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The equations of in-plane vibration in thin flat plates are solved for free vibration in circular plates
clamped at the outer edge. The mode shapes are represented by trigonometric functions in the
circumferential direction and by series summation of Bessel functions in the radial direction.
Accuracy of the predictions of natural frequencies and mode shapes is assessed by comparisons with
finite-element predictions and with previously reported results. The present solution gives very
accurate predictions. The work also highlights the nature of coupling between the different
circumferential and radial modes and the response of different vibrational modes at the center of the
plate. It is shown that the center point of the plate vibrates only for modes with unity circumferential
wave number~number of nodal diameters!. Nondimensional frequency parameters are listed and the
radial mode shapes of natural vibration are depicted to illustrate the free-vibration behavior in the
frequency range of practical interest. ©2003 Acoustical Society of America.
@DOI: 10.1121/1.1553456#
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LIST OF SYMBOLS AND BASIC RELATIONS

E Young’s modulus of elasticity
h plate thickness
j the imaginary numberA21
m circumferential wave number~equals

number of nodal diameters!
Nrr , Nuu , Nru in-plane force components~force per unit

length! in the directions shown in Fig. 1
r̄ plate radius
u, v components of in-plane displacement

radial ~extensional! and circumferential

I. INTRODUCTION

Circular plates exist in many engineering applicatio
In particular, they form partitions in aircraft fuselages a
external fuel tanks and end plates in storage tanks. Som
these applications are subjected to dynamic excitations
large components lying in the middle plane of the plate. T
in-plane dynamic loads, being continuous, intermittent,
even impacts, will excite in-plane modes with resonance
quencies in the frequency bands of excitation.

Investigation of the free in-plane vibrational response
circular thin flat plates with clamped edge is the subject
this work. The main objective is to provide the structu
dynamics analyst with a quick and easy tool to predict
plane natural frequencies and depict their mode shapes,
to reveal some important aspects of modal characteristic
in-plane vibration.

While much work has been done on the investigat
and documentation of the natural frequencies and mo
shapes for flexural vibration~e.g., Refs. 1 and 2!, the char-
acteristics of in-plane vibration have not been complet
J. Acoust. Soc. Am. 113 (4), Pt. 1, April 2003 0001-4966/2003/113(4)/1
~torsional! directions, respectively
f frequency~Hz!
v angular frequency~radians per second!
n Poisson’s ratio
r mass density
CL

25E/%(12n2) square of the quasilongitudinal wav
speed in the plate

CT
25E/2%(11n) square of the in-plane shear wave spe

in the plate
KL5v r̄ /CL nondimensional frequency parameter
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investigated and are not well documented. However, incre
ing attention has been given to the in-plane vibration
single and complex plate and plate-like structures in the p
few years~e.g., Refs. 3–7!. The results of recent investiga
tions emphasize the importance of the in-plane respons
high frequencies and in large coupled plate-like structure

Predictions of the natural frequencies of circular pla
are treated in few references. In particular, the problems
in-plane vibration and stability of rotating disks have a
tracted attention of researchers for decades due to their
vious practical importance in many engineering applicatio
Also, the in-plane vibrational response was investigated
piezoelectric disks and computer disks. These investigat
have been dealing with circular and annular thin or th
plates. Free-boundary conditions at the plate edge~s! were
considered in most of the published work.

Holland8 investigated the free in-plane vibration in ci
cular plates with free edges using trigonometric and Bes
functions and published frequency parameters for five to
modes of the first nine circumferential modes~circumferen-
tial wave numbersm51 to 9! for different values of Pois-
1935935/12/$19.00 © 2003 Acoustical Society of America
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son’s ratio. Ambatiet al.9 examined the in-plane vibration
in circular and annular plates, and rings with free boundar
Irie et al.10 used a transfer matrix formulation to solve th
equations of free in-plane vibrations for the natural frequ
cies of annular plates with combinations of free and clam
conditions at the inner and outer edges. In Ref. 10, the
cular plate was considered as a limiting case when the in
diameter tends to zero. For this specific case of circu
plates, the frequency parameters~nondimensional natura
frequencies! are listed for the first two radial modes of fiv
circumferential wave numbers (m50 to 4!. The mode
shapes were not examined in Ref. 10. The first eight re
ences sited in Ref. 10 represent the bulk of the work done
in-plane free vibration of annular and circular thin plates
to 1984. Chenet al.11 presented displacement potentials’ fo
mulation to examine the effect of the angular velocity
spinning disks on the in-plane vibrations and natural f
quencies.

To conclude, it can be seen that limited work is repor
on the in-plane vibration of circular clamped plates. Th
type of structure was only considered as a limited case
annular plate when the inner radius goes to zero10 and the
radial mode shapes of in-plane vibration have not been
ported.

The present work is a comprehensive investigation
the modal characteristics of in-plane vibration in circu
plates with clamped edge~i.e., rigidly restrained edge in th
plane of the plate!. It concentrates on the following new
areas:~i! The circular plate is investigated directly not as
special case of annular plate when the inner radius goe
zero. ~ii ! The work clarifies the modal response at the pl
center and the nature of the coupling between different
cumferential modes and different radial modes.~iii ! The
mode shapes of in-plane vibration in the radial direction
examined in detail.~iv! Nondimensional frequency param
eters and mode shapes are tabulated.~v! Elements of the
characteristic equation are presented, which can be use
compute the natural frequencies and mode shapes for o
material properties or higher frequency ranges.

In this paper, the equations for in-plane free vibrati
are presented in polar coordinates suitable for the type
structure under investigation. Assumed mode shapes are
pressed in terms of trigonometric functions in the circumf
ential direction. The nature of coupling between the circu
ferential modes is investigated. The physical behavior of
center point of the plate, during free vibration in each of t
circumferential modes, is examined. Mode shapes in the
dial direction are assumed as series summation of Be
functions. The mathematical model for free vibration is wr
ten in the form of an eigenvalue problem so that natu
frequencies and modes shapes can be obtained by solvin
eigenvalues and eigenvectors employing any available m
ematical software. The frequency parameters obtained by
present method are tabulated and the mode shapes ar
picted to illustrate the free-vibration behavior in the fr
quency range of practical interest. Comparisons with fin
element results and with the previously reported res
confirm the accuracy of the predictions of the pres
1936 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003
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method. The effect of Poisson’s ratio on the natural frequ
cies is also examined.

