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Abstract.  Self-images of a grating with period &, illuminated by light of
wavelength A, are produced at distances z that are rational multiples p/g of the
Talbot distance zt = a®/X; each unit cell of a Talbot image consists of q
superposed images of the grating. The phases of these individual images depend
on the Gauss sums studied in number theory and are given explicitly in closed
form; this simplifies calculations of the Talbot images. In ‘transverse’ planes,
perpendicular to the incident light, and with { = z/zr irrational, the intensity in
the Talbot images is a fractal whose graph has dimension % In ‘longitudinal’

planes, parallel to the incident light, and almost all oblique planes, the intensity

is a fractal whose graph has dimension %. In certain special diagonal planes, the

fractal dimension is §. Talbot images are sharp only in the paraxial approxima-
tion A/a — 0 and when the number NV of illuminated slits tends to infinity. The
universal form of the post-paraxial smoothing of the edge of the slit images is
determined. An exact calculation gives the spatially averaged non-paraxial
blurring within Talbot planes and defocusing between Talbot planes. Similar
calculations are given for the blurring and defocusing produced by finite N.
Experiments with a Ronchi grating confirm the existence of the longitudinal
fractal, and the transverse Talbot fractal at the golden distance { = (3 — 5'/2)/2,
within the expected resolutions.

1. Introduction

What is the field beyond a coherently illuminated diffraction grating? This
simplest of questions in wave optics still holds some surprises, whose origin lies in
Talbot’s [1] remarkable discovery, in 1836, of a series of self-images in planes
beyond the grating. In recent years his effect has received much attention, both as a
fundamental optical phenomenon and because of its applications [2]. Rayleigh [3]
explained the Talbot images in planes whose distances z from the grating are even
multiples of the Talbot distance zt = a® /), where a is the period of the grating and
A the wavelength of the light. Much later, it was observed [4] and explained with
the aid of the paraxial (IFresnel) approximation [5] that images form at all rational
multiples of 2, namely z = (p/g)zT, where p and ¢ are coprime integers. Within
each unit cell of the image plane, these fractional Talbot images consist of ¢ equally
spaced copies of the transmission function of the grating, which superpose
coherently when they overlap.

Here we make four contributions to this subject. First (section 2), we show that
the phases of the Talbot images possess an irreducible arithmetic complexity,
arising from the Gauss sums studied in number theory, which can be evaluated
explicitly in closed form. These phases govern the intensities of the high-order {i.e.
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large q) fractional images, because these overlap, even for narrow slits. Related to
the connection with Gauss sums is the mathematically interesting fact that within
the paraxial approximation the wave describing the essence of the Talbot effect is a
Jacobi theta function on the natural boundary of its region of convergence.
Therefore the intensity variation, for a grating whose slits have sharp edges, is
highly singular, both in and between Talbot planes.

Second (section 3), we find that for gratings with sharp-edged slits (e.g. Ronchi
gratings) the light intensity has an amazing fractal structure. By studying the limit
of sequences of fractional Talbot distances 27 p/q where p/q tends to an irrational
number, we argue that for almost all irrational image planes the graph of the
intensity is a continuous curve whose fractal dimensicon [6] is % It follows that the
nature of the images depends sensitively on z; therefore the Talbot effect can be
regarded as an optical ‘arithmoscope’, revealing the number-theoretic nature {e.g.
rational or irrational) of z/z1. However, these %-dimensional fractals are special. In
typical non-transverse planes, for example the ‘longitudinal’ planes parallel to the
incident light and the slits of the grating, the graph of intensity has the less familiar
dimension %. For particular diagonal planes, the graph has dimension %.

Each integer or fractional Talbot image arises from constructive interference
between light from all slits in the grating, but only in the paraxial approximation
does this give rise to perfectly sharp images. Our third contribution (section 4)is to
give a post-paraxial theory for the imperfections of the Talbot images, comple-
menting a recent numerical study [7]. It is interesting that, although the Talbot
images are not formed by geometrical focusing, the condition for the emergence of
the paraxial limit, in which they are sharp, is A/a — 0, resembling conditions for
the emergence of the sharp caustic singularities of geometrical optics. Post-paraxial
effects blur the sharp edges of the images and wipe out the finest scales of the
fractals, according to a universal diffraction function with fringes whose lateral
scale is (z/zT)1/4(Aa)1/2. ‘We also give an exact non-paraxial calculation of the
spatially averaged sensitivity of the light intensity to variations in and between
Talbot planes.

