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The equations of in-plane vibration in thin flat plates are solved for free vibration in circular plates
clamped at the outer edge. The mode shapes are represented by trigonometric functions in the
circumferential direction and by series summation of Bessel functions in the radial direction.
Accuracy of the predictions of natural frequencies and mode shapes is assessed by comparisons with
finite-element predictions and with previously reported results. The present solution gives very
accurate predictions. The work also highlights the nature of coupling between the different
circumferential and radial modes and the response of different vibrational modes at the center of the
plate. It is shown that the center point of the plate vibrates only for modes with unity circumferential
wave numbefnumber of nodal diametersNondimensional frequency parameters are listed and the
radial mode shapes of natural vibration are depicted to illustrate the free-vibration behavior in the
frequency range of practical interest. )03 Acoustical Society of America.
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LIST OF SYMBOLS AND BASIC RELATIONS (torsiona) directions, respectively
E Young’s modulus of elasticity f frequency(Hz)
h plate thickness 0] angular frequencyradians per second
] the imaginary number/—1 v Poisson’s ratio
m circumferential wave number(equals p mass density
number of nodal diameters C2=El/p(1—1%) square of the quasilongitudinal wave
Nir, Ngg. Nyp  in-plane force componentorce per unit speed in the plate
_ length in the directions shown in Fig. 1 c2_g/25(1+4 1) square of the in-plane shear wave speed
r plate radius in the plate
U v components of in-plane displacement in K. =wr/C nondimensional frequency parameter
radial (extensional and circumferential L L q yp
I. INTRODUCTION investigated and are not well documented. However, increas-

ing attention has been given to the in-plane vibration in

Circular plates exist in many engineering applications.single and complex plate and plate-like structures in the past
In particular, they form partitions in aircraft fuselages andfew years(e.g., Refs. 3-)Z The results of recent investiga-
external fuel tanks and end plates in storage tanks. Some @bns emphasize the importance of the in-plane response at
these applications are subjected to dynamic excitations withigh frequencies and in large coupled plate-like structures.
large components lying in the middle plane of the plate. The  Predictions of the natural frequencies of circular plates
in-plane dynamic loads, being continuous, intermittent, orare treated in few references. In particular, the problems of
even impacts, will excite in-plane modes with resonance frein-plane vibration and stability of rotating disks have at-
quencies in the frequency bands of excitation. tracted attention of researchers for decades due to their ob-

Investigation of the free in-plane vibrational response invious practical importance in many engineering applications.
circular thin flat plates with clamped edge is the subject ofAlso, the in-plane vibrational response was investigated for
this work. The main objective is to provide the structural piezoelectric disks and computer disks. These investigations
dynamics analyst with a quick and easy tool to predict in-have been dealing with circular and annular thin or thick
plane natural frequencies and depict their mode shapes, apthtes. Free-boundary conditions at the plate &lgeere
to reveal some important aspects of modal characteristics aonsidered in most of the published work.
in-plane vibration. Holland® investigated the free in-plane vibration in cir-

While much work has been done on the investigationcular plates with free edges using trigonometric and Bessel
and documentation of the natural frequencies and modefsinctions and published frequency parameters for five to ten
shapes for flexural vibratiofe.g., Refs. 1 and)2the char- modes of the first nine circumferential modescumferen-
acteristics of in-plane vibration have not been completelytial wave numbersn=1 to 9 for different values of Pois-
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son’s ratio. Ambatiet al® examined the in-plane vibrations method. The effect of Poisson’s ratio on the natural frequen-
in circular and annular plates, and rings with free boundariescies is also examined.

Irie et all® used a transfer matrix formulation to solve the The mathematical formulations are presented in Sec. Il
equations of free in-plane vibrations for the natural frequenfollowed by computational examples and discussions in Sec.
cies of annular plates with combinations of free and clampedil. Tables | and Il include a tabulation of the frequency
conditions at the inner and outer edges. In Ref. 10, the cirparameters and mode shape functions for in-plane vibration
cular plate was considered as a limiting case when the inndh circular clamped plates.

diameter tends to zero. For this specific case of circular

plates, the frequency parametefsondimensional natural

frequencies are listed for the first two radial modes of five || MATHEMATICAL SOLUTIONS FOR FREE IN-PLANE
circumferential wave numbersm=0 to 4). The mode VIBRATION IN CIRCULAR CLAMPED PLATES

shapes were not examined in Ref. 10. The first eight refer- _ _ _ _ S
ences sited in Ref. 10 represent the bulk of the work done on N this section the equations of free in-plane vibration, in
in-plane free vibration of annular and circular thin plates upPolar coordinates, are presented. The assumed solution rep-
to 1984. Cheret al* presented displacement potentials’ for- FeSents the circumferential distribution of in-plane vibration

mulation to examine the effect of the angular velocity of by cosine/sine functions and the radial distribution by series

spinning disks on the in-plane vibrations and natural fre.Summation of Bessel functions. The coupling between the

quencies. circumferential modes is investigated, as well as their re-

To conclude, it can be seen that limited work is reportedSpon_Se at the center point_of the circular plate. Suitable math-
on the in-plane vibration of circular clamped plates. Thisemfit'cﬁl] forms of t:e ra(;jl?l mode shapes sr?_tutsedd_a::a:;d-
type of structure was only considered as a limited case offgly. The assumed modal response IS substituted nto the

annular plate when the inner radius goes to Yeemd the equations of motion. After mathematical manipulation the

radial mode shapes of in-plane vibration have not been re@quatlons are presented in the form of eigenvalue problems

suitable for solution for the nondimensional frequency pa-
ported.
. o S {ameters and mode shapes.
The present work is a comprehensive investigation o
the modal characteristics of in-plane vibration in circularA. Equations of motion

plates with clamped edgée., rigidly restrained edge in the The equations governing free in-plane vibration of thin

plane of the plate It concentrates on the following new fja¢ piates, in polar coordinates, can be found in many refer-
areas:(i) The circular plate is investigated directly not as ences(e.g., Refs. 10 and 11They may be written in the
special case of annular plate when the inner radius goes ®llowing form:

zero. (ii) The work clarifies the modal response at the plate
center and the nature of the coupling between different ciriﬂ_ 2
cumferential modes and different radial mod¢i§i.) The  at2 -
mode shapes of in-plane vibration in the radial direction are

#u 1ldu u

, 17
_+____
ar? ror r?

