]
as well as more stringent frequency-by-frequency
criteria[5, 6]. Such solutions also simplify higher order
perturbation expressions[7]. The above mentioned con-
nection between the small-signal a.c. response in the
drifting frame and the self-consistent influence functional
representing the dissipative system for the drifting elec-
tron in a finite F represents yet another novel feature of
this approach.

Returning to the result (3.2) itself, for H= 0 we obtain
a relation between the electric force F on the electron
and its expectation steady-state velocity. In this single
expression is contained all the physical features expected
of the result including the nonlinearities inherent in this
transport problem. We obtained with increasing velocity
first the strongly temperature dependent, low-field
mobility, as found by FHIP[24] in the limit of zero
frequency of the applied field. Then, for initial lattice
temperature below the reststrahlen energy, there is a
rapid increase in the rate of energy loss as the electron’s
translational kinetic energy approaches this optical-
phonon energy. This is followed by a temperature-in-
dependent threshold Fr, or maximum loss of energy with
distance. For F> Fr no steady-state velocity is possible.
Finally, as the velocity increases further, a temperature-
independent decrease in energy loss as In(v)/¥? is
obtained as expected. For initial lattice temperatures
above the optical phonon energy, the low-field linear
region passes smoothly through a broad temperature-
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dependent threshold which portrays the dominance of
scattering from existing optical phonons. For very large
velocities, the weak coupling limit of the solution gives
the expected perturbation result. Thus, in a single family
of field-velocity curves with temperature as the
parameter, all the expected physical phenomena appear.
Agreement with experiment is obtained for phenomena
occuring in the vicinity of the threshold. We concluded
that optical-phonon scattering can produce the large loss
of electron energy observed in tunnel-emission devices.

What is of greater interest in the cold-cathode problem
is the number of electrons accelerated to high energies,
several eV. Such a calculation done on the level of the d.c.
and a.c. transport problems discussed above is beyond the
scope of this review. Fortunately a simple derivation,
qualitatively accurate, can be given. This we present in
Section 4.

4. HIGH-FIELD TRANSPORT, ACCELERATION

While I shall not develop the point, any article on
high-field conduction in insulators is expected to say
something about electronic breakdown. Such breakdown
is often pictured as resulting from a {(slow or fast)
sustained ionization or even avalanche muitiplication.
The only comment I wish to add to this picture is to
suggest that, since on the one hand accelerating electrons
must overcome an energy-loss barrier at about 0.1eV
and on the other hand must accelerate to 10eV before
impact ionization can occur, the problem should be
treated in two parts: (1) the acceleration to ionizing
energies, and (2) the ionization process itself. In nearly
all cases (2) is treated in detail while hardly any attention
is given to (1). In this section (1) will be considered in
some detail.

It should come as no surprise that when an electric
field in excess of the threshold field is applied to an
insulator, any electron in the conduction band of the
insulator will accelerate to ionization energies, the lattice
being unable to dissipate the energy acquired from the
field. What I have not seen stated before is that for
applied, subthreshold fields there is still a probability
that an electron can accelerate to ionizing energies. Such
a possibility can come about as follows. If the electron
can go without scattering for a sufficiently long time that
it can accelerate to a velocity at which the scattering rate
has passed its maximum and greatly diminished, then it
can continue to accelerate with only a small probability
of further energy loss. For small applied fields, the
chance for this to occur is, of course, very small. As the
field approaches the threshold field, however, the prob-
ability approaches unity. Thus, whereas classically the
probability goes abruptly from 0 to 1 in passing through
the threshold field, quantum-mechanically a continuous
transition is possible. Because of its vague analogy to
tunneling through an energy barrier in position space, we
can refer to this phenomena as a tunneling in momentum
space. Unfortunately, no analogy in calculation carries
over.

