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ABSTRACT

We describe an effect called Dipole Induced Transparency which enables a dipole emitter to strongly modify the
cavity spectrum, even in the weak coupling regime. We then describe a method for generating entanglement and
performing a full Bell measurement between two QDs using Dipole Induced Transparency. Finally, we show how
DIT enables entanglement between QDs with vastly different radiative properties. The proposal is shown to be
robust to cavity resonance mismatch.
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1. INTRODUCTION

The field of semiconductor cavity quantum electrodynamics (CQED) has seen rapid progress in the past several
years. One of the main reasons for this is the development of high quality factors optical micro-cavities with mode
volumes that are less than a cubic wavelength of light.1 These high-Q cavities allow previously unattainable
interaction strengths between a cavity mode and a dipole emitter such as a quantum dot.

There are a large number of applications that require strong interactions between a cavity and dipole emitter.
These include methods for conditional phase shifts on single photons,2 atom number detection,3 and non-linear
optics.4 One important property of cavity-dipole interaction is that, under appropriate conditions, the dipole can
flip the cavity from being highly transmissive to being highly reflective. This can result in entanglement between
the dipole and reflected field. Such entanglement was used in reference2 with a single-sided cavity configuration
to achieve a quantum phase gate.

It has long been believed that in order for a dipole to fully switch the cavity, the vacuum Rabi frequency of
the dipole, often denoted g, must exceed both the cavity and dipole decay rates. We refer to this regime as the
high-Q regime. Here we show that in the ”bad cavity” limit, defined as the regime where the cavity decay rate
is much bigger than the dipole decay rate, the cavity can be switched almost perfectly, even when g is much
smaller than the cavity decay rate. We consider a single cavity that is coupled to two waveguides and behaves
as a resonant drop filter. Such systems are mathematically equivalent to driving a double-sided cavity with an
incident field. The reflection properties of a single-sided cavity have been investigated elsewhere.5 Drop filtering
has been experimentally demonstrated in a variety of semiconductor systems including photonic crystals6 and
microdisks coupled to ridge waveguides.7

When an optical input field is resonant with the cavity, the drop filter would normally transmit all the field
from one waveguide to another. Hence, the waveguide would appears opaque at the cavity resonance. We show
that if one places a dipole in the drop-filter cavity, the waveguide becomes highly transparent even when g is
much smaller than the cavity decay. In the high-Q regime this result is clear, because the cavity mode is split
into a lower and upper polariton by more than a linewidth (normal modes splitting). In the low-Q regime, where
g is less than the cavity decay rate, this result is surprising because the incident field can still drive both the
cavity modes. Transparency in this regime is instead caused by destructive interference of the cavity field, which
is analogous to the destructive interference of the excited state of a 3-level atomic system in Electromagnetically
Induced Transparency (EIT).8 For this reason we refer to this effect as Dipole Induced Transparency (DIT).

Further author information: (Send correspondence to E.W.)
E.W.: E-mail: edowaks@umd.edu

Invited Paper

Quantum Communications Realized 
edited by Yasuhiko Arakawa, Masahide Sasaki, Hideyuki Sotobayashi,

Proc. of SPIE Vol. 6780, 67800A, (2007) · 0277-786X/07/$18 · doi: 10.1117/12.732259

Proc. of SPIE Vol. 6780  67800A-1

Downloaded from SPIE Digital Library on 29 Oct 2009 to 159.226.100.225. Terms of Use:  http://spiedl.org/terms



ain aout

cincout

b

|g>

|e> �

�

eout

�
� ���

Figure 1. Cavity waveguide system for quantum repeaters.