T

211+v v 213—1)(91)_

examined in detail(iv) Nondimensional frequency param- -Cc2- 2 5 — —=0, (1a)
eters and mode shapes are tabulatedl.Elements of the rl-voardg r“l-vdé
characteristic equation are presented, which can be used v 1lov v 1 6%
compute the natural frequencies and mode shapes for othefz—C%| —5+ = —— |- CZ 5 ——
. . . ot ar rar r r< a6

material properties or higher frequency ranges.

In this paper, the equations for in-plane free vibration ,11+v J2u , 1 3-v au
are presented in polar coordinates suitable for the type of ~CT 71— 555" CT 27,75~ (1b)

structure under investigation. Assumed mode shapes are ex-

pressed in terms of trigonometric functions in the circumfer-Please see the list of symbols at the beginning of the paper.
ential direction. The nature of coupling between the circum-The above equations are based on the assumptions of thin
ferential modes is investigated. The physical behavior of th@late theory and plane stress conditioRghe positive direc-
center point of the plate, during free vibration in each of thefions of displacement and internal force components are il-
circumferential modes, is examined. Mode shapes in the rdustrated in Fig. 1. . N .

dial direction are assumed as series summation of Bessel 1h€ in-plane internal force intensitie$orce per unit
functions. The mathematical model for free vibration is writ- l€ngth perpendicular to the force directjcare expressed in

ten in the form of an eigenvalue problem so that naturaf®M$ of displacements by the following relatidfis:

frequencies and modes shapes can be obtained by solving for —Eh/ou vov v

eigenvalues and eigenvectors employing any available math- Nr:m ar + T ﬁJr FU) ) (29
ematical software. The frequency parameters obtained by the

present method are tabulated and the mode shapes are de- —Eh(1dv u au

picted to illustrate the free-vibration behavior in the fre- Nﬂ:m(F@"'F"’V{;—r)’ (2b)
guency range of practical interest. Comparisons with finite-

element results and with the previously reported results T Eh (1 u dv v 5
confirm the accuracy of the predictions of the present Xt \rae ar 29
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2w
Iml,mzz mlfo sin(my 8)sin(m,0+ ¢)d o

0 for my#m,
N - s (53
or M, 7 COS¢ for my=m,
2
No Imz'mlszJO cogm, 6+ ¢)cogm,; #)do
0 for my#m,
= . (5b)
M, COS¢ for m;=m,
Equations4) and(5) indicate thatm;=m,=m is the condi-
tion for u andv to be coupled. The governing equations of
free vibration take the following form for coupled circumfer-
ential modes:
FIG. 1. Positive directions of in-plane force and displacement components
on an infinitesimal element of a circular plate. C2 &zum CZ 19U, , CE"’ m2C$ 0
+Cl ———+ -
_ Loor? Lroor @ r2 m
For harmonic vibration with time dependenge' !, the free
in-plane vibrational response is assumed in the form ,1+vmaoVy, ,3-vm
. Cr 1-vr ar —Cr 1-v r—ng—O, G
u(r,o,t)= Upmi(r)cogm; f)e I, 3
(1.60)= 2 Un(r)cogm,6) (3a) PV 1V [ CRRTECE)
T or? Tr or @ r2 m
o(r,0,0)= 2, Vmo(r)sinmy6+ @)e it (3b) 1+ mau 3—v m
m,=0 —C2 ——_c? —-U,=0. (6b)
T1-vr or T1—pr2—m

The angleg is introduced in Eq.(3b) to accommodate a _ _ _ _ _
nonzero response(r, ,t) for the case ofn,=0. Therefore, Using the nondimensional parameterr/r, wherer is the
=2 for my,=0 and¢=0 for all other values ofn,. outer radius of the circular plate, and the relati®f=[ (1

The following equations are obtained after substitution— #)/2]C, the above equations take the form
of the assumed solution from Eg®) into Egs. (1), multi-

plying the resulting two equations by cag@) and sinfn,6 20 , T 1-v
+¢), respectively, integrating with respect édrom 6=0 to X Um00 +xUn(x) + CE x=1-m 2 Um(X)
0=2, and employing the orthogonal properties of the trigo-
nometric functions 1+v 3—0v
+me\/m(x)—Tme(x)=O, (79
2 (92Um1 c? 1 &Uml ) CE+ m%C%
Lz Ty Ty et T m wr? 2
X2V (X) + XV (X) + ?z—xz— 1—m2m Vin(X)
2 itvil N m, T
Tl-vr gm0 2 or 1+v 3—-v
3_y 11 " — 775 MXUn(X) = 7, MUn(x)=0. (7b)
2
—CT -0 r—2; 2 |m2'm1Vm2=0, (4a)
mz=0 Henceforth, the prime is used to denote differentiation with
5 respect tax.
LV, 1V, C2+miC2
Cr ar? +Cr rooor @ r2 my B. Natural frequencies and mode shapes of the
axisymmetric modes (m=0)
* U . . .
e 1+v Ei D M In the above equations the circumferential wave number
1-vr mmp=o "M or m represents the number of nodal diameters in the free vi-
w0 brational response. The case=0 represents the vibrational
3-v 11
2 - _ modes wherai andv are uncoupled. Hence, the uncoupled
CT 2 Z I, ,m,YUm, =0, (4b) . : ;
l-vr*mm=o 12 modes are axisymmetric because there are no nodal diam-
eters. Equation§7) take the following form for the axisym-
where metric modes ih=0):
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The in-plane response at=0 is examined and pre-
sented in Fig. 2, which also depicts the nodal diameters for
the first four circumferential wave numbersi€0:3). For
m=0, if U(0) andV(0) components exist along and normal
to any radial directior, it will be counteracted by similar
response along and normal to the radial directienyr due to
the axisymmetry. It follows that the axisymmetric mode,
=0, must have zero response at the plate center point. This
finding agrees with the value of Bessel function of order
unity atx=0, which is zero.

Form=1, it is shown in Fig. 2 thati andv components
of the response ai+ 7 are added taw andv components at
6. This is due to the change of sign of the sine and cosine
functions[see Eqs(3)] when the angle is increased by
This indicates that the modes= 1 have nonzero response at
the plate center point.