Even within the Fresnel approximation, the sharpness of the Talbot images
requires a grating with infinitely many slits. Our fourth contribution (section 5) is
to quantify the effect of a large but finite number N of slits. The (unsurprising)
results is that the sharp edges of the Talbot images, and the fractals, are blurred by
fringes with lateral scale a(z/z1)/N. The Talbot effect for N narrow slits is related
to a previous study [8] of incomplete Gauss sums, and the associated hierarchical
generalizations of Cornu spirals {‘curlicues’). We also calculate, within the paraxial
approximation but with finite N, the spatially averaged sensitivity of the light
intensity to variations in and between Talbot planes.

The main new physical effects predicted by this work are the fractal intensity
distributions beyond the grating. In section 6 we describe experiments with a

Ronchi grating (binary grating with slit width a/2), demonstrating the transverse

Talbot fractal (at the golden ratio {(3 — 51/ 2y/2)21), and also the longitudinal
Talbot fractal.

In this paper we consider only one-dimensional gratings, illuminated by
monochromatic light. The two-dimensional case is considered in many of the
references cited; if the ratio of the grating periods in the two directions is rational,
the theory is essentially the same as in one dimension, although the details can get
complicated. Illumination by white light (as in Talbot’s [1] original experiment)
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gives richly coloured images, especially close to the grating; we do not pursue this
aspect here.

A class of different physical effects with the same underlying mathematics is the
integer and fractional revivals of electron wavepackets in Rydberg atoms
[-11]. Instead of distance from the grating, there is time in the evolution of the
electron wave; the periodic coordinate across the grating and in the Talbot
observation planes is replaced by the angle round the ring near which the electron
wave is confined; instead of the wave immediately beyond the grating, there is the
initial electron wave packet. It is possible that the analysis presented here can be
usefully applied to Rydberg revivals.

2. Gauss sums and phases of fractional Talbot images

A plane wave of light with wavenumber & = 2n/A, travelling in the z direction,
is transmitted by a grating that varies in the transverse direction x and then
propagates freely in the space beyond. It is convenient to employ dimensionless
coordinates £ and (, scaled relative to x and z by the grating period and the Tailbot
distance, namely

x 2 zZA
=-, =—=—. 1
f=..  (=-=7 (1)
Let the transmission function in the unit cell |x| < a/2 be g(£); for example, a
Ronchi grating, that is a binary grating with open slit width a/2, has

gO=1 (<) 20=0 (&> (2)

At the point (£,{) beyond the grating, the scalar wave (that is neglecting
polarization effects, for which see [12]) is

1/2

wE, ) =J € Wl €10 3)

where Yeomb(§, €) is the wave transmitted by a grating consisting of a comb of Dirac
& slits.

The comb wave is conveniently written as a superposition of diffracted beams.
Exactly,

00 (‘1 2 A 2112
Peombl& )= D exp (2mint) exp {2nic(x) [1 - (—) ] } (4)

R=—00

where the square root is positive imaginary for the evanescent waves » for which its
argument is negative. ‘'T'his formula applies to an infinite grating; the effect of finite
numbers of slits will be studied in section 5. Later it will be convenient to write
equations (3) and (4) in the form

00 a\?2 2\ 27172
V(&)= D gnexp (2mink) exp {ZTriC(X) [l - (;) ] } (5)

H==00
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where g, is the nth Fourier coefficient of the transmission function, that is

1/2
= j A€ 2(6) exp (- 2nint). ()
—1/2

For the Ronchi grating (2},

=1 - CY @
£o =3, n=2k+1 = m

Now we make the central approximation that the propagation is paraxial and
expand the square root to the term in #%. This gives the comb wave in terms of the
paraxial propagator (&, {), defined by

Yoormb (£, O & exp (i&z) (€, O, ®
where
U&= Y exp (2min - inCn’).

The analogue of equation (5), for an arbitrary grating, is the paraxial scalar wave
(i.e. the paraxial approximation to equation (5) with the factor exp (ikz)
removed)

Poll, Q)= D, guexp (2mikn — inCn?). Q)

H=—00

The function v, in equation (8) is a Jacobi theta function (section 16.27 of [13]) but
the sum over n would converge only if { had a negative imaginary part. Real ¢, as in
the Talbot effect, corresponds to the highly singular situation of a theta function on
its natural boundary. Nevertheless, this gives sensible results in combination with
the integral (3) indeed, the singularities are responsible for the sharp images that
are the essence of the Talbot effect.

