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PACS 81.05.Tp – Fullerenes and related materials
PACS 61.48.-c – Structure of fullerenes and related hollow molecular clusters
PACS 61.46.Km – Structure of nanowires and nanorods (long, free or loosely attatched, quantum

wires and quantum rods, but not gate-isolated embedded quantum wires)

Abstract – A new class of 32n2 boron cages which are made closed by six squares is proposed
and a procedure to build such cages using an α-boron sheet is described. Each member from this
infinite set of boron cages has a structure that is compatible with the most stable α-boron sheet
that maintains an optimal balance of the two-center and three-center bonds. Accurate density
functional calculations with a large polarized Gaussian basis set show that B32, B96, B128, and
B288 are energetically stable structures. The smallest B32 cage from this class has the HOMO-
LUMO gap of 1.32 eV, the largest amongst the boron cages and boron fullerenes studied so far.

Copyright c© EPLA, 2009

Since the observation of carbon fullerenes, the question
whether its preceding neighbor, boron, can form fullerene-
like structures has intrigued several researchers [1–11].
In the last two years, significant progress has been made
towards the understanding of the boron nanostruc-
tures [12]. During the last two years stable nanostructures
of boron such as fullerenes [13–15], onions [16], planar
sheets [12,17,18], and nanotubes [17,19–21] have been
proposed. Yakobson and coworkers using density func-
tional calculations showed that an 80-atom fullerene
composed entirely of boron is stable [13]. The B80
fullerene has structural resemblance with the C60
fullerene. Like C60, it has 12 pentagons and 20 hexagons,
with the 20 additional boron atoms capping the hexagonal
rings. Its stability was explained in terms of its structure,
which consists of six interwoven double-ring clusters [13].
In a subsequent work, Tang and Ismail-Beigi and Yang
et al. predicted the existence of a new class of boron sheets
containing triangular and hexagonal motifs [12,17]. These
sheets are the most stable boron sheets found to date.
These sheets are obtained either by removing atoms from
the triangular boron sheets or by putting atoms in the
hexagonal sheets. The number of ways the atoms can
be inserted in the hexagonal sheet is very large. Tang
and Ismail-Beigi investigated the energetics of the boron
sheets with a different distribution of holes and noted
that the boron sheet with evenly distributed holes is the
most stable one. The holes (hexagonal rings with missing
center atoms) are distributed in such a way that each hole
is isolated from the other holes by hexagonal rings with

Fig. 1: (Color online) The α-boron sheet. The atoms colored
in green form the hexagonal sheet. Both the parent octahedral
cages and α-boron cages can be obtained using the equilateral
triangular patches. For example, the triangles ABC and AB′C′

when pasted on octahedron faces will lead to octahedral B24
and B96 parent cages if a hexagonal framework is used, and to
B32 and B128 α-boron cages when an α-boron sheet is used.

central atoms. Furthermore, each hexagonal ring with a
central atom has three holes as neighbors arranged in an
alternate fashion. They called the boron sheet with such
pattern of holes as α-boron sheet. A piece of α-boron
sheet is shown in fig. 1. The enhanced stability of these
boron sheets is due to the balance of two-center and three-
center bonding. The nanotubes obtained by curling up
these sheets are the most stable boron nanotubes noted
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so far [17,20]. The bonding picture proposed to explain
the stability of boron sheets incidentally also provides
an explanation for the stability of the B80 fullerene. Its
stability is due to an optimal balance of the 12 electron-
deficient pentagonal rings and 20 electron-rich hexagonal
rings. In this letter, we present a new class of closed boron
cages which like B80 are interlocked double-rings boron
clusters [14] and are compatible with the most stable
hole-doped α-boron sheets [12]. These α-boron cages are
energetically competitive with the B80 fullerene. The B32
α-boron cage from this new class is the smallest closed
cage that can be obtained from the most stable hole-
doped α-boron sheets. The all-electron density functional
calculations show that it has the largest gap between
the highest occupied molecular orbital and the lowest
unoccupied molecular orbital amongst all boron fullerenes
studied so far.
The C60 fullerene can be generated from hexagons