The mathematical formulations are presented in Sec
followed by computational examples and discussions in S
III. Tables I and II include a tabulation of the frequenc
parameters and mode shape functions for in-plane vibra
in circular clamped plates.

II. MATHEMATICAL SOLUTIONS FOR FREE IN-PLANE
VIBRATION IN CIRCULAR CLAMPED PLATES

In this section the equations of free in-plane vibration,
polar coordinates, are presented. The assumed solution
resents the circumferential distribution of in-plane vibrati
by cosine/sine functions and the radial distribution by ser
summation of Bessel functions. The coupling between
circumferential modes is investigated, as well as their
sponse at the center point of the circular plate. Suitable m
ematical forms of the radial mode shapes are used acc
ingly. The assumed modal response is substituted into
equations of motion. After mathematical manipulation t
equations are presented in the form of eigenvalue probl
suitable for solution for the nondimensional frequency p
rameters and mode shapes.

A. Equations of motion

The equations governing free in-plane vibration of th
flat plates, in polar coordinates, can be found in many re
ences~e.g., Refs. 10 and 11!. They may be written in the
following form:

]2u

]t2 2CL
2F]2u

]r 2 1
1

r

]u

]r
2

u

r 2G2CT
2 1

r 2

]2u

]u2

2CT
2 1

r

11v
12v

]2v
]r ]u

1CT
2 1

r 2

32v
12v

]v
]u

50, ~1a!

]2v
]t2 2CT

2F]2v
]r 2 1

1

r

]v
]r

2
v
r 2G2CL

2 1

r 2

]2v
]u2

2CT
2 1

r

11v
12v

]2u

]r ]u
2CT

2 1

r 2

32v
12v

]u

]u
50. ~1b!

Please see the list of symbols at the beginning of the pa
The above equations are based on the assumptions of
plate theory1 and plane stress conditions.8 The positive direc-
tions of displacement and internal force components are
lustrated in Fig. 1.

The in-plane internal force intensities~force per unit
length perpendicular to the force direction! are expressed in
terms of displacements by the following relations:10

Nr5
2Eh

12n2 S ]u

]r
1

n

r

]v
]u

1
n

r
uD , ~2a!

Nu5
2Eh

12n2 S 1

r

]v
]u

1
u

r
1n

]u

]r D , ~2b!

Nru5
2Eh

2~11n! S 1

r

]u

]u
1

]v
]r

2
v
r D . ~2c!
N. H. Farag and J. Pan: In-plane vibration of circular clamped plates
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For harmonic vibration with time dependencee2 j vt, the free
in-plane vibrational response is assumed in the form

u~r ,u,t !5 (
m150

`

Um1~r !cos~m1u!e2 j vt, ~3a!

v~r ,u,t !5 (
m250

`

Vm2~r !sin~m2u1w!e2 j vt. ~3b!

The anglew is introduced in Eq.~3b! to accommodate a
nonzero responsev(r ,u,t) for the case ofm250. Therefore,
w5p/2 for m250 andw50 for all other values ofm2 .

The following equations are obtained after substitut
of the assumed solution from Eqs.~3! into Eqs.~1!, multi-
plying the resulting two equations by cos(m1u) and sin(m2u
1w), respectively, integrating with respect tou from u50 to
u52p, and employing the orthogonal properties of the trig
nometric functions

CL
2

]2Um1

]r 2 1CL
2 1

r

]Um1

]r
1S v22

CL
21m1

2CT
2

r 2 DUm1

1CT
2 11v

12v
1

r

1

p (
m250

`

I m2 ,m1

]Vm2

]r

2CT
2 32v

12v
1

r 2

1

p (
m250

`

I m2 ,m1
Vm2

50, ~4a!

CT
2

]2Vm2

]r 2 1CT
2 1

r

]Vm2

]r
1S v22

CT
21m2

2CL
2

r 2 DVm2

2CT
2 11v

12v
1

r

1

p (
m150

`

I m1 ,m2

]Um1

]r

2CT
2 32v

12v
1

r 2

1

p (
m150

`

I m1 ,m2
Um1

50, ~4b!

where

FIG. 1. Positive directions of in-plane force and displacement compon
on an infinitesimal element of a circular plate.
J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 N. H.
-

I m1 ,m2
5m1E

0

2p

sin~m1u!sin~m2u1w!du

5H 0 for m1Þm2

m1p cosw for m15m2
, ~5a!

I m2 ,m1
5m2E

0

2p

cos~m2u1w!cos~m1u!du

5H 0 for m1Þm2

m2p cosw for m15m2
. ~5b!

Equations~4! and~5! indicate thatm15m25m is the condi-
tion for u andv to be coupled. The governing equations
free vibration take the following form for coupled circumfe
ential modes:

CL
2 ]2Um

]r 2 1CL
2 1

r

]Um

]r
1S v22

CL
21m2CT

2

r 2 DUm

1CT
2 11v

12v
m

r

]Vm

]r
2CT

2 32v
12v

m

r 2 Vm50, ~6a!

CT
2 ]2Vm

]r 2 1CT
2 1

r

]Vm

]r
1S v22

CT
21m2CL

2

r 2 DVm

2CT
2 11v

12v
m

r

]Um

]r
2CT

2 32v
12v

m

r 2 Um50. ~6b!

Using the nondimensional parameterx5r / r̄ , wherer̄ is the
outer radius of the circular plate, and the relationCT

25@(1
2n)/2#CL

2, the above equations take the form

x2Um9 ~x!1xUm8 ~x!1S v2r̄ 2

CL
2 x2212m2

12v
2 DUm~x!

1
11v

2
mxVm8 ~x!2

32v
2

mVm~x!50, ~7a!

x2Vm9 ~x!1xVm8 ~x!1S v2r̄ 2

CT
2 x2212m2

2

12v DVm~x!

2
11v
12v

mxUm8 ~x!2
32v
12v

mUm~x!50. ~7b!

Henceforth, the prime is used to denote differentiation w
respect tox.