The fact that switching can be observed without the high-Q regime is extremely important for the field of
semiconductor CQED. Although the high-Q regime has been achieved in atom cavity QED,3 it is extremely
difficult to achieve using semiconductor technology. Semiconductor implementations of cavity QED systems,
such as photonic crystal cavities coupled to quantum dots, usually suffer from large out-of-plane losses, resulting
in short cavity lifetimes. Things become even more difficult when one attempts to integrate these cavities with
waveguides. The cavity-waveguide coupling rate must be sufficiently large that we do not lose too much of the
field out-of-plane. At the same time, leakage into the waveguide introduces additional losses making the high-Q
regime even more difficult to achieve. Our result relaxes the constraint on using the high-Q regime, allowing
complete switching in a more practical parameter regime for semiconductors. To demonstrate the application of
DIT, we conclude this paper by showing how it can be used to share entanglement between spatially separated
dipoles, and to perform a full non-destructive Bell measurement on two dipoles. These operations are extremely
useful for building quantum repeaters.9, 10

One of the primary challenges in building quantum repeaters using solid state emitters such as Indium
Arsenide quantum dots is that no two QDs are the same. Inhomogeneous broadening due to size fluctuation and
local strain environment create large variations in radiative properties. In the second part of the manuscript we
describe how DIT can be used to overcome this limitation and entangle non-identical radiators.

2. DIPOLE INDUCED TRANSPARENCY

Fig. 1 shows a schematic of the type of system we are considering. A cavity containing a single dipole emitter is
evanescently coupled to two waveguides. The cavity is assumed to have a single mode that couples only to the
forward propagating fields. The dipole may be detuned by δ from cavity resonance, denoted ω0, while g is the
vacuum Rabi frequency of the dipole. Both waveguides are assumed to have equal coupling rate into the cavity.
This condition is known as critical coupling, and results in the input field from one waveguide being completely
transmitted to the other when γ � κ.11

We begin with the Heisenberg operator equations for the cavity field operator b̂ and dipole operator σ−,
given by12

db̂
dt

= − (iω0 + γ + κ/2) b̂−√
γ (âin + ĉin)

−√
κêin − igσ− (1)

dσ−
dt

= −
(
i (ω0 + δ) +

1
2τ

)
σ− + igσzb̂ − f̂ (2)

The operators âin and ĉin are the field operators for the flux of the two input ports of the waveguide, while
êin is the operator for potential leaky modes due to all other losses such as out-of-plane scattering and material
absorption. The bare cavity has a resonant frequency ω0 and an energy decay rate κ (in the absence of coupling
to the waveguides). This decay rate is related to the cavity quality factor Q by κ = ω0/Q. The parameter γ is the
energy decay rate from the cavity into each waveguide. Similarly, the dipole operator σ− has a decay rate 1/2τ ,
and f̂ is a noise operator which preserves the commutation relation. The output fields of the waveguide, âout

and ĉout, are related to the input fields by âout − âin =
√
γb̂ and ĉout − ĉin =

√
γb̂.12 Our analysis works in the

weak excitation limit, where the quantum dot is predominantly in the ground state. In this limit, 〈σz(t)〉 ≈ −1
for all time, and we can substitute σz(t) with its average value of −1.
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Figure 2. Probability for field in âin to transmit into âout and ĉout respectively. (a) transmission with no dipole in cavity.
(b) transmission with a dipole in the cavity. c) Phase imposed on transmitted field when a dipole is present in the cavity.

Assuming the cavity is excited by a weak monochromatic field with frequency ω, we calculate the response of
b̂ and σ− in frequency space. We assume that the cavity decay rate is much faster than the dipole decay rate, so
that 1/(τγ) ≈ 0. This is a realistic assumption for a quantum dot coupled to a photonic crystal cavity, but does
not necessarily apply in atomic systems coupled to very high-Q optical resonators. In this limit the waveguide
output can be solved and are given by:

âout =
−γĉin +

(
−i∆ω + κ

2 + g2

−i(∆ω−δ)+1/2τ

)
âin −√

κγêin

−i∆ω + γ + κ/2 + g2

−i(∆ω−δ)+1/2τ

(3)

ĉout =
−γâin +

(
−i∆ω + κ

2 + g2

−i(∆ω−δ)+1/2τ

)
ĉin −√

κγêin

−i∆ω + γ + κ/2 + g2

−i(∆ω−δ)+1/2τ

(4)

where ∆ω = ω − ω0.