Figure 2 also presents analysis of the response of the
FIG. 2. Fr_ee vibra_tion respon_se at the center point of a circular clampeQINaVe numbersn=2 andm=3 at the center of the plate.
plate for_dlfferent cwcur_nferentlal wave numbers(r_]ote that form=2 and Following the same reasoning as before, it is shown that the
m=3, v is not plotted; it follows the same behavior @s !

plate center must have zero response for these two modes. It
can also be shown that this always is the case for all the

X2Ug (%) +xUp(X) +(A3x*=1)Ug(x) =0, (83  higher order modesni=4).
In summary, the modes with circumferential wave num-
AV ’ 2,2 _ _ y
XTVo(X) +XVo(X) + (Agx"— 1)Vo(x) =0, (8b) berm=1 are the only ones that have nonzero response at the

center point of the plate.
Radial mode shapes of the modes with circumferential
wave numbersn=2 are assumed as series summations of

\S/OIUUOEJO& thesehequatlon_s BISUO’DI()F):i'l()\p);)th a?_d ¢ Bessel functions of integral order>0, which satisfies the
.Qq(x)_ a( qx)_, where 1_(2) IS Besset function ot the rst - . yition of zero response at the plate center point
kind of order unity. The displacement components must as-

whereN; = w?r?/C? and\i= w?r?/CE.
Each of Eqs.(8) is a Bessel equation of order unify.

sume zero values at the clamped edge of the plate where ©
=1. Hence), and\, (=\, in this casgare the roots of the U (x)= 2 Um,pdn(ApX), (10a
equation:J,(z) =0, excluding the root at the origin. The sub- p=1
scriptsp and g stand for the sequential number of the root. o
Natural frequencies of the radi@xtensiongland tangential V()= E Vo ] (AgX) (10b)
. . . . . m m,pYn{/p/AJs
(torsiona) axisymmetric modes are given, respectively, by p=1
Cirp Crhg where) ;, are nonzero roots of the equatidp(z) = 0.

wLp=—— andorg=——. ©) Radial mode shapes of the modes with circumferential

wave numbem=1 are assumed as a series summation of

Radial distributions of the free vibrational modes take the : . )
form of Bessel functions of the first kind of order unity. It Bessel functions of the order 0.5 divided b as follows:

has to be stated here that Bessel function of the second kind S o NX)
is also a solution that satisfies E¢8) but it is discarded here Un(x)= 2, Um’pO.—p, (11a
because it has a singularity at the origfrin the following p=1 Vx
analysis, Bessel function of the first kind will be referred to "
as the Bessel function for brevity. = Jos(ApX)
y Vin(X)= pzl Vm,p \/;p ) (11b)

where\ ;, are roots of the equatiody 5(z) = 0.

It can be proved? using expansion af, 5\ ,x) in terms
_ _ o of X, thatJo 5(\ pX)//x assumes finite value at=0.
Although Bessel function of the first order satisfies Egs. Henceforth,J05()\px)/\/§ and J,(\px) will be called

to the coupling between the radidll(x), and tangential,

V(x), components of in-plane vibration. However, the radial
mode shapes of vibration can be expressed as a series
Bessel functions of any order. The physical in-plane respons
of the plate at the center=0 has to be examined first to help
choosing a function that best represents the behavior at plate Three properties of Bessel functions will be considered
center point. in the following analysis?

C. Natural frequencies and mode shapes of the
coupled modes (m=>0)

f
g. Natural frequencies and mode shapes of the
modes m=2
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(@

Um,p(X) =Jn(ApX) is a solution to the equation

XU () +XUL(X)+(Nax2—n?)U (%) =0. (12
(b) Differentiation of Eq.(103 is
du, «— — [n
“ax =2 Unplx 00 Apdhea0)| (13

(©

the relations

0 p#p’

J iOxJn(Apx)Jn(xp,x)dx = [ 1

. 14
E[Jn+l(>\p)]2 p=p’ 19

For brevity and clarity, the subscriph will be removed in
the following analysis.

The following equations are obtained after substitution
of (10) into (7) and usingp’ to denote a general elemental

mode shape:

o

> apdn(\pX)Up + 2 (KE=N5)X20h(Np XUy
p'=1 p'=1

0

+ 2 ada(ApX)V,y

p'=1
+ 2 agpdns 1(Np X))V =0, (159
p'=1
Z b1In(Np XV, + Z (KF=N2)X230(N prX) Vs
p =1
+ 2 body(ApX)U
p'=1
+ 2 b3x7\p,Jn+1()\p/X)Up,=0, (15b)
p'=1
where
1— ) 5 2
a;=n 2_1- mT, b;=n“"—1-m 15
1+v 3—v b 1+v 3—v
a, 5 mn— 5 m, 2——1_an—1_ m,
1+v 1+v
a3:_ 2 y 3 1_ m,
, Wi , wi?
KLZC—E, andKT=C—$

Multiplying Egs. (15 by [Jn(ApX)1/X, integrating with re-
spect tox from x=0 tox=1, and employing the orthogonal-
ity property give rise to the following equations:
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0.3 Lo Shal 06 TATX -
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FIG. 3. Modal coupling factoré\,, , andB , according to Eqs(17) for

The orthogonality of Bessel functions is expressed byn=1.

©

a1 X Ay pUp+(KE-N)CUp+a, X Ay oV
p'=1 p'=1

o

+ag >, Bp’,pvp’zo' (163
p'=1
2 Apr pVpr + (KE=A2)C,V, +b22 A Up
+bg X, Bp’,pUP’:O’ (16b)
p'=1
Wherecp:%[Jn+1(7\p)]21
1 1
Ap p= L:o 3 I prX)In(Apx)dx,
(17)

1
B/ :f A
PP x=0

Equations(16) can be arranged in the form of an eigenvalue
problem as follows:

prInt1(NprX)In(Npx)dX.