B. Natural frequencies and mode shapes of the
axisymmetric modes „mÄ0…

In the above equations the circumferential wave num
m represents the number of nodal diameters in the free
brational response. The casem50 represents the vibrationa
modes whereu andv are uncoupled. Hence, the uncoupl
modes are axisymmetric because there are no nodal d
eters. Equations~7! take the following form for the axisym-
metric modes (m50):

ts
1937Farag and J. Pan: In-plane vibration of circular clamped plates
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x2U09~x!1xU08~x!1~lp
2x221!U0~x!50, ~8a!

x2V09~x!1xV08~x!1~lq
2x221!V0~x!50, ~8b!

wherelp
25v2r̄ 2/CL

2 andlq
25v2r̄ 2/CT

2.
Each of Eqs.~8! is a Bessel equation of order unity.12

Solution of these equations is:U0,p(x)5J1(lpx) and
V0,q(x)5J1(lqx), whereJ1(z) is Bessel function of the firs
kind of order unity. The displacement components must
sume zero values at the clamped edge of the plate whex
51. Hence,lp andlq (5lp in this case! are the roots of the
equation:J1(z)50, excluding the root at the origin. The su
scriptsp and q stand for the sequential number of the ro
Natural frequencies of the radial~extensional! and tangential
~torsional! axisymmetric modes are given, respectively, b

vL,p5
CLlp

r̄
and vT,q5

CTlq

r̄
. ~9!

Radial distributions of the free vibrational modes take
form of Bessel functions of the first kind of order unity.
has to be stated here that Bessel function of the second
is also a solution that satisfies Eqs.~8! but it is discarded here
because it has a singularity at the origin.12 In the following
analysis, Bessel function of the first kind will be referred
as the Bessel function for brevity.

C. Natural frequencies and mode shapes of the
coupled modes „mÌ0…

Although Bessel function of the first order satisfies E
~8! for axisymmetric modes, it does not satisfy Eqs.~7! due
to the coupling between the radial,U(x), and tangential,
V(x), components of in-plane vibration. However, the rad
mode shapes of vibration can be expressed as a serie
Bessel functions of any order. The physical in-plane respo
of the plate at the centerr 50 has to be examined first to he
choosing a function that best represents the behavior at p
center point.

FIG. 2. Free vibration response at the center point of a circular clam
plate for different circumferential wave numbersm ~note that form52 and
m53, v is not plotted; it follows the same behavior asu!.
1938 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003
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The in-plane response atr 50 is examined and pre
sented in Fig. 2, which also depicts the nodal diameters
the first four circumferential wave numbers (m50:3). For
m50, if U(0) andV(0) components exist along and norm
to any radial directionu, it will be counteracted by similar
response along and normal to the radial directionu1p due to
the axisymmetry. It follows that the axisymmetric mode,m
50, must have zero response at the plate center point.
finding agrees with the value of Bessel function of ord
unity at x50, which is zero.

For m51, it is shown in Fig. 2 thatu andv components
of the response atu1p are added tou andv components at
u. This is due to the change of sign of the sine and cos
functions @see Eqs.~3!# when the angle is increased byp.
This indicates that the modesm51 have nonzero response
the plate center point.

Figure 2 also presents analysis of the response of
wave numbersm52 and m53 at the center of the plate
Following the same reasoning as before, it is shown that
plate center must have zero response for these two mode
can also be shown that this always is the case for all
higher order modes (m>4).

In summary, the modes with circumferential wave nu
berm51 are the only ones that have nonzero response a
center point of the plate.

Radial mode shapes of the modes with circumferen
wave numbersm>2 are assumed as series summations
Bessel functions of integral ordern.0, which satisfies the
condition of zero response at the plate center point

Um~x!5 (
p51

`

Ūm,pJn~lpx!, ~10a!

Vm~x!5 (
p51

`

V̄m,pJn~lpx!, ~10b!

wherelp are nonzero roots of the equationJn(z)50.
Radial mode shapes of the modes with circumferen

wave numberm51 are assumed as a series summation
Bessel functions of the order 0.5 divided byAx as follows:

Um~x!5 (
p51

`

Ūm,p

J0.5~lpx!

Ax
, ~11a!

Vm~x!5 (
p51

`

V̄m,p

J0.5~lpx!

Ax
, ~11b!

wherelp are roots of the equationJ0.5(z)50.
It can be proved,12 using expansion ofJ0.5(lpx) in terms

of x, thatJ0.5(lpx)/Ax assumes finite value atx50.
Henceforth,J0.5(lpx)/Ax and Jn(lpx) will be called

‘‘elemental mode shapes’’ form51 andm>2, respectively.

1. Natural frequencies and mode shapes of the
modes m Ð2

Three properties of Bessel functions will be consider
in the following analysis:12

d

N. H. Farag and J. Pan: In-plane vibration of circular clamped plates
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~a! Um,p(x)5Jn(lpx) is a solution to the equation

x2Um9 ~x!1xUm8 ~x!1~lp
2x22n2!Um~x!50. ~12!

~b! Differentiation of Eq.~10a! is

dUm

dx
5(

p51

`

Ūm,pFnx Jn~lpx!2lpJn11~lpx!G. ~13!

~c! The orthogonality of Bessel functions is expressed
the relations

E
x50

1

xJn~lpx!Jn~lp8x!dx5H0 pÞp8

1
2@Jn11~lp!#

2 p5p8
. ~14!

For brevity and clarity, the subscriptm will be removed in
the following analysis.

The following equations are obtained after substitut
of ~10! into ~7! and usingp8 to denote a general element
mode shape:

(
p851

`

a1Jn~lp8x!Ūp81 (
p851

`

~KL
22lp8

2
!x2Jn~lp8x!Ūp8

1 (
p851

`

a2Jn~lp8x!V̄p8

1 (
p851

`

a3xlp8Jn11~lp8x!V̄p850, ~15a!

(
p851

`

b1Jn~lp8x!V̄p81 (
p851

`

~KT
22lp8

2
!x2Jn~lp8x!V̄p8

1 (
p851

`

b2Jn~lp8x!Ūp8

1 (
p851

`

b3xlp8Jn11~lp8x!Ūp850, ~15b!

where

a15n2212m2
12n

2
, b15n2212m2

2

12n
,

a25
11n

2
mn2

32n

2
m, b252

11n

12n
mn2

32n

12n
m,

a352
11n

2
m, b35

11n

12n
m,

KL
25

v2r̄ 2

CL
2 , and KT

25
v2r̄ 2

CT
2 .

Multiplying Eqs. ~15! by @Jn(lpx)#/x, integrating with re-
spect tox from x50 to x51, and employing the orthogona
ity property give rise to the following equations:
J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 N. H.
y

a1 (
p851

`

Ap8,pŪp81~KL
22lp

2!CpŪp1a2 (
p851

`

Ap8,pV̄p8

1a3 (
p851

`

Bp8,pV̄p850, ~16a!

b1 (
p851

`

Ap8,pV̄p81~KT
22lp

2!CpV̄p1b2 (
p851

`

Ap8,pŪp8

1b3 (
p851

`

Bp8,pŪp850, ~16b!

whereCp5 1
2@Jn11(lp)#2,

Ap8,p5E
x50

1 1

x
Jn~lp8x!Jn~lpx!dx,

~17!