Consider the case where the dipole is resonant with the cavity, so that δ = 0. In the ideal case, the bare
cavity decay rate κ is very small and can be set to zero. In this limit, when the field is resonant with the cavity
and g = 0 we have âin = −ĉout, as one would expect from critical coupling. In the opposite regime, when
2τg2 � γ + κ/2 we have âin = âout, so that the field remains in the original waveguide. This condition can be
re-written as Fp = 2τg2/(γ + κ/2) � 1, where Fp is the Purcell factor. Thus, in order to make the waveguide
transparent (i.e. decouple the field from the cavity), we need to achieve large Purcell factors. However, we do not
need the full normal mode splitting condition g > γ + κ/2. When 1/τ � γ + κ/2 we can achieve transparency
for much smaller values of g.

Fig. 2 plots the probability that âin transmits into âout and ĉout. Assuming that the initial field begins in
mode âin, we define âout/âin =

√
Tae

iΦa and ĉout/âin =
√
Tce

iΦc , and use cavity and dipole parameters that are
appropriate for a photonic crystal cavity coupled to a quantum dot. We set γ = 1THz which is about a factor of
10 faster than κ for a cavity with a quality factor of Q = 10, 000. We set g = 0.33THz, a number calculated from
FDTD simulations of cavity mode volume for a single defect dipole cavity in a planar photonic crystal coupled
to a quantum dot.1 The dipole decay rate is set to 1/τ = 1GHz, taken from experimental measurements.13

Panel (a) of Fig. 2 considers the case where the cavity does not contain a dipole. In this case g = 0,
representing a system where two waveguides are coupled by a drop filter cavity, whose transmission width is
determined by the lifetime of the cavity. When a dipole is present in the cavity, the result is plotted in panel (b).
In this case, a very sharp peak in the transmission spectrum appears at ∆ω = 0, with a width of approximately
0.1THz. Because g is three times smaller than the cavity linewidth, this peak is not caused by normal mode
splitting, but rather by destructive interference of the cavity field.
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Figure 3. Transmission of waveguide for δ = 0.4Thz, the detuning of the dipole from the cavity.
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Figure 4. Application of DIT to quantum repeaters. a) a method for generating entanglement between two dipoles using
DIT. b) a non-destructive Bell measurement.

In the bad cavity limit, where 1/τ is very small, a simple expression for the width at full width half maximum
of the dip can be calculated in the limit that γ � κ/2 (cavity losses are dominated by waveguides). In this limit,
the width of the dip is found to be

√
γ2 + 4g2 − γ. In the high-Q regime where g � γ, the transmission dip is

equal to 2g as expected by normal mode splitting. In the low-Q regime where g � γ, the spectral width of the
transmission peak is equal to 2g2/γ = 2/τmod (where τmod is the modified spontaneous emission lifetime of the
dipole). This difference in functional behavior, i.e. quadratic vs. linear dependence in g, is indicative of the fact
that transmission in the low-Q regime originates from a different physical process than the high-Q regime. The
width of the transmission peak is important because it places a bandwidth limitation on the incoming pulse. In
the low-Q regime, this bandwidth limitation means that the incoming pulse must be longer than the modified
spontaneous emission lifetime of the dipole, while in the high-Q regime it must be longer then the Rabi oscillation
period 1/g.

In panel (c) we plot Φa for the case where g = 0.33THz. The region near zero detuning exhibits very large
dispersion, which results in a group delay given by τg = (γ + κ/2)/g2. One can show that the group velocity
dispersion at zero detuning vanishes, ensuring that the pulse shape is preserved.

We now consider the effect of detuning the dipole. The transmission spectrum for a dipole detuned by
δ = 0.4Thz is plotted in Fig 3. Introducing a detuning in the dipole causes a shift in the location of the
transmission peak, which occurs at the dipole resonant frequency. Thus, we do not have to hit the cavity
resonance very accurately to observe DIT. We only need to overlap the dipole resonance within the cavity
transmission spectrum.