For the purposes of this article it will suffice to treat
this phenomena using the Boltzman equation (2.2). A
treatment on the level of Section 3 is extremely involved

and at present not nearly as well-developed{7]. The
Boltzman approach will, of course, apply directly to
weak-scattering problems as commonly arise in semi-
conductors. The real reason, however, is to exhibit this
new phenomenon as clearly as possible without
sacrificing the important qualitative features of the prob-
lem. The general idea is this. We shall calculate the rate
at which electrons transition from low energy, quasi-
steady states to accelerating states of relative high
energy by calculating the time rate of change of the
electron distribution function at high energy. The latter,
in turn, will be expressed in terms of the quasi-static
distribution at low energy, which can be calculated by
standard means.
Thus, we begin by writing (2.2) for a constant field.

A0, p. LCL - S 1Rip. p)fe, )~ RO BP0}
’ @.n

Ordinarily one sets f(p,?)=f(p) and ignores the first
term. As we shall see, this is not correct except under
unusual circumstances. The driving force F, however
small and even though static, eventually drives the dis-
tribution to higher energies. This is readily seen if we
solve (4.1) by the method of characteristics[25]. If we
define

l/ry= 3 R\ ) 42)
and consider the variables; #(s), p(s);
d/ds = dt/ds a/ot + dp/ds 9/ ap (4.3a)
so that
difds =1, t(s)=(s—so)+1 (4.3b)
dp/ds =F, p(s)=F(s — 5¢) + po. (4.3¢)

then (4.1) becomes

df(p(s). 1(s)) _ f(pls), £(s)) _ .
PR —gk(p(s),p)f(p,t(s)z‘.m

Solving (4.4) as an ordinary differential equation in s, we
find

0L6). 1) = Fplso. s exp [ - [ ds"/r(p(s"»]

+ J” ds’ exp [— r ds”/‘r(s")] E R(p(s"), p"f (", t(s").
' 4.5)

Relations (4.3b,c) specify a collection of characteristics
in (p, t). By choosing the appropriate characteristic, we
can recover f(p,t) from f(p(s), t(s)). Choosing s,=t¢,
yields t(s) = s. Relabelling s by ¢ converts (4.5) into

f0.0= fo-Fi -t texp [ - [ arirp-ri -
+f dt’ exp [—f dt”/r(p——F(t—t'))]
[ t

X ; R(p~F(t—1),p"¥f(p". t') (4.6)
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which describes the time evolution of f(p, ) under the
influence of the applied field F.

Before proceeding we must understand the physics
expressed in (4.6). The first term is the transient term. It
states that time ¢ an electron initially at p —F(¢ — t,) has
arrived at p without scattering, an event which occurs
with transition probability P(p; t, #,), where

P(p;t,t)=exp [— f‘ "dt"/'r(p—F(t - t"))]. (4.7a)

While the transient term generally plays only a negligi-
ble role in the acceleration problem, we note that a
similar transition probability enters into the second term
in (4.6). This term states that if an electron at p’ scatters
at ¢ into p—F(¢—t'), then at ¢ it will arrive at p with
probability P(p;t,t"). It should be noted that had (4.1)
been solved at the relaxation-time approximation only
the relatively unimportant transcient term would arise.
If we take F = Fx, then we can write

P(p:t,t')y=exp [—f :

px—F(-1)

dpyFr(p%, PL)]- @.7b)
Written this way it is evident that the probability P that
an electron injected at rest can transition from a quasi-
steady state to acceleration state is

P,=exp [— J; dpy Fr(p%, O)]. 4.8)
This simple result has the following significance. If the
integral in the exponent diverges, then the scattering rate
is sufficient to effectively prohibit transitions to
accelerating states. In this case one is justified in drop-
ping the time derivative in (4.1), and a steady-state solu-
tion is valid. Naturally a cold-cathode could not be made
from material which renders P,=0. If the integral in
(4.8) is finite, then transitions are possible. Knowing the
maximum F at which a specific insulator can be operated
and the scattering rate 1/7(p), one can calculate P, for
each insulator of interest in order to determine the most
efficient accelerator of electrons.