Bp8,p5E
x50

1

lp8Jn11~lp8x!Jn~lpx!dx.

Equations~16! can be arranged in the form of an eigenval
problem as follows:

KL
2Ūp5S lp

22
a1

Cp
Ap,pD Ūp2 (

p851
~p8Þp!

`
a1

Cp
Ap8,pŪp8

2 (
p851

`
a2Ap8,p1a3Bp8,p

Cp
V̄p8 , ~18a!

KL
2V̄p5S lp

22
b1Ap,p

Cp
D 12n

2
V̄p

2 (
p851

~p8Þp!

`
b1

Cp
Ap8,p

12n

2
V̄p8

2 (
p851

`
b2Ap8,p1b3Bp8,p

Cp

12n

2
Ūp8 . ~18b!

Ap8,p andBp8,p represent the coupling strength between
elemental modes in Eqs.~10!. They are plotted in Fig. 3 for
different values ofp8 andp to give a qualitative measure o
the expected convergence of the series summation in
~10!. It can be proved that the integrand ofAp8,p assumes a
zero value atx50 for n.0.5.

For each circumferential wave numberm, Eqs.~18! have
to be written for a number, sayk, of Um,p andVm,p coupled
to Um,p8 andVm,p8 leading to 23k equations. The resulting
eigenvalue problem can be solved for the eigenvalues~non-
dimensional frequency parametersKL) and the eigenvectors

FIG. 3. Modal coupling factorsAp8,p andBp8,p according to Eqs.~17! for
n51.
1939Farag and J. Pan: In-plane vibration of circular clamped plates
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obtained from the relationf 5(KLCL/2p r̄ ) Hz.

It has to be mentioned here that Chen and Liu,13 in their
solutions for in-plane vibration in plates with free edge
used series summation of Bessel functions of the first kind
orderm ~m is the circumferential wave number!. The math-
ematical formulation presented in this section uses Be
functions of integral ordern.0 ~any arbitrary integer!. This
implies thatm may be used as the order of Bessel functio
in the series summation in Eqs.~10!. However, Bessel func
tions of order unity were used in the computational e
amples. It was also confirmed by computational examp
~not presented in this paper! that Bessel functions of orderm
give the same accuracy at the same computational e
@same number of terms in~10! to obtain certain accuracy#.

2. Natural frequencies and mode shapes of the
modes m Ä1

The same procedure will be followed in the analysis
this case as form>2.

The following properties of Bessel functions are used
the mathematical analysis:12

~a! U1,p(x)5@J0.5(lpx)/Ax# is a solution of the equation

x2U19~x!12xU18~x!1lp
2x2U1~x!50. ~19!

~b! Differentiation of the elemental mode shape in Eq
~11! is

d

dx
FJ0.5~lpx!

x0.5 G52lp

J1.5~lpx!

x0.5 . ~20!
1940 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003
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~c! The orthogonality of Bessel functions according
Eqs.~14! is valid for n50.5.

Substitution of the assumed solution from Eqs.~11! into Eqs.
~7! gives rise to:

(
p851

`

B̄p8,pŪp81ā1 (
p851

`

Āp8,pŪp81~KL
22lp

2!C̄pŪp

1ā2 (
p851

`

B̄p8,pV̄p81ā3 (
p851

`

Āp8,pV̄p850, ~21a!

(
p851

`

B̄p8,pV̄p81b̄1 (
p851

`

Āp8,pV̄p81~KT
22lp

2!C̄pV̄p

1b̄2 (
p851

`
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FIG. 4. Modal coupling factorsĀp8,p and B̄p8,p according to Eqs.~17! for
n50.5.
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TABLE I. Frequency parametersKL5v r̄ /CL ~see the list of symbols! for the first eight natural frequencies of the first ten circumferential wave numbe
in-plane vibration in circular clamped plates for two values of poisson’s ration50.28 andn50.33.

Wave
number

Poisson’s
ratio

1st
mode

2nd
mode

3rd
mode

4th
mode

5th
mode

6th
mode

7th
mode

8th
mode

m50,
radial

any 3.8317 7.0156 10.1735 13.3237 16.4706 19.6159 22.7601 25.903

m50,
tangential

n50.28 2.2990 4.2094 6.1041 7.9942 9.8824 11.7700 13.6560 15.542
n50.33 2.2178 4.0606 5.8883 7.7116 9.5331 11.3530 13.1730 14.993

m51 n50.28 1.9655 3.2210 5.0696 5.3802 7.0227 8.5254 8.9305 10.806
n50.33 1.9441 3.1126 4.9104 5.3570 6.7763 8.4938 8.6458 10.425

m52 n50.28 3.0658 4.1344 5.9357 6.7304 7.9147 9.7408 10.0340 11.707
n50.33 3.0185 4.0127 5.7398 6.7079 7.6442 9.4356 9.9894 11.297

m53 n50.28 3.9956 5.0741 6.7755 7.9853 8.8061 10.6370 11.3680 12.593
n50.33 3.9116 4.9489 6.5537 7.9342 8.5336 10.2790 11.3380 12.162

m54 n50.28 4.8244 6.0289 7.6072 9.1255 9.7416 11.4966 12.6630 13.478
n50.33 4.7021 5.8985 7.3648 8.9816 9.5296 11.1087 12.5940 13.058

m55 n50.28 5.5944 6.9753 8.4407 10.1174 10.7708 12.3452 13.8738 14.402
n50.33 5.4370 6.8306 8.1834 9.8642 10.6324 11.9353 13.6350 14.119

m56 n50.28 6.3301 7.8961 9.2829 11.0012 11.8604 13.1924 14.9187 15.450
n50.33 6.1410 7.7265 9.0167 10.6837 11.7423 12.7712 14.5015 15.309

m57 n50.28 7.0444 8.7821 10.1376 11.8398 12.9484 14.0485 15.8195 16.60
n50.33 6.8259 8.5787 9.8666 11.4838 12.8054 13.6373 15.3240 16.491

m58 n50.28 7.7444 9.6309 11.0042 12.6615 13.9993 14.9280 16.6701 17.76
n50.33 7.4982 9.3887 10.7281 12.2792 13.7879 14.5598 16.1348 17.60

m59 n50.28 8.4340 10.4450 11.8780 13.4780 14.9910 15.8480 17.5050 18.88
n50.33 8.1612 10.1630 11.5920 13.0770 14.6840 15.5420 16.9450 18.58

m510 n50.28 9.1159 11.2310 12.7500 14.2960 15.9150 16.8120 18.3350 19.93
n50.33 8.8172 10.9100 12.4470 13.8830 15.5210 16.5510 17.7630 19.45
N. H. Farag and J. Pan: In-plane vibration of circular clamped plates
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C̄p , Āp8,p and B̄p8,p are obtained from relations similar t
those of Eqs.~17! with n replaced by 0.5. It can be prove

that the integrand ofĀp8,p assumes finite value atx50. This
is another reason for the choice of the elemental mode sh
in Eqs. ~11!. Multiplying Eqs. ~21! by J0.5(lpx)/Ax, inte-
grating with respect tox from x50 to x51, and using the
properties of Bessel functions, the following equations
obtained:
es