3. QUANTUM NETWORKING USING DIT

The fact that we can switch the transmission of a waveguide by the state of a dipole in the low-Q regime can
be extremely useful for quantum information processing. As one example, we now present a way in which DIT
can be applied to engineering quantum repeaters for long distance quantum communication. Quantum repeaters
can be implemented all optically,14, 15 as well as using atomic systems.10 One of the main problems with these
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Figure 5. Panel (a), probability of detecting even parity for an odd parity state as a function of γ. Panel (b), solid line
plots the fidelity of the state (|gg〉 ± |mm〉)/√2 after a parity measurement. Dotted line plots the probability that the
measuring field contains at least one photon for detection.

proposals is that it is difficult to implement the full Bell measurement required for swapping entanglement. This
leads to a communication rate that is exponentially decaying with the number of repeaters. More recent proposals
incorporate interaction between nuclear and electron spins to implement the full Bell measurement.16 Here we
propose a method for implementing entanglement, as well as a full Bell measurement on an atomic system using
only interaction with a coherent field. This leads to an extremely simple implementation of a quantum repeater.

In panel (a) of Fig. 4 we show how DIT can be used to generate entanglement between two spatially separated
dipoles. A weak coherent beam is split on a beamsplitter, and each port of the beamsplitter is then sent to two
independent cavities containing dipoles. The waveguide fields are then mixed on a beamsplitter such that
constructive interference is observed in ports f̂ and ĥ. Each dipole is assumed to have three relevant states, a
ground state, an excited state, and a long lived metastable state which we refer to as |g〉, |e〉, and |m〉 respectively.
The transition from ground to excited state is assumed to be resonant with the cavity while the metastable to
excited state transition is well off resonance from the cavity, and is thus assumed not to couple to state |e〉. The
states |g〉 and |m〉 represent the two qubit states of the dipole.

When the dipole is in state |m〉, it does not couple to the cavity, which now behaves as a drop filter. Thus,
we have a system that transforms â†

in|g〉|0〉 → â†
out|g〉|0〉 and â†

in|m〉|0〉 → −ĉ†out|m〉|0〉. This operation can be
interpreted as a C-NOT gate between the state of the dipole and the incoming light. When the dipole is in a
superposition of the two states, this interaction generates entanglement between the path of the field and the
dipole state. After the beamsplitter, this entanglement will be transferred to the two dipoles. If the state of
both dipoles is initialized to (|g〉 + |m〉)/√2, it is straightforward to show that a detection event in ports ĝ or î
collapses the system to (|g,m〉 − |m, g〉)/√2.

Another important operation for designing repeaters is a Bell measurement, which measures the system in
the states |φ±〉 = (|gg〉± |mm〉)/√2 and |ψ±〉 = (|gm〉 ± |mg〉)/√2. Panel (b) of Fig. 4 shows how to implement
a complete Bell measurement between two dipoles using only cavity waveguide interactions with coherent fields.
The two cavities containing the dipoles are coupled to two waveguides. When a coherent field |α〉 is sent down
waveguide 1, each dipole will flip the field to the other waveguide if it is in state |m〉, and will keep the field
in the same waveguide if it is in state |g〉. Thus, a detection event at ports âeven and âodd corresponds to a
parity measurement. A Bell measurement can be made by simply performing a parity measurement on the two
dipoles, then a Hadamard rotation on both dipoles, followed by a second parity measurement. This is because
a Hadamard rotation flips the parity of |ψ+〉 and |φ−〉, but does not affect the parity of the other two states.