We note that the Poisson sum formula, which we shall employ extensively in
what follows, reproduces the d-comb initial condition

Yp(€, 0) = Peomp(§, 0) = Y exp 2mibn) = »_ 66 —m). (10)

B=—0Q M=-0

In section 4 we shall give a detailed discussion of the validity of the paraxial
approximation and show that its apparent contradiction with the assumption of an
infinite grating disappears for small A/a. Anticipating this result, we now turn to a
systematic study of the paraxial propagator.

It is easy to confirm from equation (8) that (£, {) possesses the following
symmetries:
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P+ 1.0 = ¥p(=& Q) = ¥ (&, Q)
so (1l =& ) = ¥4, C)s

11
U6 CHD =€ +5, 0. Ble — O = W& O, 4D
so [p(6 1= Q" = kp€ +5, O
Therefore it suffices to know the paraxial propagator for |{] < 2, |€] = % or

gratings with sufficient symmetry, for example the Ronchi grating (2), these
symmetries are inherited by the (paraxial) intensity |LT/F,|2 given by equation (9).

Fractional Talbot images occur in planes where 2 is a rational multiple of zT,
that is { = p/g, where p and g are coprime integers. Then in equation (8) we split
the sum into groups of ¢ terms by defining

n=gl+s5 (—oo<i<oo,1<s<q). (12)
Thus
wp( ) Zexp [111:(23{-—-3 )J > exp [in(2lgf — ’gp — 2Isp)).  (13)
I=—0c

In the second exponential the term 2isp can be neglected because it contributes a
factor unity. The term in /2 can be simplified, because

exp (—inl’gp) = (—1)'® = (= 1) = exp (~inlge,), (14)

where ¢, = 0 (1) if p is even (odd).

The observation (14) is the mathematical heart of the Talbot effect, because it
renders the exponent in the second exponential in equation (13) linear in /, so that
the Poisson formula (10) can be applied to give the paraxial propagator as a § comb
for any rational ¢ and not just { = 0. The result is

wp(a, g) o Z A q,p)a(a ——) (15)

where
£'=¢-13e (16)
and
14 T 1 2
Al q, p) E-"-I-I-Z exp 15[2s(n+§qep)—ps] . 17)
s=1

It is easy to show (by an elementary change of variables in the double sum) that
{A(n; g, p)| = 1. Therefore the A are pure phase factors, that is

A(n; g, p) = exp [iP(n; ¢, p))- (18)

From equation (3), we now obtain the paraxial wave beyond a general grating:
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o0

!Pp(i, 1;) _ qllT Z (5 ——) exp [iP(n; ¢, p)]- (19)

H=—-co

This equation captures the physics of the Talbot effect; in each unit cell {e.g.

< £ < 1) of the plane ¢ = p/q, images of the grating slits are reproduced with
spacing 1/¢ and intensity reduced by 1/¢; if p is even, the n = 0 image is at E=40
and, if p is odd, the n = 0 image is laterally shifted {14—16] and lies at { = —

Now we observe that the quantities A(n; g, p) are the Gauss sums studled in
classical number theory, which can be evaluated in closed form. In the commonest
form of these sums [17], the term linear in s in the exponent of equation (17) is
absent, but the same techniques can be applied when this term is included; an
elementary derivation was given by Hannay in Appendix A of [18]. The result is
that the phases can be represented in explicit form as

ﬂ:{%(q— 1)+§(p\q)2nz+%[1 - (Z)]} (p even, g odd),

1
B(r; ¢, p) = Tr{%p +§(P\q)2(n+%q)2 +3 [1 - (;)]} (p odd, g even),
n{i(q - 1) +%(41'J\q)2(n+%q)2 +% [1 - (z)] } (p odd, g odd).

(20)
Here, (p\g) is the integer inverse of p mod g, given by

(P\g) = p'*" V" mad g, (1)
where ¢g(g) denotes Euler’s totient function {number of positive integers less than

g that are relatively prime to q), and (g) 1s the Jacobi symbol, which takes the

value +1 or —1, and is defined as the product of L.egendre symbols (p) for all
prime factors s of g, these in turn being defined as §
(p) _ { +1 if there is an integer m such that m? = p mod s, (22)

5 —1 if there is no integer m such that m? = p mod s.

These phases are important because their » dependence determines the intensity of
the superposition of overlapping grating images. For the Ronchi grating (2),
overlap occurs whenever ¢ > 2.

With these formulae it is easy to compute the intensities of the Talbot images in
any plane { = p/q, for any grating function g(£) (for example using the program
Mathematica [19]), thereby extending previous computations (for example [20,
217) for special cases. Figure 1 shows some examples.