00

52

3

TABLE II. Coefficients (Ūm,p and V̄m,p) of the elemental modes inU1,p(or V1,p)5(p51
` Ū1,p(or V̄1,p)@J0.5(lpx)#/Ax @Eqs. ~11!# and in Um,p(or Vm,p)

5(p51
` Ūm,p(or V̄m,p)J1(lpx) @Eqs.~10!, m>2] for in-plane vibration of circular clamped plate~n50.3!; the bold numbers highlight the elemental mod

with the highest contribution to the radial mode shape.

Circum.
wave # Mode

p

1 2 3 4 5 6 7 8 9 10

m51 #1, Ū 0.7650 20.0515 0.0170 20.0080 0.0046 20.0028 0.0020 20.0013 0.0011 20.0008

, V̄ À0.6376 20.0686 0.0200 20.0091 0.0051 20.0031 0.0022 20.0015 0.0012 20.0009

#2, Ū À0.2197 20.1631 0.0257 20.0107 0.0054 20.0035 0.0022 20.0017 0.0011 20.0010

, V̄ 20.5907 0.7568 20.0473 0.0159 20.0074 0.0045 20.0028 0.0020 20.0014 0.0011

#3, Ū 20.1133 0.4293 0.0940 20.0153 0.0058 20.0034 0.0019 20.0015 0.0009 20.0009

, V̄ 20.0072 0.4375 À0.7732 0.0614 20.0212 0.0112 20.0065 0.0045 20.0031 0.0024

#4, Ū 20.4573 0.6097 20.1163 0.0243 20.0113 0.0064 20.0042 0.0028 20.0022 0.0015

, V̄ 20.2038 À0.4850 0.3566 0.0261 20.0119 0.0066 20.0043 0.0028 20.0022 0.0016

#5, Ū 0.0051 20.0279 À0.1971 20.0924 0.0165 20.0077 0.0041 20.0029 0.0018 20.0015

, V̄ 20.0252 20.0643 20.5233 0.8186 20.0487 0.0170 20.0081 0.0051 20.0032 0.0024

m52 #1, Ū À0.8160 20.0176 0.0021 20.0006 0.0002 20.0002 0.0000 20.0001 0.0000 20.0002

, V̄ 0.5329 0.2164 20.0489 0.0212 20.0117 0.0072 20.0049 0.0034 20.0027 0.0019

#2, Ū 0.2670 0.3034 20.0360 0.0146 20.0078 0.0047 20.0032 0.0022 20.0017 0.0012

, V̄ 0.5739 À0.7109 20.0180 0.0084 20.0047 0.0029 20.0020 0.0014 20.0012 0.0008

#3, Ū 0.0444 0.5463 0.2075 20.0298 0.0126 20.0069 0.0044 20.0030 0.0022 20.0016

, V̄ 20.0078 0.2578 À0.7672 0.0182 20.0057 0.0027 20.0016 0.0010 20.0007 0.0005

#4, Ū 0.3393 À0.5820 0.1632 0.0020 0.0007 20.0004 0.0005 20.0001 0.0003 0.0001

, V̄ 0.3813 0.5334 20.2575 20.1447 0.0409 20.0198 0.0119 20.0077 0.0057 20.0039

#5, Ū 20.0033 20.1766 À0.3899 20.1847 0.0261 20.0113 0.0064 20.0040 0.0029 20.0020

, V̄ 20.0117 20.0728 20.3018 0.8278 20.0004 20.0010 0.0009 20.0006 0.0006 20.0004

m53 #1, Ū À0.8417 0.2073 0.0753 0.0121 0.0134 0.0032 0.0050 0.0011 0.0022 0.00

, V̄ 0.4224 0.1579 20.1930 0.0228 20.0337 0.0083 20.0132 0.0037 20.0073 0.0013

#2, Ū 20.2071 À0.2869 0.1804 20.0007 0.0241 20.0017 0.0088 20.0011 0.0043 20.0008

, V̄ À0.5237 0.7361 20.1430 20.0679 0.0020 20.0165 0.0022 20.0073 0.0012 20.0045

#3, Ū 20.1359 À0.5560 20.0106 0.1815 0.0096 0.0308 0.0021 0.0118 0.0002 0.00

, V̄ 0.0418 20.1464 0.7284 20.2858 20.0419 20.0255 20.0107 20.0092 20.0058 20.0059

#4, Ū 20.2312 0.4622 20.4221 0.0570 0.0384 0.0027 0.0069 0.0003 0.002420.0008

, V̄ 20.4231 20.3412 0.4088 0.2348 20.1743 0.0265 20.0303 0.0102 20.0131 0.0042

#5, Ū 0.0107 0.3265 0.3505 0.0053 20.1776 20.0175 20.0323 20.0051 20.0126 20.0010

, V̄ 20.0453 0.0002 0.1537 À0.7878 0.2909 0.0730 0.0229 0.0206 0.0093 0.012

m54 #1, Ū 0.8096 20.3702 20.0668 0.0204 20.0102 0.0058 20.0040 0.0028 20.0020 0.0020

, V̄ À0.3271 20.1188 0.2703 20.0775 0.0374 20.0218 0.0144 20.0096 0.0077 20.0046

#2, Ū 20.1635 20.2873 0.2925 20.0380 0.0172 20.0099 0.0064 20.0042 0.0034 20.0017

, V̄ 20.4647 0.7186 20.2491 20.0823 0.0370 20.0210 0.0138 20.0091 0.0075 20.0046

#3, Ū 0.1950 0.4962 20.1631 20.2314 0.0473 20.0220 0.0131 20.0083 0.0063 20.0041

, V̄ 20.0760 0.1053 À0.6327 0.4639 20.0140 0.0025 20.0005 0.0000 0.0004 20.0005

#4, Ū 0.1672 20.1975 0.5279 20.2436 20.1045 0.0256 20.0127 0.0074 20.0051 0.0042

, V̄ 0.3667 0.1351 À0.4147 20.2921 0.4077 20.0721 0.0331 20.0186 0.0133 20.0072

#5, Ū 0.0066 0.4648 0.1429 20.1121 20.2257 0.0359 20.0169 0.0096 20.0069 0.0036

, V̄ 20.1635 20.0490 0.1785 À0.6596 0.4463 0.0461 20.0232 0.0135 20.0101 0.0059
1941Farag and J. Pan: In-plane vibration of circular clamped plates



TABLE II. ~Continued.!