The performance of the Bell apparatus is analyzed in Fig 5. Panel (a) plots the probability that an odd
parity state will falsely create a detection event in port âeven, as a function of γ. The probability becomes
high at large γ due to imperfect transparency. It also increases at small γ because of imperfect drop filtering.
The minimum value of about 10−3 is achieved at approximately 3THz. In panel (b) of Fig. 5 we plot both the
fidelity and success probability of a parity measurement as a function of the number of photons in the probe
field. The fidelity is calculated by applying the Bell measurement to the initial state |ψi〉 = (|g, g〉± |m,m〉)/√2,
and defining the fidelity of the measurement as F = | 〈ψf | ψi〉 |2, where |ψf 〉 is the final state of the total system
which includes the external reservoirs. The probability of success is defined as the probability that at least one
photon is contained in the field. The fidelity is ultimately limited by cavity leakage, which results in “which
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a)

path” information beaing leaked to the environment. This information leakage depends the strength of the
measurement which is determined by the number of photons in the probe fields. Using more probe photons
results in a higher success probability, but a lower fidelity. To calculate this tradeoff, we use previously described
values for cavity and reservoir losses, and set the coupling rate γ to 4THz, which is where the probability of
false detection is near its minimum. At an average of three photons, a fidelity of over 90% can be achieved with
a success probability exceeding 95%. These numbers are already promising, and improved cavity and dipole
lifetimes could lead to even better operation.

4. ENTANGLING NON-IDENTICALLY EMITTING QDS

Figure 6. Schematic of cavity waveguide system for generating entanglement between two spatially separated dipoles using
DIT

One of the main problems with generating entanglement between QDs is that they have vastly different
frequencies and lifetimes. In this final section we show how DIT can be used to overcome this difficult limitation.
The schematic for generating entanglement between two spatially separated non-identical quantum dots is shown
in Figure 1. Each qubit consists of a quantum dot coupled to a double sided cavity. We define ain and cin as the
two input modes to the cavity, and aout and cout as the reflected modes, and bout and dout as the transmitted
modes. Each dipole is assumed to have three states: a ground state, a long lived metastable state and an excited
state, which we refer to as |g〉, |m〉 and |e〉. The transition from the ground state to the excited state may be
detuned by δ1 and δ2 from resonant frequencies of the two cavities , denoted by ω1 and ω2 respectively. The
transition from the metastable state to the excited state is assumed to be decoupled from state |e〉 due to either
spectral detuning or selection rules. The states |g〉 and |m〉 represent the two qubits of the system. The bare
cavities have an energy decay rate of κ( in the absence of coupling to the waveguides) which is due to losses such
as out-of-plane scattering and material absorption. The energy decay rates of the cavities into the reflected and
transmitted modes are given by γ1 and γ2 respectively. The dipoles have a decay rate of 1/2τ .

The operators â†
in and ĉ†in are the bosonic creation operators for input flux in the top waveguide as indicated

in Figure 1. They interact with the cavity-dipole system and transform the fields in the waveguide system
according to the equations â†

out = Ag(ω)â†
in and ĉ†out = Cg(ω)ĉ†in where12

Ag(ω) =
(−i∆ω1 + κ

2 + γ2
2 − γ1

2 + g2

−i(∆ω1−δ1)+ 1
2τ

)

(−i∆ω1 + κ
2 + γ2

2 + γ1
2 + g2

−i(∆ω1−δ2)+ 1
2τ

)
(5)

Cg(ω) =
(−i∆ω2 + κ

2 + γ2
2 − γ1

2 + g2

−i(∆ω2−δ)+ 1
2τ

)

(−i∆ω2 + κ
2 + γ2

2 + γ1
2 + g2

−i(∆ω2−δ)+ 1
2τ

)
(6)
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Equations 1 and 2 give the reflection of the waveguides when the dipoles are in the |gg〉 state. When the
dipoles are in the |mm〉 state, they do not couple to cavities, and the reflection coefficients Am(ω) and Cm(ω)
are given by setting g = 0 in the above equations.