0 al
> CA Uy
p'=1
(p" #p)

a

211 —[y2 N
KLUp— ( )\p— C_pAp'p) Up—

(18a

E 1_ 14 V
o App 2 Vp
(p'#p)
i bZAp’,p+bBBp’,p 1_VU
b1 Cp 2 P
Ay, andBy, , represent the coupling strength between the
elemental modes in Eql0). They are plotted in Fig. 3 for
different values op’ andp to give a qualitative measure of
the expected convergence of the series summation in Egs.
(10). It can be proved that the integrand Af, , assumes a
zero value ax=0 for n>0.5.
For each circumferential wave numbay Egs.(18) have
to be written for a number, say of U, , andV, , coupled
to Up pr @andVp, v leading to 2<k equations. The resulting
eigenvalue problem can be solved for the eigenvalnes-
dimensional frequency parametdds) and the eigenvectors

(18b)
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(corresponding mode shapedhe natural frequencies are [z ;[ —i .2 ——F5-- =19 | 56,)) [— It - 2 ——J5--—--i-1q
obtained from the relatioh= (K C /27r) Hz. VO LT R I \

It has to be mentioned here that Chen and *Eiin their 22 Xt T Pl [T o8 7 D = g s
solutions for in-plane vibration in plates with free edges, jos fA Szl =11 08 NN
used series summation of Bessel functions of the first kind of|®2 102 4 T

. . . 0.0 i 0.0 i
orderm (m is the circumferential wave numbeiThe math- 135 7 811131517 10 21|02 AR

ematical formulation presented in this section uses Bessel

functions of integral orden>0 (any arbitrary integér This FIG. 4. Modal coupling factorap,vp andgp,lp according to Eqs(17) for

implies thatm may be used as the order of Bessel functions:1=0.5.

in the series summation in Eq4.0). However, Bessel func-

tions of order unity were used in the computational ex-

amples. It was also confirmed by computational examplegy)  The orthogonality of Bessel functions according to

(not presented in this papethat Bessel functions of orden Egs.(14) is valid for n=0.5.

give the same accuracy at the same computational effort

[same number of terms if10) to obtain certain accuragy  Substitution of the assumed solution from E() into Egs.
(7) gives rise to:

2. Natural frequencies and mode shapes of the © o o

modes m =1 > BppUp+a X Ay pUp+(KE—A2)C,U,
The same procedure will be followed in the analysis ofP' =t p'=1

this case as fom=2. o °
The following properties of Bessel functions are used in -~ +a, >, Bp pVp +2: > Ay pVp =0, (219

the mathematical analysté: p'=1

©

(@ Ulyp(x)=[Jo_5()\px)/\/§] is a solution of the equation

XU+ 2XU5 () +AHEU; (%) =0. (19 3 By Vp b S Ay Vo +(K2-X2C,V,
=1 r—q
(b) Differentiation of the elemental mode shape in Eqs.p P
(11 is s - - =z _ _
+b, 2 By Uy +bs 2 Ay U, =0, (21b)
d ‘JO.S()\pX) N Jl.S(ApX) 20 p'=1 p'=1
dx| x05 | TP x05 where

TABLE |. Frequency parametet§, = wr/C, (see the list of symbo)gor the first eight natural frequencies of the first ten circumferential wave numbers of
in-plane vibration in circular clamped plates for two values of poisson’s 1at6.28 andv=0.33.

Wave Poisson’s 1st 2nd 3rd 4th 5th 6th 7th 8th
number ratio mode mode mode mode mode mode mode mode
m=0, any 3.8317 7.0156 10.1735 13.3237 16.4706 19.6159 22.7601 25.9037
radial
m=0, v=0.28 2.2990 4.2094 6.1041 7.9942 9.8824 11.7700 13.6560 15.5420
tangential v=0.33 2.2178 4.0606 5.8883 7.7116 9.5331 11.3530 13.1730 14.9930
m=1 v=0.28 1.9655 3.2210 5.0696 5.3802 7.0227 8.5254 8.9305 10.8060
v=0.33 1.9441 3.1126 4.9104 5.3570 6.7763 8.4938 8.6458 10.4250
m=2 v=0.28 3.0658 4.1344 5.9357 6.7304 7.9147 9.7408 10.0340 11.7070
»=0.33 3.0185 4.0127 5.7398 6.7079 7.6442 9.4356 9.9894 11.2970
m=3 v=0.28 3.9956 5.0741 6.7755 7.9853 8.8061 10.6370 11.3680 12.5930
v=0.33 3.9116 4.9489 6.5537 7.9342 8.5336 10.2790 11.3380 12.1620
m=4 v=0.28 4.8244 6.0289 7.6072 9.1255 9.7416 11.4966 12.6630 13.4786
r=0.33 4.7021 5.8985 7.3648 8.9816 9.5296 11.1087 12.5940 13.0582
m=5 v=0.28 5.5944 6.9753 8.4407 10.1174 10.7708 12.3452 13.8738 14.4020
v=0.33 5.4370 6.8306 8.1834 9.8642 10.6324 11.9353 13.6350 14.1196
m=6 v=0.28 6.3301 7.8961 9.2829 11.0012 11.8604 13.1924 14.9187 15.4500
»=0.33 6.1410 7.7265 9.0167 10.6837 11.7423 12.7712 14.5015 15.3093
m=7 v=0.28 7.0444 8.7821 10.1376 11.8398 12.9484 14.0485 15.8195 16.6034
v=0.33 6.8259 8.5787 9.8666 11.4838 12.8054 13.6373 15.3240 16.4911
m=8 v=0.28 7.7444 9.6309 11.0042 12.6615 13.9993 14.9280 16.6701 17.7658
v=0.33 7.4982 9.3887 10.7281 12.2792 13.7879 14.5598 16.1348 17.6027
m=9 v=0.28 8.4340 10.4450 11.8780 13.4780 14.9910 15.8480 17.5050 18.8890
»=0.33 8.1612 10.1630 11.5920 13.0770 14.6840 15.5420 16.9450 18.5840
m=10 v=0.28 9.1159 11.2310 12.7500 14.2960 15.9150 16.8120 18.3350 19.9300
r=0.33 8.8172 10.9100 12.4470 13.8830 15.5210 16.5510 17.7630 19.4540
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— _ 3—v Cp, Aprp and By, , are obtained from relations similar to
T 2 those of Eqs(17) with n replaced by 0.5. It can be proved
that the integrand of,, , assumes finite value at=0. This

— — 3—v is another reason for the choice of the elemental mode shapes

—PsT T, in Egs. (11). Multiplying Egs. (21) by Jos(ApX)/vX, inte-
grating with respect tx from x=0 to x=1, and using the

— 1+v  — 1+4+v properties of Bessel functions, the following equations are

B 21— obtained:

TABLE II. Coefficients (Um,p and vap) of the elemental modes thl,p(orVLp):E;ﬂUl,p(orVl,p)[JO_S()\px)]/\/§ [Egs. (11)] and in Uy, ,(orVp, )

=37 1Upp(0r Vi ) d1(Apx) [Egs.(10), m=2] for in-plane vibration of circular clamped plate=0.3); the bold numbers highlight the elemental modes
with the highest contribution to the radial mode shape.