Circum.
wave # Mode

p

1 2 3 4 5 6 7 8 9 10

m55 #1, Ū 0.7585 20.4823 20.0128 0.0519 20.0156 0.0116 20.0068 0.0050 20.0037 0.0034

, V̄ 20.2621 20.0821 0.2984 20.1416 0.0506 20.0318 0.0192 20.0133 0.0102 20.0058

#2, Ū 0.1510 0.2845 À0.3874 0.1012 20.0113 0.0123 20.0054 0.0046 20.0031 0.0012

, V̄ 0.3988 À0.6788 0.3167 0.0790 20.0832 0.0352 20.0249 0.0151 20.0129 0.0070

#3, Ū 0.2313 0.4073 20.2783 20.2132 0.1238 20.0261 0.0221 20.0105 0.0096 20.0050

, V̄ 20.1060 0.1073 20.5438 0.5570 20.1100 20.0137 20.0006 20.0042 0.0018 20.0026

#4, Ū 0.1386 0.0266 0.4357 20.4154 20.0895 0.0950 20.0193 0.0177 20.0088 0.0078

, V̄ 0.2699 20.0078 20.3332 20.2477 0.5650 20.1845 0.0250 20.0230 0.0104 20.0073

#5, Ū 0.0075 0.5104 20.1077 20.0839 20.2188 0.1007 20.0059 0.0132 20.0044 0.0028

, V̄ 20.2789 20.0155 0.2504 À0.5582 0.4490 0.0176 20.0832 0.0280 20.0261 0.0105

m56 #1, Ū À0.7048 0.5568 20.0609 20.0657 0.0291 20.0162 0.0110 20.0071 0.0059 20.0048

, V̄ 0.2181 0.0484 À0.2954 0.1954 20.0754 0.0408 20.0255 0.0168 20.0131 0.0067

#2, Ū 0.1594 0.2677 À0.4645 0.1798 20.0148 0.0076 20.0042 0.0030 20.0021 20.0002

, V̄ 0.3328 À0.6238 0.3563 0.0675 20.1307 0.0615 20.0365 0.0235 20.0185 0.0099

#3, Ū 20.2507 20.3128 0.3341 0.1679 20.1900 0.0511 20.0264 0.0158 20.0116 0.0064

, V̄ 0.1296 20.1311 0.4805 À0.5940 0.2041 0.0111 20.0109 0.0078 20.0069 0.0043

#4, Ū 20.1318 20.1279 20.2973 0.5067 20.0027 20.1493 0.0453 20.0228 0.0157 20.0097

, V̄ 20.2125 0.0858 0.2568 0.1485 À0.5953 0.3138 20.0457 0.0191 20.0109 0.0042

#5, Ū 20.0257 À0.4727 0.2438 0.0082 0.2333 20.1591 0.0061 20.0041 0.0021 0.0016

, V̄ 0.3222 20.0647 20.2411 0.5080 20.4291 20.0188 0.1481 20.0635 0.0401 20.0190

m57 #1, Ū À0.6541 0.6044 20.1386 20.0599 0.0441 20.0224 0.0154 20.0097 0.0084 20.0064

, V̄ 0.1869 0.0197 À0.2754 0.2329 20.1063 0.0521 20.0322 0.0210 20.0160 0.0077

#2, Ū 0.1771 0.2356 À0.5183 0.2645 20.0318 20.0013 20.0006 0.0004 0.0002 20.0022

, V̄ 0.2714 À0.5598 0.3748 0.0500 20.1721 0.0973 20.0510 0.0328 20.0246 0.0124

#3, Ū 20.2580 20.2258 0.3449 0.1231 20.2397 0.0907 20.0325 0.0204 20.0138 0.0070

, V̄ 0.1447 20.1599 0.4410 À0.6008 0.2787 20.0043 20.0280 0.0160 20.0140 0.0076

#4, Ū 20.1312 20.1681 20.1716 0.5349 20.1177 20.1665 0.0862 20.0307 0.0225 20.0121

, V̄ 20.1822 0.1348 0.1869 0.0627 À0.5584 0.4200 20.0976 0.0164 20.0101 0.0019

#5, Ū 0.0526 0.4144 20.2830 0.0369 20.2747 0.2310 20.0138 20.0152 0.0058 20.0079

, V̄ 20.3147 0.1366 0.1657 À0.4616 0.4284 0.0347 20.2310 0.1203 20.0571 0.0259

m58 #1, Ū 20.6078 0.6327 20.2122 20.0384 0.0554 20.0305 0.0201 20.0128 0.0112 20.0081

, V̄ 0.1636 20.0035 20.2474 0.2548 20.1376 0.0668 20.0394 0.0258 20.0190 0.0086

#2, Ū 20.1959 20.1919 0.5457 20.3464 0.0635 0.0093 20.0063 0.0032 20.0038 0.0046

, V̄ 20.2182 0.4939 20.3789 20.0264 0.2012 20.1371 0.0696 20.0425 0.0308 20.0145

#3, Ū 0.2572 0.1536 À0.3297 20.0904 0.2773 20.1377 0.0434 20.0235 0.0155 20.0067

, V̄ 20.1501 0.1818 20.4155 0.5933 20.3319 0.0240 0.0471 20.0305 0.0235 20.0121

#4, Ū 0.1310 0.1812 0.0662 À0.5191 0.2240 0.1494 20.1295 0.0472 20.0291 0.0152

, V̄ 0.1646 20.1692 20.1192 20.0076 0.4945 20.4909 0.1660 20.0225 0.0061 20.0001

#5, Ū 0.0819 0.3527 20.2641 0.0293 20.3111 0.3205 20.0340 20.0453 0.0242 20.0159

, V̄ 20.2731 0.1775 0.0588 20.3823 0.4260 0.0490 20.3280 0.2013 20.0792 0.0288
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TABLE III. Comparisons of natural frequency predictions by the present method and by Finite Element Analysis for the plate described in Sec. II~‘‘ p’’ is
number of terms in the series summation; ‘‘e’’ is total number of finite elements!. ~a! Axisymmetric modes, circumferential wave numberm50. ~b!
Circumferential wave number,m51. ~c! Circumferential wave numbers,m52 andm53. ~d! Circumferential wave numbers,m57 andm58.