To understand how the protocol works, consider first the ideal case when the cavity resonant frequencies are
the same and the dipoles are resonant with the cavities. Assume κ = 0 and γ1 = γ2. In this limit we have
Ag = Cg = Fp/(1 + Fp) and Am = Cm = 0. The constant Fp = 4g2τ/(γ1 + γ2) is called the Purcell factor. It is,
in fact, the ratio of the cavity coupled dipole decay rate 2g2/(γ1 + γ2) to the bare dipole decay rate 1/2τ . When
Fp >> 1 we have Ag = Cg = 1. Thus, when the dipole is in state |g〉, the field is completely reflected and when
it is in state |m〉, the field is completely transmitted.

The protocol work as follows. Both dipoles are initialized to be in an equal superposition of the dipole states
|g〉 and |m〉. Thus, the initial state is given by 1/2(|gg〉+ |mm〉 + |gm〉 + |mg〉). A weak coherent field |α〉 with
frequency ωc (the resonant frequency of the cavity) is inserted at inputs ain and cin. The reflected field from the
two cavities is mixed on a 50/50 beamsplitter, as shown in Fig. 1, and the phase φ is adjusted so the two fields
constructively interfere at detector d̂1. For the moment, ignore the presence of the beamsplitters BS2 and BS3,
the role of these beamsplitters will become clear later. Now, if the dipoles are in the state |mm〉, both fields are
transmitted at the cavities and dissipated at beam stops. Therefore, the state |mm〉 cannot produce a detection
event at d̂1 or d̂2. Similarly, for the state |gg〉 both fields are completely reflected and constructively interfere
at detector d̂1. Only the states |gm〉 and |mg〉 can cause a detection event at state d̂2. Using the coefficients in
Eq. 1 and 2 in the idealized limit, we see that a detection event at detector d̂2 collapses the state of the qubits
to (|gm〉 − |mg〉)/√2.

We define the efficiency of the protocol as the probability of detecting a photon at detector d̂2 normalized
by the field intensity |α|2. For the ideal case, efficiency is .125 as 50% of the field is lost when the dipoles are in
states |gg〉 and |mm〉 for which we never get clicks at d̂2, 50% of the field drops into the bottom waveguide and
another 50% is lost in the beamsplitter BS1 which equally splits the fields between the ports d̂1 and d̂2. Now,
consider what happens when the dipole frequencies are no longer equal. If the dipole transition frequencies are
different, a detection event at d̂2 does not leave the system in an entangled state. In this case we no longer have
perfect DIT, and the fields reflected from the two cavities will have different amplitudes. This is illustrated in
Fig 2a. where the reflectivity of a cavity for δ = 0 and δ = 0.4 THz are plotted. The difference in amplitude will
result in imperfect destructive interference at the detector d̂2. This means that there is some probability that
state |gg〉 may cause a detection event at detector d̂2, which leads to an imperfect entangled state. The state
|mm〉, however, does not pose a problem as the field is transmitted to the bottom waveguide completely.

In order to regain perfect destructive interference at detector d̂2, we need to make the field amplitudes on both
sides of the beamsplitter equal. This is achieved by introducing a beamsplitter in the path of the waveguide as
shown in Figure 1. If |A(ω)|2 > |C(ω)|2, we introduce a beamsplitter BS2 as shown in Figure 1 with transmission
coefficient |T1(ω)|2 = |C(ω)/A(ω)|2. If |A(ω)|2 < |C(ω)|2, we introduce a beamsplitter BS3 in the path of signal
on the right arm of the top waveguide with transmission coefficient |T2(ω)|2 = |A(ω)/C(ω)|2. A phase shift of
φ(ω) = tan−1(C(ω)/A(ω)) is added in the path to make the phases on both sides equal. By this method of
compensation, the resulting fields on both sides will be equal and would destructively interfere at d̂2.

Using the above compensation scheme, a perfect Bell state is created for any dipole detunings δ1 and δ2.
We pay a price however, through a reduction in efficiency. When the detunings are large, the dipoles are not
resonant with the incident field |α >, and therefore we achieve very weak DIT. This means that even when the
dipole is in the state |g〉 most of the field is till transmitted through the cavity. Only a small fraction of the field
is reflected and so the probability of detecting a dipole at detector d̂2 is significantly reduced.