(graphene sheet) by introducing defects. These defects are
the fivefold pentagonal rings which introduce curvature
in the graphene sheet. The Euler polyhedron theorem
indicates that exactly 12 pentagons are required to form a
closed hollow fullerene. The B80 fullerene can be similarly
obtained from the hole-doped α-boron sheet. The B80
is the smallest fullerene in which pentagonal rings are
isolated from each other. The closed-cage structures can
also be obtained using fourfold rings (i.e. squares) as
defects rather than fivefold pentagonal rings. By using
the Euler theorem on polyhedra it is trivial to show
that exactly 6 fourfold rings are required to form a cage
structure [22]. If the polyhedron (cage) has N vertices
(atoms), E edges, and F faces, then N +F =E+2. Thus,
the number of defects (four-member rings) are 6, fewer
than 12 defects (pentagonal rings) required to generate
fullerenes. In carbon fullerenes, the fullerenes which have
defects, as far as possible, are energetically the most
favorable structures. This is the so-called isolated pentagon
rule [23]. A similar six-square rule has been proposed by
Slanina and coworkers for the boron nitride cages obtained
using six squares [22]. The six defects (four-member rings)
in the infinite class of α-boron cages proposed in this work
also are arranged in symmetric fashion as far as possible
from each other.
The 32n2 α-boron cages proposed in this work can be

built from the α-boron sheet using a procedure akin to
that used by Zhu et al. to construct 24n2 parent boron
cages from a hexagonal sheet [24]. As illustrated in fig. 1,
the 32n2 α-cages are built by cutting out equilateral
triangles from the α-boron sheet and pasting them on the
8 faces of an octahedron. The triangles are obtained by
taking steps in directions which are 120◦ from each other.
The steric repulsion between boron atoms dictates that
the most stable cages will have holes at the 6 corners of
the octahedron. For example, to obtain the smallest B32
cage we take 2 steps: first, starting from the center of the
hole (hollow hexagon, point A in fig. 1) to the center of the
adjacent hexagon and the second step at 120◦ to the center

Fig. 2: (Color online) The smallest member of the 24n2

octahedral B24 cage (left) and the corresponding smallest
member of the 32n2 B32 α-boron cage (right) derived from
the parent B24 cage.

of the hole (point B). The path of these steps is shown
by the dashed line. This defines an edge of equilateral
triangle. Three such (1,1) steps will give an equilateral
triangle ABC (colored red in fig. 1). The apices of ABC
are (1,1) steps away where the steps are taken along
the directions that are 120◦ apart. The next member
B128 of the 32n

2 class is obtained by taking (2,2) steps
to reach the apices of the triangles. Equal steps in the
two directions will result in holes at the apices of the
triangle. The resultant equilateral triangle AB′C′ can be
used to construct the B128 α-cage. This procedure can
be repeated to obtain larger triangles which can in turn
be used to construct larger members of an infinite class
of 32n2 α-boron cages. If the triangles are cut from the
hexagonal sheet (the atomic framework depicted in green
in fig. 1) one gets the 24n2 class of octahedral parent boron
cages [24]. The (n, n) equilateral triangle cut from the α-
boron sheet has exactly n2 additional boron atoms (at the
center of the hexagons) with respect to the corresponding
(n, n) equilateral triangle cut from the graphene sheet.
Thus, the addition of 8n2 atoms from the 8 equilateral
triangles results in the 32n2 class of α-boron cages that is
related to the 24n2 class of the parent boron cages. The
smallest member of the 32n2 α-boron cages, the B32 cage,
is shown in fig. 2, along with its parent B24 cage (the
smallest member of the 24n2 parent boron cages).
As the α-boron cages are designed from the α-boron

sheet, the optimal balance between the electron-rich and
electron-deficient region is maintained as in the sheet. The
larger members B128 and B288 of the 32n

2 class and the
corresponding B96 and B216 members from the parent
24n2 class of boron cages are shown in fig. 3. While this
work is about the 32n2 boron cages, we have also included
the B96 α-boron cage outside this class. In this letter we
demonstrate, by performing all-electron density functional
calculations on B32, B96, B128, and B288 cages, that the
α-boron cages containing four-member rings are stable
structures. Our goal is to demonstrate that the members of
the proposed infinite class of 32n2 α-boron cages are stable
structures and not to identify lowest-energy structures.
The present calculations performed in this spirit and

using a large polarized Gaussian basis set indicate that
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Fig. 3: (Color online) The B96, B128, and B288 α-boron cages.
The parent B72, B96, and B216 parent boron cage structures are
shown on the left. The numbers in bracket refer to the indices
m and n corresponding to the steps taken on the α-boron sheet
to build cages (see text for more details).