~a!
Mode

number

m50, tangential modes

Mode
number

m50, radial modes

Eqs.~8! Finite element Eqs.~8! Finite element

Hz p Hz e Hz p Hz e

1 3 860 1 3 868 1 200 1 6 434 1 6 439 1 200
3 863 3 000 6 437 3 000

2 7 068 1 7 101 1 200 2 11 780 1 11 822 1 200
7 084 3 000 11 807 3 000

3 10 249 1 10 347 1 200 3 17 082 1 17 229 1 200
10 304 3 000 17 175 3 000

4 13 423 1 13 644 1 200
13 553 3 000

5 16 593 1 17 014 1 200
16 849 3 000

~b!
Mode

number

Eqs.~23! Finite element
Mode

number

Eqs.~22! Finite element

Hz p Hz e Hz p Hz e

1 3 301 5 3 303 1 200 6 14 321 5 14 398 1 200
3 300 10 3 301 3 000 14 314 10 14 365 3 000
3 300 20 14 315 20

2 5 420 5 5 425 1 200 7 14 908 5 15 292 1 200
5 406 10 5 416 3 000 15 001 10 15 176 3 000
5 408 20 14 995 20

3 8 484 5 8 558 1 200 8 5 18 691 1 200
8 517 10 8 538 3 000 18 137 10 18 485 3 000
8 512 20 18 144 20

4 9 036 5 9 063 1 200 9 19 653 5
9 034 10 9 047 3 000 19 658 10 19 793 3 000
9 034 20 19 657 20

5 11 831 5 11 939 1 200
11 787 10 11 879 3 000
11 792 20

~c!
Mode

number

m52 m53

Eqs.~18! Finite element Eqs.~18! Finite element

Hz p Hz e Hz p Hz e

1 5 149 5 5 155 1 200 6 710 10 6 729 1 20
5 148 10 5 151 3 000 6 709 20 6 716 3 00
5 148 20 6 709 30

2 6 943 5 6 976 1 200 8 520 10 8 583 1 20
6 942 10 6 956 3 000 8 520 20 8 542 3 00
6 942 20 8 520 30

3 9 969 5 10 048 1 200 11 378 10 11 489 1 20
9 967 10 10 013 3 000 11 377 20 11 435 3 00
9 967 20 11 376 30

4 11 304 5 11 351 1 200 13 409 10 13 504 1 20
11 301 10 11 323 3 000 13 408 20 13 450 3 00
11 301 20 13 408 30

5 13 295 5 13 486 1 200 14 790 10 15 015 1 20
13 290 10 13 410 3 000 14 786 20 14 922 3 00
13 289 20 14 786 30

6 16 368 5 16 648 1 200 17 868 10 18 306 1 20
16 356 10 16 544 3 000 17 861 20 18 139 3 00
16 356 20 17 861 30

7 16 862 5 17 060 1 200
16 849 10 16 970 3 000
16 848 20
th

f
Eq

.
for
Āp8,p and B̄p8,p represent the coupling strength between
elemental modes in Eqs.~11!. They are plotted in Fig. 4 for
different values ofp8 andp to give a qualitative measure o
the expected convergence of the series summation in
J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 N. H.
e

s.

~11!. C̄p is the same as in Eq.~17! with n50.5.
Solution of the eigenvalue problem of Eqs.~22! will

produce the frequency parametersKL and the mode shapes
Table I is a tabulation of the frequency parameters
1943Farag and J. Pan: In-plane vibration of circular clamped plates
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TABLE III. ~Continued.!

~d!
Mode

number

m57 m58

Eqs.~18! Finite element Eqs.~18! Finite element

Hz p Hz e Hz p Hz e

1 11 832 10 12 090 1 200 13 009 10 13 367 1 20
11 828 20 11 891 3 000 13 003 20 13 094 3 00

2 14 751 10 15 152 1 200 16 179 10 16 718 1 20
14 746 20 14 857 3 000 16 171 20 16 323 3 00

3 17 028 10 17 484 1 200 18 486 10 19 077 1 20
17 022 20 17 172 3 000 18 477 20 18 668 3 00

4 19 889 10
19 880 20 20 158 3 000
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the first eight modes of circumferential wave numbersm
50 to m510. The frequency parameters are calculated
two values of Poisson’s ration50.28 andn50.33 represent-
ing typical values for steel and aluminum, respectively. C
efficients of the elemental modes in Eqs.~11! and ~10!, are
listed in Table II ~calculated forn50.3!. Mode shapes are
depicted in Table V as part of the computational example

III. COMPUTATIONAL RESULTS AND COMPARISONS

In this section:~i! The natural frequencies and mod
shapes are computed using the procedures of Sec. II.~ii ! The
results are compared with finite-element analysis predicti
and with previously published data to assess the accurac
the new method.~iii ! Effect of the number of terms in th
series summation of Eqs.~10! and ~11! on the accuracy of
the results is investigated.~iv! The effect of Poisson’s ratio
on the natural frequencies is examined computationally.~v!
The effect of plate thickness is discussed. The proced
presented in Sec. II are used to compute the natural freq
cies and mode shapes of for a 1-m-diameter circular
plate clamped at the outer edge.MATLAB programming and
eigenvalue solutions were used. The plate is made of ste
Young’s modulus E52003109 N/m2, density r57800
kg/m3, and Poisson’s ration50.28. Finite-element analysi
~FEA! was also used to compute the natural frequencies
mode shapes for comparison and assessment of the acc
of the new method. Membrane shell elements were use
the finite-element analysis and two axisymmetric mesh m
els were built:~1! 1200-element mesh, 20 elements along
radius and 60 elements along the circumference;~2! 3000-
element model, 25 elements along the radius and 120
ment along the circumference.

Tables III~a!–~d! summarize the results of the numeric
computations of the in-plane natural frequencies of the p
in the frequency range up to 20 kHz.