To understand the effect of dipole detuning on efficiency, we plot the calculated efficiency as a function of
dipole detuning δ2 in Fig. 2b. We use calculation parameters that are appropriate for InAs quantum dots coupled
to photonic crystal defect cavities. For the calculations in the paper, we set γ = 1 THz and κ = 0. We set g =
0.33 THz for both the quantum dots, a value taken from finite difference time domain(FDTD) simulations of the
cavity mode volume of a single defect photonic crystal cavity and the known oscillator strength of InAs QDs.1

The dipole decay rate τ is set to 1 GHz, taken from experimental measurements.13 For the values of γ, κ and
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g, the Purcell factor is 218, which corresponds to a cavity reflectivity of 99.54% when the field is resonant with
the dipole.

The incoming laser frequency is the common cavity resonant frequency ω1. Efficiency is limited by the larger
of the two, δ1 or δ2. In Fig. 2b, the efficiency is unchanged in the regions where δ2 < δ1. This is because it
is limited by δ1, which is kept fixed. This explains the flat-top appearance of the efficiency curve. One can see
that useful efficiencies are achievable even when the two dipoles are significantly detuned from each other.

-1 -0.5 0    0.5 1
0

0.5

1

∆ω(THz)

R
e
fle

ct
iv

ity

-0.5 0 0.5
0

0.05

0.1

δ
2
(THz)

E
ff

ic
ie

n
cy

δ
1
 = 0 THz

δ
1
 = 0.1 THz

δ
1
 = 0.2 THz

δ = 0 THz
δ = 0.4 THz

a)

b)

Figure 7. a) Reflectivity of a cavity for δ = 0 and δ = 0.4 THz b) Efficiency as a function of δ2 when the cavity frequencies
are the same (ω1 = ω2)

Now let’s consider the case where the two cavities down’s have the same resonant frequency. In this case,
it is no longer clear which frequency we should use for the coherent field |α〉. In general, this can depend on
both the cavity separation and dipole detunings δ1 and δ2. Figure 3a plots the dependence of fidelity on the
laser frequency for several different values of δ1. The cavity separation ∆ωs = ω2 − ω1 is set to 0.5 THz, and
δ2 = ∆ωs/2 (halfway between the frequencies of the two cavities). The value of the maximum fidelity, however,
is the same for all three curves, and is given by 0.84. To understand why the maximum fidelity occurs at different
frequencies but is independent of δ2, we plot Figure 3b, the probabilities of photon detection at d̂2 as a function
of laser frequency when the dipoles are in the states |gm〉 and |mg〉 for δ1 = 0.1 THz and δ2 = −0.3 THz. The
probability amplitudes for event detection at d̂2 when the dipoles are in states |gm〉 and |mg〉 are denoted by
Ggm(w) and Gmg(w) respectively. Similarly, we define Ggg(w) and Gmm(w) to be the magnitudes of field at
d̂2 when the dipoles are in the |gg〉 and |mm〉 states. If |Ggg(w)| and |Gmm(w)| are small, the final state of

the system is approximately given by (Ggm(w)|gm〉− Gmg(w)|mg〉)/
√

|Ggm(w)|2 + |Ggm(w)|2, given there is a

detection event at d̂2. In order to have a maximally entangled state, Ggm(w) should be equal to Gmg(w). This
happens at a unique frequency which depends on δ1, δ2, and the cavity detuning. At the optimal frequency,
Ggg(w) is equal to 0, as it is compensated for by the beamsplitters. Gmm(w) remains almost a constant, since
it is a strong function of cavity separation which does not change for the configuration. Fidelity is given by

(Ggm(w) + Gmg(w))/
√

2(|Ggm|2 + |Gmg|2 + |Gmm|2), which is maximized when Ggm(w) is equal to Gmg(w).
Hence, we always get a maximally entangled state at the frequency where fidelity is maximum. This frequency
is referred to as the optimal frequency, ωo. In Fig 3b, ωo = 0.16 THz. For every configuration of cavity resonant
frequencies and dipole detunings, there is an optimal frequency where the fidelity is maximum and Ggm equals
Gmg.