If the incident wave is not plane but comes from a source at a distance R in
front of the grating, then, as is well known (for example [22]), all the preceding
formulae apply provided that £ and ( are replaced by £r and (r, where

E_6_,.3 23
ER_CR-1+R' 23
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Figure 1. Intensities in one unit cell of the Talbot planes ¢ = n/20 (0 < n < 10), for the
Ronchi grating (2).

3. Fractal Talbot images

Any irrational { can be regarded as the limit m — co of a sequence of rationals
Pm/qm- According to equation (19), the corresponding Talbot images Y,(€, pum/@n),
regarded as functions of £, are superpositions of ¢, slit images, with phases (20). As
m increases, more of these images overlap. The nature of the superposition
depends on the continuity class of the grating transmission function g(£), since
this determines the decay of the Fourier coefficients g, for large », and hence the
convergence of equation (9). Here we consider only the Ronchi grating (2}, but our
conclusions also hold for any amplitude and/or phase grating for which g has
discontinuities, for example any grating with sharp-edged slits. ‘Then the Talbot
intensity |!|l7p|2 for irrational ¢ has infinitely many infinitely small discontinuities. It
is known that the result of such superpositions can be fractal [6], and we now argue
that this holds in the present case.

For the Ronchi grating (2) and (7), the paraxial wave (9) is

I o2& (-1 . 5
U () =+~ cos [2n€(2k + 1)] exp [—in(2k + 1)7]. (24)
P n ; 2k+1 )

]

Considered as a periodic function of £ with Fourier components # = 2k 4 1, this
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wave and also the intensity ILPP]Z have a power spectrum proportional to »~2, and,
for irrational ¢, pseudo-random phases n¢n?. Now, it is a general result [6,29] that
the graph of a function with power spectrum ]g,,]?' proportional to 7~ is & fractal
curve with fractal dimension D = (5 — 8)/2. A smooth curve has D=1, and a
curve with D = 2 is so jagged that it is almost area filling; curves with 1 €D <2
are continuous but non-differentiable. When applied to equation (24) the formula
for D gives, for Talbot images in transverse planes specified by irrational {, the
dimension D¢ = %

To illustrate the emergence of the transverse Talbot fractals as m increases, we
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Figure 2. (a)-(h) Calculated intensities in a unit cell, for Talbot planes with { =1 and ¢
given by the indicated rational approximations to the polden distance
¢c = (3 — 5"/2)/2, for the Ronchi grating (2). The transverse Talbot fractal, with
dimension D, = g, appears in (k). {{}-(p) Observed intensities in Talbot planes
corresponding to (a)—(k), with a Ronchi grating with @ = 0-508 mm (50 lines in™ '),
of which 100 lines were illuminated by a laser with A =632-8 nm.
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choose as the sequences p, /g, the successive truncations of the continued fraction
[24] for ¢, namely

1
ai+ [1/(az+ )

C = ag + (25)

where the a,, are positive integers. This is a natural choice because these sequences
give best approximations, in the sense that p,/q, is closer to { than any other
fraction with denominator ¢ < gm. From this point of view the simplest irrational
number is the golden mean (512 — 1)/2, for which all a,, are unity, and the p,, and
@ are Fibonacci numbers. From equation (11), the Talbot images are the same for
¢ = (g = 1-golden mean, that is

3 — 5172 .

(o=—75—=0381966--=1lm{0. 3. L, L 4 &5 & -} @6

and for later convenience we perform the calculations with this ¢.

Figures 2(a)—(h) show part of the sequence of Talbot images approximating
that for {g. The self-similarity of the fractal limit is evident in figure 2 (k) and its
magnifications given later in figures 4(a) and 4(b). Visual comparison of these
figures with published curves with different fractal dimensions (for example [23])
supports the Talbot value D =3

Figure 3 shows the images in two other irrational Talbot planes: 1/, whichisa
transcendental number, and 27173, which is an algebraic number whose continued
fraction is not periodic (unlike that for (g and other quadratic irrationals).

Consider now the ‘longitudinal’ Talbet intensity as a function of (, with
transverse position £ held constant. The wave (24) 1s periodic in ¢, with a Fourier
series containing longitudinal frequencies restricted to the values # = &2, For such
a lacunary series, the power spectrum is | gkiz dk/d#n, which is proportional to n32,
In the argument following equation (24) we now have 3 = %, giving the unexpected
fractal dimension D = (5 — 8)/2 =% This is not restricted to rational £, and
indeed we think the Talbot intensity 1s fractal in all longitudinal planes. The only
exception occurs for the special planes £ = :i:% corresponding to the edges of the
slits; in this case it follows from equation (24) that the intensity is independent of .