Returning now to (4.6), an integral equation for f(p, t),
we must now determine the actual transition rate to
accelerating states. Let F”(p,’, t) be the probability at ¢
that p, > p.. Take t,=0. Clearly

Felo=[ o[ dsen @
Px
A more convenient form for f(p, ) can be obtained by
using (4.7b) in place of (4.7a) in (4.6) and by changing the
p, variable in (4.9a) to p; = p, — Ft when integrating the
transcient term and to p.=p, — F(t —t') for the second
term. It follows that

Foin= f f dp_f(p,0)P(p. + Ft, p,;p,)

f dr J; e f dmz Rip, p)f (@', )

xP(px+F(t-t)spx9pJ.) (49b)

P(p2,py;p)=exp [- J:z dp/Fr(p,, P;)} (4.9¢)

Where we have in addition replaced p, by p.. For
reasons that will become evident shortly, we must fur-
ther manipulate the [ dt’ { dp, in (4.9b). Thus

f dr’ f dp
Y pd~FGa—1)

=[ar [ apatp.- .~ Fa-ry)
] px —Ft

o pxl ¢
= U dp. +I dpx] XI dt'uip, - (p,' — F(t — ).
Dx‘ le'F‘ (]

If we choose p,' sufficiently large that R(p, p) is negligi-
ble, then we can ignore the p,’ to « integration in p,. If
we let 7=t'+(p,’ — p,)/F, then changing from d¢' to dr
above we find

pl t
dp. f dr
prl—Ft (xl=px)IF

pt [
[0t [ drtr- - poim
px'—Ft o

t X
=f drf dp
0 pi-Fr

We may now write F~ in the form

Fe0=[  dp. [ d.f0.0P G+ Fipiin)

t ol
+ f dr f dp, f dp. >, R(p.p)
o pyf~Fi 3

pIIF)P@,! + F(t-17),p.;pL)
(4.9d)
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from which the transition rates of interest can be deter-
mined.

Returning to the problem in physical terms, what we
have is a distribution of electrons which for the most
part remain in a quasi-steady state, translating through
the insulator with some average velocity v, as calculated
in Section 3. Leaking off from this distribution into
accelerating states is a certain fraction F~. If we call the
quasi-steady state distribution f°°(p, ¢), then the rate per
electron at which electrons transition from the quasi-
steady state to the accelerating state is simply

HF)y=dF(p,", nldt / S f(p. 1) = lra(F).
P
(4.10)
After initial transcients, we assume that f(p,t) for the

electrons in the quasi-steady state f***(p, ¢) has the form
1%(p) exp (— t/4). Then using (4.6) f***(p) satisfies

qss = p"‘d_Pil [_f”‘dpﬁ 1 _l ]
) L F P\~ F (r(p:,pl) f.,)

x 2 R 0o, P () @.11)
[ 4
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and we obtain for #(F)

HE) =S F* 0)iralp) / S 14 p) = 1/ra(F)
P 4 (4.12a)

Hrq(p) = I ) dp’R(p’, p) exp [(p.' — P Fr)IP(, pi; p.).
- (4.12b)

Here 1/7,(p) has the meaning of the transition rate of an
electron in state p. Having F~ in the form of (4.9d), the
time derivative needed for r(F) is further simplified by
noting that

P(p,' + F(t— 1), px; p) = P(D, pxs PL)

for 0=<7<t by the way in which p,' was chosen. Thus
the very physical result (4.12a) emerges. (The reader not
appreciating this point is invited to evaluate (4.10) using
alternative expressions for F~.)