Circum. P
wave # Mode 1 2 3 4 5 6 7 8 9 10
m=1 #1, U 0.7650 —0.0515 0.0170 —0.0080 0.0046 —0.0028 0.0020 —0.0013 0.0011 —0.0008
, v —0.6376 —0.0686 0.0200 —0.0091 0.0051 —0.0031 0.0022 —0.0015 0.0012 —0.0009
#2, U —0.2197 -0.1631 0.0257 —0.0107 0.0054 —0.0035 0.0022 —0.0017 0.0011 -0.0010
, v —0.5907 0.7568  —0.0473 0.0159 —0.0074 0.0045 —0.0028 0.0020 —0.0014 0.0011
#3, U -0.1133 0.4293 0.0940 —0.0153 0.0058 —0.0034 0.0019 —0.0015 0.0009 —0.0009
, v —0.0072 0.4375 —0.7732 0.0614  —0.0212 0.0112 —0.0065 0.0045 —0.0031 0.0024
#4, U —0.4573 0.6097 —0.1163 0.0243 —0.0113 0.0064 —0.0042 0.0028 —0.0022 0.0015
, v —0.2038 —0.4850 0.3566 0.0261 —0.0119 0.0066 —0.0043 0.0028 —0.0022 0.0016
#5, U 0.0051 —-0.0279 —0.1971  —0.0924 0.0165 —0.0077 0.0041 —0.0029 0.0018 —0.0015
, v —0.0252 -0.0643 —0.5233 0.8186  —0.0487 0.0170 —0.0081 0.0051 —0.0032 0.0024
m=2 #1, U -—0.8160 —0.0176 0.0021 —0.0006 0.0002 —0.0002 0.0000 —0.0001 0.0000 —0.0002
, V2 0.5329 0.2164  —0.0489 0.0212 —-0.0117 0.0072 —0.0049 0.0034 —0.0027 0.0019
#2, U 0.2670 0.3034 —0.0360 0.0146 —0.0078 0.0047 —0.0032 0.0022 —0.0017 0.0012
, V2 0.5739 —0.7109 —0.0180 0.0084 —0.0047 0.0029 —0.0020 0.0014 —0.0012 0.0008
#3, U 0.0444 0.5463 0.2075 —0.0298 0.0126 —0.0069 0.0044 —0.0030 0.0022 —0.0016
, v —0.0078 0.2578 —0.7672 0.0182  —0.0057 0.0027 —0.0016 0.0010 —0.0007 0.0005
#4, u 0.3393 —0.5820 0.1632 0.0020 0.0007 —0.0004 0.0005 —0.0001 0.0003 0.0001
, V2 0.3813 0.5334 —-0.2575 —0.1447 0.0409 —0.0198 0.0119 -0.0077 0.0057 —0.0039
#5, U —0.0033 -0.1766 —0.3899 —0.1847 0.0261 —0.0113 0.0064 —0.0040 0.0029 —0.0020
, v —00117 -0.0728 —0.3018 0.8278 —0.0004 —0.0010 0.0009 —0.0006 0.0006 —0.0004
m=3 #1, U —0.8417 0.2073 0.0753 0.0121 0.0134 0.0032 0.0050 0.0011 0.0022 0.0000
, V2 0.4224 0.1579  —0.1930 0.0228 —0.0337 0.0083 —0.0132 0.0037 —0.0073 0.0013
#2, U -—0.2071 —0.2869 0.1804 —0.0007 0.0241 —0.0017 0.0088 —0.0011 0.0043 —0.0008
, v —0.5237 0.7361 —0.1430 —0.0679 0.0020 —0.0165 0.0022 —0.0073 0.0012 —0.0045
#3, U -0.1359 —0.5560 —0.0106 0.1815 0.0096 0.0308 0.0021 0.0118 0.0002 0.0052
, V2 0.0418 —0.1464 0.7284 —-0.2858 —0.0419 —0.0255 —0.0107 —0.0092 -—0.0058 —0.0059
#4, U -—0.2312 0.4622 —0.4221 0.0570 0.0384 0.0027 0.0069 0.0003 0.0024-0.0008
, v  —0.4231 -0.3412 0.4088 0.2348 —0.1743 0.0265 —0.0303 0.0102 —-0.0131 0.0042
#5, U 0.0107 0.3265 0.3505 0.0053 —-0.1776 —0.0175 —0.0323 —0.0051 —0.0126 —0.0010
, v —0.0453 0.0002 0.1537 —0.7878 0.2909 0.0730 0.0229 0.0206 0.0093 0.0123
m=4 #1, U 0.8096 —0.3702 —0.0668 0.0204 —0.0102 0.0058 —0.0040 0.0028 —0.0020 0.0020
, v —0.3271 —0.1188 0.2703 —0.0775 0.0374 —0.0218 0.0144 —0.0096 0.0077 —0.0046
#2, U -01635 —0.2873 0.2925 —0.0380 0.0172  —0.0099 0.0064 —0.0042 0.0034 —0.0017
, v —0.4647 0.7186  —0.2491  —0.0823 0.0370 —0.0210 0.0138 —0.0091 0.0075 —0.0046
#3, U 0.1950 0.4962 —-0.1631 —0.2314 0.0473 —0.0220 0.0131  —0.0083 0.0063 —0.0041
, v —0.0760 0.1053 —0.6327 0.4639  —0.0140 0.0025 —0.0005 0.0000 0.0004 —0.0005
#4, U 0.1672  —0.1975 0.5279  —0.2436  —0.1045 0.0256 —0.0127 0.0074 —0.0051 0.0042
, V2 0.3667 0.1351 —0.4147 —-0.2921 0.4077 —0.0721 0.0331 —0.0186 0.0133 —0.0072
#5, U 0.0066 0.4648 0.1429 -0.1121  -0.2257 0.0359 —0.0169 0.0096 —0.0069 0.0036
, v —0.1635 —0.0490 0.1785 —0.6596 0.4463 0.0461 —0.0232 0.0135 -0.0101 0.0059
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TABLE Il. (Continued)