It is expected that the accuracy of the predictions of
present method will depend upon the number of terms u
in the series summation of Eqs.~10! and ~11!. The predic-
tions listed in Tables III~a!–~d! indicate that ten terms in th
series summation are sufficient for accuracy to three sig
cant figures.

The accuracy of FE predictions decreases as the
quency increases~for the same number of elements!. In par-
1944 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003
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ticular, FE predictions are less accurate for the modes w
large number of nodal diameters~i.e., large circumferential
wave numberm!. It is clear from Tables III~a!–~d! that FE
accuracy increased when the number of elements along
circumference was increased from 60 in the first mesh mo
to 120 in the second mesh model. It is also evident that
predictions are always higher than the predictions of
present method. At low frequencies, i.e., lower circumfere
tial wave numbers and lower-order modes, predictions of
present method and of FE are nearly identical. Conseque
the deviations at higher frequencies and for higher-or
modes are judged to be due to insufficient number of e
ments in the FE mesh model.

It can be noted from Table I that the frequency para
eters for the radial axisymmetric modes (m50) are indepen-
dent of Poisson’s ratio because the radial and tangential c
ponents of in-plane response are uncoupled as explaine
Sec. II B. On the contrary, the natural frequency of a
asymmetric mode (m.0) decreases as Poisson’s ratio i
creases. Similar behavior is reported in Ref. 8 for free dis
Calculations of frequency parameters in Table I are based
20 terms in the series summation of Eqs.~10! and ~11!,
which ensures accuracy to four significant figures. Comp
sons with the results of Ref. 10 are presented in Table IV
can be seen that the agreement is at least to three signifi
figures. The difference in the second line, between 7.013
7.0156, is worth comment. The present solution, for t
case, is exact as indicated in Sec. II B and the freque

TABLE IV. Comparisons of frequency parameters with the results of R
10 ~n50.3 was used to calculate frequency parameters form.0 ~radial!!.

Circumferential
wave number

Irie et al.,
Ref. 10 Present work

m50
~radial!

3.831 3.8317
7.013 7.0156

m50
~tangential!

2.267 2.2669
4.151 4.1505

m51 1.958 1.9571
3.180 3.1781

m52 3.046 3.0474
4.085 4.0859

m53 3.964 3.9631
5.024 5.0239

m54 4.777 4.7768
5.977 5.9767
N. H. Farag and J. Pan: In-plane vibration of circular clamped plates



TABLE V. Tabulation of the mode shapes, solid linesUm,p , dashed linesVm,p .
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nd
parameter computed by the present method is the se
nonzero root of the equationJ1(z)50.

The thickness of the plate is not appearing in the f
quency equations@see Eqs.~8!, ~18! and~22!#, implying that
it has no effect on the free in-plane vibrational response
the plate. This is only true in the range of validity of Eqs.~1!.
This issue has been investigated and discussed in deta
J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 N. H.
nd

-

f

in

Ref. 14. It is shown, in Ref. 14, that the results of the tw
dimensional plane stress equations@Eqs.~1!# are accurate in
the frequency range where the frequency of the first thi
ness mode is much higher than the highest in-plane nat
frequency in the range. The first thickness mode occurs w
the plate thickness equals a half wavelength@see Eq.~29! in
Ref. 14#. The coupling between the thickness modes a
1945Farag and J. Pan: In-plane vibration of circular clamped plates
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of
in-plane modes increases as the two approach each o
Numerical and experimental results reported in Ref. 14 sh
that the effect of coupling between the fundamental thickn
mode and the in-plane modes starts to diminish rapidly as
thickness to diameter ratio decreases to less than 0.2. In
transportation structures, of interest in this study, this rati
usually far less than 0.2, indicating that the results of
present analysis are expected to be accurate through the
quency range of interest which is probably up to 20 kHz

Radial distribution of the mode shapes are depicted
Table V for the first three modes of circumferential wa
numbersm50, 1, 2, 3, 6, and 7. It can be seen that t
number of nodal circles is not always the same for the ra
and tangential components of in-plane vibration of a mo
Also, a node of one component at a certain point is
necessarily associated with an antinode for the orthogo
component. In general, lower-order modes have more mo
ment near the plate center, while higher-order modes h
more movement near the clamped edge.

IV. CONCLUSIONS

The modal characteristics of in-plane vibration in circ
lar thin flat plates with clamped edge are investigated in
work. The equations of in-plane vibration are solved for t
natural frequencies and mode shapes. Assumed mode sh
are expressed in terms of trigonometric functions in the
cumferential direction. It is proved that the circumferent
modes are completely uncoupled. This means that the
placement components in the tangential and in the ra
directions always have the same mode shape in the circ
ferential direction, though shifted byp/2m wherem is the
circumferential wave number representing the number
nodal diameters@see Eqs.~3!#.

It is shown that the modes with circumferential wa
number equal to unity (m51) are the only modes with dis
placement at the plate center point. All other modes h
zero motion at the plate center point. As a consequence,
a combination of modes withm51 is expected to constitut
the response of the plate to in-plane excitation at the ce
point of the circular clamped plate.

It is proved that the mode shapes, in the radial directi
for the axisymmetric modes (m50), are Bessel functions o
the first type of order unity. Mode shapes in the radial dir
tion for m51 are assumed as series summation of eleme
mode shapes of the formJ0.5(lpx)/Ax to suit the finite re-
sponse at the plate center point. Mode shapes in the ra
1946 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003
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direction for m>2 are assumed as series summation of
emental mode shapes of the formJn(lpx) that represent the
physical behavior of zero response at the plate center po

The mathematical solution for free vibration is written
the form of an eigenvalue problem so that natural frequ
cies and modes shapes can be obtained by solving for
eigenvalues and the eigenvectors employing any suita
mathematical software. The frequency parameters~nondi-
mensional natural frequencies! obtained by the presen
method are tabulated and the mode shapes are depicte
illustrate the free-vibration behavior in the frequency ran
of practical interest. Accuracy of the predictions of natu
frequencies and mode shapes is assessed by compar
with finite-element predictions and with previously report
results. The present method gives very accurate predicti
Effect of Poisson’s ratio on the natural frequencies has a
been examined. Natural frequency of the radial axisymme
modes (m50) is independent of Poisson’s ratio, while th
natural frequency of any other mode decreases as Poiss
ratio increases. Extension of the present solution to the c
of elastically restrained edges, which practically is more
alistic, is a possibility for future work.
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