For small fields F, 7, can be expected to be rather
large so that 74(p) is relatively independent of 7, and
hence 7,(p) can be calculated without knowledge of the
distribution. (Note that (4.12b) does not contain f(p, t)
explicitly.) For larger fields 7, will become appreciable,
hence one must solve for 7, self-consistently between
(4.11) and (4.12a,b). The simplest procedure is to assume
14=% in (4.11) and (4.12b), get a 7, from (4.12a), etc. To
be sure, this expression is most meaningful when Fr, >
p., which is usually the case somewhat below threshold.
Excellent solutions of (4.9) exist for 7, = ©[26], and their
modification for r,<® should be straightforward; for
example, replace dfip,t)/at=0 by of(p,t)lot =
—f(p, )7a.

The foregoing, while providing a clear physical picture
of the problem of electron acceleration below threshold,
is nonetheless based on the Boltzman equation and
hence is valid only for small electron-lattice coupling and
small electric fields. Elsewhere[7] I have generalized the
above derivation to include the modification of propaga-
tion and scattering due to larger electric fields and elec-
tron interaction with the solid. However these
modifications are only expected to be useful for coupling
constants a < 1. For @ > 1 a direct evaluation of 1/7,(p)
may be more meaningful[7].

5. CONCLUSION

In this brief review we have touched on several
general features of insulators which distinguish them
from semiconductors, outlined the derivation of the
relation between the drift velocity and electric field at
high electric fields where the relation is nonlinear, and
introduced the problem of electron transitions from low-
energy, quasi-steady states to high-energy accelerating
states at high but subthreshold fields. The latter was
regarded as a necessary precursor to ionization and other
electronic breakdown phenomena. Looking toward the
future we must keep in mind that significant energy loss,
dissipation, is intrinsic in insulators, necessitating the
high fields applied. Calculations of transport properties,
therefore, must of necessity be such as to be valid under
such conditions. By contrast, standard approaches to
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transport are usually geared to problems in which dis-
sipation is a small perturbation. For insulators this is not
realistic, and methods, ‘possibly as outlined above, will
have to become more widely used in order to understand
the more sophisticated experiments currently under-
way|[27,28]. Finally we note that the nature of systems
under impressed fields, that is with energy flowing in
from a field and out through dissipation, is potentially
much more interesting to study than that of the same
systems at or near thermal equilibrium[16, 17].
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APPENDIX A
Scattering rates in an electric field
In this appendix we calculate the scattering rate for electron-
phonon scattering in the presence of an arbitrary, constant elec-
tric field E. In lowest order (zero order) the electron is assumed
to be a free particle accelerating in the applied field:

Hy=p*2m-F-x, F=gE. (Al)
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We shall examine the lowest order of scattering (first order)
between the electron and the phonon bath in which it moves. The
total Hamiltonian is as given in (3.4).

As mentioned in the text, the Feynman path-integral method
can handle H, exactly and conveniently, especially when com-
pared to the Airy-function solution which would arise in a
Schrodinger approach. If we use the result of a previous
calculation{3] for the scattering rate, and specialize this resuit to
the free-particle H,, of (A1) we obtain for R(p,p), the rate at
which electrons are scattered from p to p'=p—#k

® e
R.p = Cr2Re [ ot (5
e k22m o ~ik-ptim g ik Fi22m
toma )T e ¢ '

(A2)
IfF is zero, or otherwise negligible, we obtain

R, p) = 27" G, PL(1 — e 8% "8 (heo, — Kk - p/m + H*K*{2m)

+(eB%— 1)7'8(- hw, — Ak - p/m + B2k*2m)]  (A3)
the usual Fermi Golden Rule. For F non-negligible, the fdr
which would normally yield an energy conserving delta function
now yields a broadened and skewed function, which we shall
examine briefly.