Circum. P
wave #  Mode 1 2 3 4 5 6 7 8 9 10
m=5 #1,U 0.7585 —0.4823 —0.0128 0.0519 —0.0156 0.0116 —0.0068 0.0050 —0.0037 0.0034
vV —0.2621 —0.0821 0.2984  —0.1416 0.0506 —0.0318 0.0192 —0.0133 0.0102 —0.0058
#2,U 0.1510 0.2845 —0.3874 0.1012  -0.0113 0.0123 —0.0054 0.0046 —0.0031 0.0012
v 0.3988 —0.6788 0.3167 0.0790 —0.0832 0.0352 —0.0249 0.0151 —0.0129 0.0070
#3,U 0.2313 0.4073 —0.2783 —0.2132 0.1238 —0.0261 0.0221 —0.0105 0.0096 —0.0050
v —0.1060 0.1073 —0.5438 05570 —0.1100 —0.0137 —0.0006 —0.0042 0.0018 —0.0026
#4,U 0.1386 0.0266  0.4357 —0.4154 —0.0895 0.0950 —0.0193 0.0177 —0.0088 0.0078
v 0.2699 —0.0078 —0.3332 —0.2477 0.5650  —0.1845 0.0250 —0.0230 0.0104 —0.0073
#5,U 0.0075 0.5104 —0.1077 —0.0839 —0.2188 0.1007 —0.0059 0.0132 —0.0044 0.0028
v —02789 —0.0155 0.2504 —0.5582 0.4490 0.0176 —0.0832 0.0280 —0.0261 0.0105
m=6 #1,U  —0.7048 0.5568 —0.0609 —0.0657 0.0291 —0.0162 0.0110 —0.0071 0.0059 —0.0048
v 0.2181 0.0484 —0.2954 0.1954  —0.0754 0.0408 —0.0255 0.0168 —0.0131 0.0067
#.U 0.1594 0.2677 —0.4645 0.1798  —0.0148 0.0076 —0.0042 0.0030 —0.0021  —0.0002
v 0.3328 —0.6238 0.3563 0.0675 —0.1307 0.0615 —0.0365 0.0235 —0.0185 0.0099
#3,U  —0.2507 —0.3128 0.3341 0.1679  —0.1900 0.0511 —0.0264 0.0158 —0.0116 0.0064
v 0.12906  —0.1311 0.4805 —0.5940 0.2041 0.0111  —0.0109 0.0078  —0.0069 0.0043
#4,U  —0.1318 —0.1279 —0.2973 0.5067 —0.0027 —0.1493 0.0453 —0.0228 0.0157 —0.0097
v —0.2125 0.0858 0.2568 0.1485 —0.5953 0.3138  —0.0457 0.0191 —0.0109 0.0042
#5,U  —0.0257 —0.4727 0.2438 0.0082 0.2333 -0.1591 0.0061 —0.0041 0.0021 0.0016
v 0.3222 -0.0647 —0.2411 0.5080 —0.4291 —0.0188 0.1481 —0.0635 0.0401 —0.0190
m=7 #1,U  —0.6541 0.6044 —0.1386 —0.0599 0.0441 —0.0224 0.0154 —0.0097 0.0084 —0.0064
vV 0.1869 0.0197 —0.2754 0.2329  —0.1063 0.0521 —0.0322 0.0210 —0.0160 0.0077
#2,U 0.1771 0.2356 —0.5183 0.2645 —0.0318 —0.0013  —0.0006 0.0004 0.0002 —0.0022
v 0.2714 —0.5598 0.3748 0.0500 —0.1721 0.0973 —0.0510 0.0328 —0.0246 0.0124
#3,U  —0.2580 —0.2258 0.3449 0.1231  -0.2397 0.0907 —0.0325 0.0204 —0.0138 0.0070
v 0.1447  —0.1599 0.4410 —0.6008 0.2787 —0.0043  —0.0280 0.0160 —0.0140 0.0076
#4,U  —0.1312 -0.1681 —0.1716 05349  —-0.1177 —0.1665 0.0862 —0.0307 0.0225 —0.0121
v —0.1822 0.1348 0.1869 0.0627 —0.5584 0.4200 —0.0976 0.0164 —0.0101 0.0019
#5,U 0.0526 0.4144  —0.2830 0.0369 —0.2747 0.2310 —0.0138  —0.0152 0.0058 —0.0079
vV —0.3147 0.1366 0.1657 —0.4616 0.4284 0.0347 —0.2310 0.1203 —0.0571 0.0259
m=8 #1,U  —0.6078 0.6327 —0.2122 —0.0384 0.0554 —0.0305 0.0201 —0.0128 0.0112 —0.0081
v 0.1636  —0.0035 —0.2474 0.2548  —0.1376 0.0668 —0.0394 0.0258 —0.0190 0.0086
#2,U  —0.1959 —0.1919 0.5457  —0.3464 0.0635 0.0093 —0.0063 0.0032 —0.0038 0.0046
v —0.2182 0.4939 —0.3789 —0.0264 0.2012 —0.1371 0.0696 —0.0425 0.0308 —0.0145
#3,U 0.2572 0.1536 —0.3297 —0.0904 0.2773 —0.1377 0.0434 —0.0235 0.0155 —0.0067
v —0.501 0.1818 —0.4155 0.5933  —0.3319 0.0240 0.0471 —0.0305 0.0235 —0.0121
#4.U 0.1310 0.1812 0.0662 —0.5191 0.2240 0.1494 —0.1295 0.0472 —0.0291 0.0152
v 0.1646 —0.1692 —0.1192 —0.0076 0.4945  —0.4909 0.1660 —0.0225 0.0061 —0.0001
#5,U 0.0819 0.3527 —0.2641 0.0293 —0.3111 0.3205 —0.0340 —0.0453 0.0242 —0.0159
v 02731 0.1775 0.0588 —0.3823 0.4260 0.0490  —0.3280 0.2013 —0.0792 0.0288
. 2
KEUP=(A§ Bp.p+ alAp,p>—p <V Np  BpptbiAp, v,
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TABLE Ill. Comparisons of natural frequency predictions by the present method and by Finite Element Analysis for the plate described iff Ses. 111
number of terms in the series summatiorg” is total number of finite elemenjs () Axisymmetric modes, circumferential wave numbar=0. (b)
Circumferential wave numbem= 1. (c) Circumferential wave numbers)j=2 andm=3. (d) Circumferential wave numbersy=7 andm=8.