these cages are electronically closed-shell systems and are
energetically stable structures. The vibrational analysis
on the smallest member shows that it is vibrationally
stable. The B128 and B288 α-boron cages are the most
stable boron cages reported so far. A very recent work
by Yan et al. that appeared during the preparation
of this manuscript shows a different approach based
on the modified leapfrog algorithm to generate α-boron
cages [25].
Our calculations are performed using the NRLMOL suit

of codes which implements the Kohn-Sham formulation of
the density functional theory using the linear combination
of the Gaussians-type scheme [26–28]. For accurate
calculations, we employ a large polarized Gaussian basis
set with 35 basis functions per atom to express molec-
ular orbitals [29,30]. Each basis function is obtained by
contraction of 12 primitive Gaussians. Accurate numerical
grids are used to obtain the exchange correlation

contributions to the Hamiltonian matrix and energy. The
exchange correlation effects are described at the gener-
alized gradient approximation level using the Perdew-
Burke-Ernzerhof model [31]. The equilibrium boron cage
structures are obtained by optimizing the atomic positions
until the forces on atoms were less than 10−3 hartree/bohr.
As mentioned earlier, the smallest cage that can be

built from the hexagonal sheet using six-square defects
is the 24-atoms truncated octahedron (cf. fig. 1), which is
also the geometry of the sodalite cage of ultramarines.
It consists of six fourfold rings (squares) separated by
the eight hexagonal rings and has an Oh point group
symmetry. The parent B24 cage is a stationary point on
the potential energy surface. The vibrational analysis,
however, indicates that it is not a minimum (vibrationally
stable). It has three triply degenerate unstable vibrational
modes. The B32 α-cage, like the Th B80 fullerene [15,32]
has three inequivalent atoms: 2 generate the parent B24
cage and the third generates the atoms at the center of the
hexagons. The vibrational frequencies of the B32 α-cage
are real. Thus, the cage structure is vibrationally stable.
The binding energy of the B32 α-cage is 5.35 eV/atom, less
than that of the B80 fullerene (5.85 eV/atom). Boustani
et al. [33] and Zhao et al. [34] have studied the energetics
of B32 clusters which also includes the B32 α-cage. In
both studies the B32 α-cage is found to be the most
stable cage structure. The symmetry of the B32 cluster
is reported to be lower than the octahedral symmetry
found in this work. Our calculations show that the B32
α-cage is vibrationally stable with octahedral symmetry.
Both these studies (Boustani et al. and Zhao et al.)
show that at this size, the ring structure is energetically
favorable over cages. It will be interesting to investigate
the exact cluster size at which the cage structures become
energetically more favorable. This crossover occurs before
B80 [13]. Using the Hartree-Fock approximation and the
3–21G basis, Boustani et al. obtained the binding energy
of the B32 α-cage to be 3.10 eV/atom. This is more than
2 eV/atom smaller than the present value (5.35 eV/atom).
The difference is due to the lack of correlation treatment
and the use of a small basis set by Boustani et al.
The B32 α-cage is special in that it has the largest

HOMO-LUMO gap (1.32 eV) of all the boron cage
structures including boron fullerenes [14] and onions [16].
The HOMO-LUMO gap approximates the chemical
hardness which is a measure of chemical reactivity. So
the B32 α-cage should be chemically less reactive than
the B80 fullerene. Its smaller binding energy is probably
the consequence of the increased curvature due to its
smaller size. Increasing the size of the B32 α-cage by
introducing more hexagons increases the binding energy
of the boron cage. The larger size reduces the strain
due to curvature and also results in a larger fraction of
atoms being in an α-boron-sheet–like environment. The
B96 α-cage has a binding energy of 5.82 eV/atom and
is energetically competitive with the B80 fullerene [15].
The B96 α-cage is outside the 32n

2 class but can be

68005-p3



Rajendra R. Zope

Table 1: The binding energy per atom (BE), the highest occu-
pied molecular orbital (HOMO) eigenvalue εHOMO, the lowest
unoccupied molecular orbital (LUMO) eigenvalue εLUMO, and
the HOMO-LUMO gap ∆, of α-boron cages, and the B80
fullerene [15]. The BE of the most stable α-boron sheet from
ref. [12] is given in the last row. All energies are in eV.

BE −εHOMO −εLUMO ∆

B32 Oh 5.35 5.36 4.04 1.32
B96 Td 5.82 5.06 4.04 1.02
B128 Th 5.87 4.85 4.26 0.6
B288 Th 5.94 4.58 4.53 0.05
B80 Th 5.85 5.22 4.25 0.96
α-sheet – 6.11 – – –

Table 2: The range of bond lengths in α-boron cages. All
values are in Å. The description of the bonds is given in the
text. The bond lentghs in the α-boron sheet are in the range
1.66–1.9 Å [12].