In (A2) the first term corresponds to the emission of a phonon
of wave vector k and the second to an absorption of —k.
Consider the emission. The integral of interest J is

J=2Re f di e e/ (Ada)
0
A= fuy + K2k 2m — Bk - pim = Egoy— Eiar - (A4D)
B=#%k-Fim. (Adc)
We manipulate as follows
o« —AlIB
J= 2( j de+ I dr) cos (At + Bt}[2) (ASa)
-AIB 0

a -AIB
= 2] dx cos (Bx%2- AY2B)- 2[ dt cos (At - Bt3[2).
0 [\]
(A5b)

The first term in J integrates to
(mB)"?[cos (AY2B) +sin(A*/2B)]>2a8(A), B-0

an even function of A. The second term can also be written
AlB
-2 I dx cos (A%2B - Bx*/2)
o

which is clearly odd in A and vanishes for B = 0.

While we shall not evaluate the second term in J (it can be
expressed in terms of Fresnel integrals), we shall observe two
important physical implications. (1) The broadening B implies an
energy uncertainty AE in the scattering given by

AE = B" = #(k - Fjim)"". (A6)
While AE is negligible for small F, it rises to about 0.1eV in
ALO; near threshold, 2.5MV/cm, where Fk. Note that no
broadening arises if F 1L k. (2) The skewness introduced by the
second term in J is also of interest. If A/B >0, J is reduced; if
A/B<0, J is enhanced. For emission, where B>0, A/B>0
implies Epag1> Einiviats While A/B <0 implies Egoy < Einiarr This
is easily understood in physical terms. In emission, where the
electron is scattered against the field, the field will absorb a
portion of the electron’s energy during the collision, and hence
reduction in energy will be favored. The opposite effect, an

enhancement in energy, can occur in absorption during those
scattering events in which the electron scatters with the field. We
conclude that the electric field can appreciably alter the scattering
rates by broadening and skewing the energy conserving delta
function in Fermi’s Golden Rule.

APPENDIX B

Electron distribution in linear response

It is often expedient in solving the Boltzman equation (BE) to
make use of the relaxation-time approximation to simplify the
solution. However, even for small fields in which the change in
the distribution is proportional to the field, considerable error in
the nature of the distribution can be made if this approximation
is involved. For low temperatures and optical phonon scattering,
the typical argument runs as follows. We write F = fy+f,, sub-
stitute into the BE, and obtain to first order in the field

F- of(pliap =3, [R(.0)f ()~ RGP\ (B)
[ 4

where fy(p)= A exp(—p*2mkT), A=(Q2mkTr). Now we
consider two regions in momentum space, p <p. and p >p,.
where p, =(2mhw,)"?, where hw; is the energy of an optical
phonon. Now as we have seen already (A3) the scattering rate
R(p, p') contains both an emission and an absorption term so that
either p>p, and p'<p, or p<p, and p'>p,. Furthermore,
emission is impossible if p <p.. Thus in (Bl) suppose p <p..
Then the R(p, p')f,(p) term involves scattering out to p'> p_ by
phonon absorption. If f,(p) is sufficiently small the scattering in
term can be ignored. If p > p,, then the electron scattered in
comes from p’'< p,. However, if by our previous argument for
pP<p.

fip)=—7(p)F - pfo(p)/mkT, (B2)
where
Ur(p) =3, R@'.p). (B3)
then ’
g Rp.p)\(@)=0, p>p. (B4)

if R(p,p')= R(p,—-p'), as it very nearly is. Thus for p>p, we
also have (B2); in other words (B1) becomes

F- afo(p)lap = - fi(p)7(p) (BS)
the usual relaxation time approximation. As a check we return to
p <p,. to compare terms; the neglected term is again (B4) now
with p <p,. Thus the relaxation-time approximation seems con-
sistent. Moreover note that as p passes from p <p_ to p>p,,
f1(p) diminishes by the ratio of absorption rate to emission rate,
which for exp (—#w,/kT) < 1, the usual case, is very small. This
means that f,(p) for p > p, is reduced from f(p) for p =~ 0" not
only by the Boltzman factor exp(-p/2mkT), but by
7(p>)I7(p<), where p., means p > p. and p. means p < p.. Thus
f1(p) is usually totally neglected for p > p.. Physically this means
that the source of f,(p) for all p is the electric field, scattering
into the distribution being negligible.