@

m=0, tangential modes

m=0, radial modes

Mode Egs.(8) Finite element Mode Eqs8) Finite element
number Hz p Hz e number Hz p Hz e
1 3860 1 3868 1200 1 6434 1 6439 1200
3863 3000 6437 3000
2 7068 1 7101 1200 2 11780 1 11822 1200
7084 3000 11 807 3000
3 10 249 1 10 347 1200 3 17 082 1 17 229 1200
10304 3000 17175 3000
4 13423 1 13644 1200
13553 3000
5 16 593 1 17014 1200
16 849 3000
(b) Egs.(23) Finite element Egs.(22 Finite element
Mode Mode
number Hz p Hz e number Hz P Hz e
1 3301 5 3303 1200 6 14321 5 14398 1200
3300 10 3301 3000 14 314 10 14 365 3000
3300 20 14315 20
2 5420 5 5425 1200 7 14908 5 15292 1200
5406 10 5416 3000 15001 10 15176 3000
5408 20 14 995 20
3 8484 5 8558 1200 8 5 18691 1200
8517 10 8538 3000 18137 10 18 485 3000
8512 20 18144 20
4 9036 5 9063 1200 9 19653 5
9034 10 9047 3000 19658 10 19793 3000
9034 20 19 657 20
5 11831 5 11939 1200
11787 10 11879 3000
11792 20
m=2 m=3
(© Egs.(18) Finite element Eqs(18) Finite element
Mode
number Hz p Hz e Hz p Hz e
1 5149 5 5155 1200 6710 10 6729 1200
5148 10 5151 3000 6709 20 6716 3000
5148 20 6 709 30
2 6943 5 6976 1200 8520 10 8583 1200
6942 10 6 956 3000 8520 20 8542 3000
6942 20 8520 30
3 9969 5 10048 1200 11378 10 11489 1200
9967 10 10013 3000 11377 20 11435 3000
9967 20 11376 30
4 11 304 5 11 351 1200 13 409 10 13504 1200
11301 10 11323 3000 13 408 20 13450 3000
11 301 20 13 408 30
5 13295 5 13 486 1200 14790 10 15015 1200
13290 10 13410 3000 14786 20 14 922 3000
13289 20 14 786 30
6 16 368 5 16 648 1200 17 868 10 18 306 1200
16 356 10 16 544 3000 17 861 20 18 139 3000
16 356 20 17 861 30
7 16 862 5 17 060 1200
16 849 10 16 970 3000
16 848 20

A

. andgp,'p represent the coupling strength between the(11). C, is the same as in E¢17) with n=0.5.
elemental modes in Eqsll). They are plotted in Fig. 4 for

Solution of the eigenvalue problem of Eq®2) will

different values ofp’ andp to give a qualitative measure of produce the frequency paramet&s and the mode shapes.

the expected convergence of the series summation in Egs.
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TABLE Ill. (Continued)

m=7 m=38
©) Eqgs.(18) Finite element Eqs18) Finite element
Mode
number Hz p Hz e Hz p Hz e
1 11832 10 12 090 1200 13 009 10 13367 1200
11828 20 11891 3000 13003 20 13094 3000
2 14751 10 15152 1200 16179 10 16718 1200
14 746 20 14 857 3000 16171 20 16 323 3000
3 17 028 10 17 484 1200 18 486 10 19077 1200
17 022 20 17172 3000 18477 20 18 668 3000
4 19 889 10
19880 20 20158 3000

the first eight modes of circumferential wave numbers ticular, FE predictions are less accurate for the modes with
=0 to m=10. The frequency parameters are calculated fotarge number of nodal diametefse., large circumferential
two values of Poisson’s ratip=0.28 andv=0.33 represent- wave numbem). It is clear from Tables Illa)—(d) that FE
ing typical values for steel and aluminum, respectively. Co-accuracy increased when the number of elements along the
efficients of the elemental modes in Eq$1l) and (10), are  circumference was increased from 60 in the first mesh model
listed in Table Il (calculated forv=0.3). Mode shapes are to 120 in the second mesh model. It is also evident that FE
depicted in Table V as part of the computational example. predictions are always higher than the predictions of the
present method. At low frequencies, i.e., lower circumferen-
tial wave numbers and lower-order modes, predictions of the
present method and of FE are nearly identical. Consequently,
the deviations at higher frequencies and for higher-order
In this section:(i) The natural frequencies and mode modes are judged to be due to insufficient number of ele-
shapes are computed using the procedures of Sd€i) The  ments in the FE mesh model.
results are compared with finite-element analysis predictions It can be noted from Table | that the frequency param-
and with previously published data to assess the accuracy eters for the radial axisymmetric modea<0) are indepen-
the new method(iii) Effect of the number of terms in the dent of Poisson’s ratio because the radial and tangential com-
series summation of Eq$10) and (11) on the accuracy of ponents of in-plane response are uncoupled as explained in
the results is investigatediv) The effect of Poisson’s ratio Sec. IIB. On the contrary, the natural frequency of any
on the natural frequencies is examined computationally. asymmetric mode i>>0) decreases as Poisson’s ratio in-
The effect of plate thickness is discussed. The proceduresreases. Similar behavior is reported in Ref. 8 for free disks.
presented in Sec. Il are used to compute the natural freque&alculations of frequency parameters in Table | are based on
cies and mode shapes of for a 1-m-diameter circular thir20 terms in the series summation of Eq$0) and (11),
plate clamped at the outer edgeaTLAB programming and which ensures accuracy to four significant figures. Compari-
eigenvalue solutions were used. The plate is made of steel sbns with the results of Ref. 10 are presented in Table IV. It
Young’s modulus E=200x10° N/m?, density p=7800 can be seen that the agreement is at least to three significant
kg/m®, and Poisson’s ratie=0.28. Finite-element analysis figures. The difference in the second line, between 7.013 and
(FEA) was also used to compute the natural frequencies and.0156, is worth comment. The present solution, for this
mode shapes for comparison and assessment of the accuram@se, is exact as indicated in Sec. 1B and the frequency
of the new method. Membrane shell elements were used in
the flmte_ek.an_]em analysis and two axisymmetric mesh mod‘_I'ABLE IV. Comparisons of frequency parameters with the results of Ref.
els Were built:(1) 1200-element meSh{ 20 elements along thelo (»=0.3 was used to calculate frequency parametersifel0 (radial).
radius and 60 elements along the circumfereri2g;3000-

IIl. COMPUTATIONAL RESULTS AND COMPARISONS

element model, 25 elements along the radius and 120 ele- Circumferential Irie et al,
ment along the circumference. wave number Ref. 10 Present work
Tables Il(a)—(d) summarize the results of the numerical m=0 3.831 3.8317
computations of the in-plane natural frequencies of the plate  (radia) 7.013 7.0156
in the frequency range up to 20 kHz. m=0 2.267 2.2669
It is expected that the accuracy of the predictions of the Sﬂ'?em'a} i'éﬁé i'éggi
present method will depend upon the number of terms used - 3180 31781
in the series summation of EgeL0) and (11). The predic- m=2 3.046 3.0474
tions listed in Tables I(lB)—(d) indicate that ten terms in the 4.085 4.0859
series summation are sufficient for accuracy to three signifi- ™M=3 3.964 3.9631
The accuracy of FE predictions decreases as the fre- 5977 50767

guency increase@or the same number of elemehtin par-
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TABLE V. Tabulation of the mode shapes, solid lings, ,, dashed line&/, .