To understand the tradeoffs between peak fidelity and efficiency, Fig. 4a and 4b plot these two important
parameters as a function of cavity detuning ∆ωs, and dipole detuning δ1. The variation in δ1 is with respect
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Figure 8. a)Fidelity as a function of frequency when δ2 = -0.25 THz. The cavity separation is 0.5 THz b) Fidelity and
probabilities of photon detection at d̂2 as function of laser frequency. Ggm and Gmg are the probability amplitudes when
the dipoles are in states |gm〉 and |mg〉

to the center frequency between the two cavities, denoted by ωc = (ω1 + ω2)/2. As Fig 4a shows, peak fidelity
does not vary with dipole detuning. However, fidelity decreases with increase in cavity separation. A maximum
fidelity of 1 achieved when the cavity separation is zero(∆ωs = 0). In the limit that the cavity detunings are
small relative to the cavity linewidth, we can derive an approximate expression for the fidelity which is given by
1/(1+ 3|A(ω)|2). For a cavity separation of 0.5 THz, this expression predicts a fidelity of 0.84 which is the same
as the numerically calculated value shown in the figure. From Fig 4b, maximum efficiency of .125 is obtained for
the most symmetric case i.e when the dipoles are located at the ωc.

Figure 9. (a)(b) Fidelity and efficiency as a function of cavity separations ∆ωs and dipole detuning δ1

So far we have always assumed that the cavity has an equal coupling rate to both waveguides, a condition
known as critical coupling. We now consider the effect of adjusting the coupling rates. We will show that by
properly adjusting these rates, we can compensate for the reduction in fidelity caused by cavity detuning. This
allows us to achieve high fidelity when there is a mismatch between both dipoles and cavities.
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The coupling rates of the waveguides into the cavities depend on the mode overlap between the two systems.
This mode overlap can be adjusted by changing the distance between the two structures, and also by tuning the
hole radii near the interaction region.

From the equations for A(ω) and C(ω), it is evident we can lump κ and γ2 together into one parameter,
γt = γ2 + κ. We typically work in the regime where γ2 >> κ, so the parameter γt can be tuned by changing
γ2. Figure 5 shows the dependence of fidelity and efficiency on the coupling rate of the cavities to the bottom
waveguide γ2 for three different δ1s. Maximum efficiency of .5 is achieved when γ2 = 0 which represents the case
when the bottom waveguide is absent. This is sensible because light is never transmitted, so the probability of
getting a detection at detector d̂2 is increased. However, we also have low fidelity at this point because the state
|mm〉 has a high probability of creating a detection event. As γt is increased, the efficiency decreases but the
fidelity is increased. At a certain point, the fidelity reaches a peak value of 1, indicating the creation of an ideal
Bell state. All previous calculations have worked in the regime where γ2 = γ1, but as the figure shows, this is not
the ideal operating point. For each value of δ1, there is a unique value for γt which achieves the optimal fidelity.
This point can be better understood by considering the case when the cavities are separated by ∆ωs and the
dipoles are located at ∆ωs/2. For this symmetrical case, |Ag(ω)| and |Cg(ω)| are both equal, but there exists
a phase difference between them. A change in γ2 is equivalent to a change in the phase difference between the
reflections from the cavities. For a particular value of γ2, this phase difference is equal to the phase difference
between Am(ω) and Cm(ω). At this point the phase shifter compensates for both |gg〉 and |mm〉 and we never
get clicks at d̂2. There is a γ2 for which Gmm(w) = 0 and hence fidelity is 1.
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Figure 10. Fidelity and efficiency as a function of ratio of cavity-waveguide couplings(γt/γ1)( Solid lines represent fidelity
and the dotted line efficiency)
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