The problem with the above argument is the relation R(p, p') =
R(p, —p'), which while approximately true is not true to order
exp (- hw /kT). Thus physically while for p.. the source of
fi(p <) is mainly the field, for p.,

2 R, 0)700 o0 > o> folp>) (B6)
[ 4

(Fjiz) and hence the source of f,(p.) is not the field at all but
phonon absorption from f,(p.). Thus

fi®5)=1(p>) 2 R(p>.p)7(p)F - Pfolp)mkT  (BTa)
P
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while

fip) = 1(pIF - pfolp )/ mkT. (B7b)
Now f(p:)ifi(p)= folp>)fo(p<) and fi(p.) is not nearly so
small as implied by the relaxation-time-approximation result.
This difference does not affect the usual calculation of the
mobility, but is essential in a conservation of momentum or con-
servation of energy approach.

It is of interest that (B1) can be solved exactly if one ignores
Fp) for p>(4mhe,)'?, which really is reasonable for
exp (- b, JkT)<1. The reason for this is that the energy
exchange [AE|=hw,. Hence exchanges of electrons are only
possible between E and E + kw,, E<hw,, and E and E - ko,
E > hw,. Thus the problem divides into pairs of shells. Also
because of the momentum dependence of the scattering, the
angular distribution is sufficiently simple that f(p) has the
general form g,(p) cos 8, for Fljz. While we shall not carry out
the calculation in detail, we shall focus on its main features.

(1) The rates given in (B1) are expressed in (A3). For optical-
phonon scattering

2 _aBW _41er2[ h ]"2
,Cp-p’l Vl p—p"Z ’ B= (2‘”)3 2mw’- . (BSa)
lp—p*=p?+p"~2pp’ cOs ¥, (B8b)

(2) In order to evaluate the sum over p’ in the scattering-in
term, it is convenient to pass to a coordinate system in which the
1 axis is taken along p. Then v,, in (B8b) becomes 6,., while
expanding f,(p) in the frame where Fijz,

fip)= ’E_:o &(p)Pi(cos v,), (B%)

and then for f,(p’) passing to the Z|p frame, we have

Py(cos y,) = P,(cos 8,)P,(cos 8.)+2 2’ U=m
HC08 ¥y = FRCOS BpITHCOS o) T2 20 I+ m)!

X P/™(cos 8,)P"(cos 8,) cos m(d, — &,). (B9b)
In doing the 2, the cos m(é, — ¢,) will integrate to zero leaving

only the first product. Since this decouples (B1) into equations
for g,(p), one for each /, and since only /=1 is driven by F,

fip) = g1(p)cos 8,. (B9c)

(3) Carrying out the integrals over 6, ¢, and using the delta
functions to integrate d,., one obtains

Fp fps) _ , \2wBamp,i(p.+p.))
kT 8P T o (- he kT “exp (— A, JKT) J(s)
- 2mBamp,/(p+p50)
L e W s B xp (o JKT)— 1 I(s) (B10a)
= Fpfolps) _ 2wBamp_{(p>+p.?
mkr BT o e kD=1 F(s)
B 2aBamp _{(p 2+ p,2) | 2@Bamp,l(p.> + P<2)]
&p >)[ T—exp (~hwkT) | expthukn—1 ||
(B10b)
552P<P>/(P<2+P>2) (BIOC)
1
} 1
I(S)Ef_ld#(l-sy) '=In (I—ff)/s (B10d)

!(s)éf_ dup(l—su) ' = [m (H)—zs]/sz (B10e)

p> =(p]+ 2’""‘%)”2- (B10f)

Solving (B10a,b) for g,(p.) and g\(p,) yields f,(p). The physical
picture is little altered from the discussion of (B7a,b).