(6′, 6′) (6, 6′) (4, 6′) (c, 6′)
B32 1.64 – 1.78 1.71
B96 1.65–1.76 1.73 1.74 1.68–1.73
B128 1.68–1.73 1.71–1.72 1.74 1.68–1.73
B288 1.68–1.73 1.71–1.72 1.74 1.68–1.73

obtained from the B32 α-cage by inserting 32 hexagons,
of which, 24 have a central atom. Alternatively, it can
be obtained from the parent Td B72 cage by capping
the hexagons so that its structure is compatible with the
most stable boron sheet. The HOMO-LUMO gap of the
B96 cage is 1.02 eV larger than that of B80 (0.97 eV).
We also computed the B96 ring structure using the same
computational methodology. The B96 ring structure is
5.7 eV less stable than the B96 α-cage. The inspection
of the electronic structure of the optimized larger B128
and B288 α-cages indicate that both cages are closed-shell
systems with a HOMO-LUMO gap of 1.02, 0.05 eV,
respectively. The very small (0.05 eV) gap of the B288 α-
cage is consistent with the metallic nature of the α-boron
sheet [12]. The properties of the α-cages in the infinite
limit should approach to those of the α-boron sheet. The
B128 and B288 α-cages have binding energies of 5.87 and
5.94 eV/atom, respectively. The HOMO-LUMO gaps and
binding energies of all cages are summarized in table 1.
The binding energy increases in larger boron cages due

to the decrease in curvature and due to the larger fraction
of the boron atoms being in an environment similar to
that of the α-boron sheet. For extremely large cages the
binding energy should be close to the cohesive energy of
the α-boron sheet.
In the α-boron cages, the bond distances are of four

types: i) the bonds shared by two hexagonal rings with
central boron atoms (6′,6′); ii) the bonds shared by a
hexagonal ring and by a hexagonal ring with central atom
(6, 6′); iii) the bonds shared by four-member rings and

Fig. 4: (Color online) The HOMO (left) and LUMO (right)
orbital densities of B32, B96, and B128 α-boron cages.

a hexagonal ring with central atom (4, 6′); iv) the bond
between the central atom in a (6′, 6′) ring and the six
boron atoms on the ring. (We will call this (c, 6′) bond for
convenience.) We use the prime to distinguish between the
hexagonal rings with and without central atom. The 6′

refers to a hexagonal ring with a boron atom at its center.
The bond distances are summarized in table 2. In the
case of B80 (and other boron fullerenes) the (5, 6

′) bond
is 1.74 Å, larger than that of (6′, 6′), 1.67 Å [15]. Thus,
bond alternation like in C60 is also seen in B80. Such a
trend is also observed in the 32n2 class of α-boron cages,
as can be seen in table 2. The inspection of eigenvalues
of α-boron cages shows that the HOMO is threefold
degenerate while the LUMO is nondegenerate except
for B32 and B96 cages in which it is triply degenerate.
The isosurface plots of the HOMO and LUMO orbital
densities are given in fig. 4. In all α-boron cages the
HOMO density is always localized on the shorter (6′, 6′)
bonds. The LUMO density is mostly concentrated on
bonds shared by the four-member ring (defect) and the
hexagon ((4, 6′) bonds). This pattern is similar to that
in the case of the B80 fullerene in which the HOMO
density is mostly on the shorter (6′,6′) bond and the
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LUMO density on the longer (5, 6′) bonds shared by the
pentagonal ring (defect for fullerene) and the hexagonal
ring [15].
To summarize, an infinite class of 32n2 α-boron cages

that is related to a 24n2 class of parent boron cages is
proposed. The procedure to build the 32n2 α-boron cages
directly from the most stable α-boron sheet is illustrated.
The accurate density functional calculations using large
polarized Gaussian basis sets containing 35 basis functions
per atoms are performed to demonstrate the stability of
the B32, B128, and B288, the smallest 3 members from the
infinite class of the 32n2 α class and the B96 α-boron cage
outside this class. The calculations show that the proposed
α-boron cages are energetically stable structures. The
result that larger α-boron cages are more stable than the
B80 fullerene is also consistent with a recent report which
shows the construction of boron fullerenes from smaller
fullerenes using the modified leapfrog transformation [25].
The present work may have implications in cancer

therapy as boron species have been used in cancer treat-
ment [35]. Boron-based semiconducting materials have
possible applications as solid-state neutron detectors.
Hence, like B80-based solids [36,37], it will be interest-
ing to explore the possibility of obtaining boron-rich
semiconductors using α-boron cages as building blocks.
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