First mode Second mode Third mode

m=0 1|06 0.6 0.6
0.4 04 0.4
0.2 02 0.2
0.0 . 0.0 . 0.0 . X
-0.20{0 0.5 1jo |-0200 0.5 -0.20{0 \s/ 110
-0.4 -04 -04
-0.6 -0.6 -0.6

m=1 1.0
0.5
0.0 .
00 08
1.0 b’

m=2 |06 0.6 0.6
041 el 0.4 0.4
024 7 0.2 pat 0.2 XN
0.0 : = 0.0 ¢ i 0.0 £ AN
-0.20{0 0.5 10 [-0.200 " 0.5 0200, 7 05 < Ao
-0.4 -0.4 -0.4 -
-0.6 -0.6 -0.6

m=3 |04 0.4 0.4
024 7 T 0.2 i 02{
0.0 fas ; =% | 0.0 J" g 0.0 & N
.0.20] 05 .0.20l0 ) -0.20/0 1j0
041 -0.4 1 N -0.4 1
-0.6 -0.6 -0.6

m=6 |06 0.6 0.6
0.4- 0.4- 0.4 -
0.2 P 0.2 0.2
0.0 Lot —% | 0.0 f—=— o 0.0 4 AN X
0. 5 -0.2010 0.5 -0.2010 0.5/ 110
-0.4- -0.41 -0.4-
-0.6 -0.6 -0.6

m=7|06 0.6 0.6
0.4 0.4 0.4
0.2 I, 0.2 X 0.2-
0.0 . 0.0 0.0 SRR/
-0.20(0 5 /110 | -0-2010 0.5 -0.290 \o.y/' 110
0.4 -0.4 1 -0.4
-0.6 -0.6 -0.6

—

parameter computed by the present method is the secorRef. 14. It is shown, in Ref. 14, that the results of the two-
nonzero root of the equatiai(z) =0. dimensional plane stress equatid&sls.(1)] are accurate in
The thickness of the plate is not appearing in the frethe frequency range where the frequency of the first thick-
guency equationfsee Eqgs(8), (18) and(22)], implying that ness mode is much higher than the highest in-plane natural
it has no effect on the free in-plane vibrational response ofrequency in the range. The first thickness mode occurs when
the plate. This is only true in the range of validity of E¢.  the plate thickness equals a half wavelerige Eq(29) in
This issue has been investigated and discussed in detail Ref. 14]. The coupling between the thickness modes and
1945
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in-plane modes increases as the two approach each othelirection form=2 are assumed as series summation of el-
Numerical and experimental results reported in Ref. 14 shovemental mode shapes of the fody(A ,x) that represent the
that the effect of coupling between the fundamental thicknesphysical behavior of zero response at the plate center point.
mode and the in-plane modes starts to diminish rapidly as the The mathematical solution for free vibration is written in
thickness to diameter ratio decreases to less than 0.2. In thke form of an eigenvalue problem so that natural frequen-
transportation structures, of interest in this study, this ratio ixies and modes shapes can be obtained by solving for the
usually far less than 0.2, indicating that the results of theeigenvalues and the eigenvectors employing any suitable
present analysis are expected to be accurate through the frmathematical software. The frequency parametendi-
qguency range of interest which is probably up to 20 kHz. mensional natural frequencjeobtained by the present
Radial distribution of the mode shapes are depicted ilmethod are tabulated and the mode shapes are depicted to

Table V for the first three modes of circumferential waveillustrate the free-vibration behavior in the frequency range
numbersm=0, 1, 2, 3, 6, and 7. It can be seen that theof practical interest. Accuracy of the predictions of natural
number of nodal circles is not always the same for the radialrequencies and mode shapes is assessed by comparisons
and tangential components of in-plane vibration of a modewith finite-element predictions and with previously reported
Also, a node of one component at a certain point is notresults. The present method gives very accurate predictions.
necessarily associated with an antinode for the orthogonatffect of Poisson’s ratio on the natural frequencies has also
component. In general, lower-order modes have more movéseen examined. Natural frequency of the radial axisymmetric
ment near the plate center, while higher-order modes havmodes (n=0) is independent of Poisson’s ratio, while the
more movement near the clamped edge. natural frequency of any other mode decreases as Poisson’s

ratio increases. Extension of the present solution to the case

of elastically restrained edges, which practically is more re-
IV. CONCLUSIONS alistic, is a possibility for future work.

The modal characteristics of in-plane vibration in circu-

lar thin flat plates with clamped edge are investigated in this!A. Leissa,Vibration of Plates(Acoustical Society of America, Woodbury,
work. The equations of in-plane vibration are solved for the NY, 1993. _
natural frequencies and mode shapes. Assumed mode shap a%bi'fvp"l’_sﬁg;?”'as for Natural Frequency and Mode Shafieieger,
are eXpressed_m t?rms Of trigonometric functl_ons in the CII3N. H. Farag and J. Pan, “Modal characteristics of in-plane vibration of
cumferential direction. It is proved that the circumferential rectangular plates,” J. Acoust. Soc. A05 3295-33101999.
modes are completely uncoupled. This means that the disiN. H. Farag and J. Pan, “Free and forced in-plane vibration of rectangular
placement components in the tangential and in the radialP's’ J. Acoust. Soc. ATLO3 408-413(1998. o

. . . . J. So and A. W. Leissa, “Three-dimensional vibrations of thick circular
directions always have the same mode shape in the circum-ang annular plates,” J. Sound ViB0g(1), 15-41(1998.
ferential direction, though shifted by/2m wherem is the ®R. M. Grice and R. J. Pinnington, “Vibration analysis of a thin-plate box
circumferential wave number representing the number of using a finite element model which accommodates only in-plane motion,”
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