Figure 4(c¢) shows the longitudinal Talbot fractal in the plane £ =0 corre-
sponding to the illuminated centre of the slit; figure 4 (d) is a magnification of the
pattern, showing its self-similarity. We have calculated the patterns for several
other values of £, and they look similar to that for £ =0,

Both sorts of fractals, and more, are contained in figure 5, which shows the
‘mountains of Talbot’, that is the intensity ilpp|2 as a function of £ and ¢, plotted as
an obliquely illuminated landscape. This is a surface whose fractal dimension
(obtained in [6] by adding one to the dimension of a typical section) is - 4 As well as
the evident fractality almost everywhere, the original grating profile (2) is visible at
(=20, as is the line £ = correspondmg to the special plane already mentioned.

Also visible are dlagonal structures that we did not anticipate. To understand
these, consider the wave (24) in the diagonal planes defined by

{=+£4 0, (27)
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Figure 3. Transverse Talbot intensities, calculated in half-unit cells of planes
approximating the distances { = 1/ and 2713 for the Ronchi grating (2). Note

that 1/m ~ 113/355 = 2.7 x 1078, 2-1/3 — 277/349 = 4.3 x 10-°.
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Figure 4. Talbot fractals and their magnifications: (a)
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Figure 5. The ‘mountamns of Talbot’, displaying the paraxial light intensity behind a

Ronchi grating as a surface with fractal dimension %’.

where =10, + %, + %. A short analysis shows that in these planes the two
exponentials in the cosines in equation (24) partially cancel for successive k, giving

in(—b & = (1)
o6, £E+5) =%—e—’9—[m§n—§)] (2 + Zm(k—z-)"ﬁ exp (ZFircsz)). (28)
k=0

As for longitudinal planes, this is a lacunary series with Fourier coefficients n = k2,
but now the intensities |g|® decay as £~*; so the power spectrum | gx|® dk/dn is
proportional to n°/2, giving 8 = % It follows that in these special diagonal sections
the intensity is again fractal, but with the smaller dimention Dy = (5 — 8)/2 = %.
One of these diagonal fractals is shown in figure 4 (e), and again, magnified, in
figure 4(f).

The result of our analysis of fractal aspects of the paraxial Talbot intensity,
regarded as a function of £ and {, can be usefully considered geometrically, as
follows. Consider the space of all possible (flat) sections of the irreducible region
0<é< %, 0<(< % behind the grating. This space is a plane (the ‘plane of
sections’ (PS)) whose coordinates we choose to be the distance ¢y at which the
section cuts the line £ = 0, and the angle # that it makes with the ¢ direction. Each
point in PS represents a section in which there is an intensity distribution whose
graph is a curve G. At almost all points in PS, G has dimension D¢ = %. Along the
line in PS5 corresponding to transverse sections, that is # = 7/2, the G for almost all
points have dimension [); = %, exceptions being the {dense but of measure zero) set
of fractional Talbot planes with rational {3, whose 1mages {section 2) have D = 1.
Finally, at the six points in PS corresponding to diagonal sections (namely § = n/4
and (=0, + L 6= —n/4and (o =1, ] and D), G has dimension Dy = 2. We think
the Talbot wave (24) could contain more fractals and is worth studying further.
(Note added in proof: there are infinitely many diagonal sections with Dyq = 5/4

[30].)

For almost all sections {which need not be straight) the graph of the intensity
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will be the largest of the above values, namely%. It might appear from this that it is
impossible to see the other fractals, because this would require perfect orientation
of the observation plane, but in section 6 we shall find that this is not the case, and
at least the transverse fractal can be detected.

As with all fractals, the finest scales of these longitudinal, transverse and
diagonal Talbot fractals will be obscured by smoothing arising from physical
effects neglected in the derivation given here. The two principal causes of
smoothing are non-paraxiality (section 4) and the finite extent of the grating
(section 3}.

A surprising application of the preceding analysis, for the special case of the
Ronchi grating, was pointed out to us by Dr J. H. Hannay. The solution of the
paraxial wave equation in a strip waveguide, with Dirichlet boundary conditions
on the sides and a constant wave amplitude across one end, is precisely the
anisotropic fractal that we have found in the Talbot effect. In ref. [30] this idea
is developed further. This contrasts with the solution of the corresponding
problem for the heat equation, where the theta functions converge and the solution
is smooth.

The preceding analysis applies whenever g has discontinuities. Gratings whose
slits have edges that are not sharp would give Talbot intensities that are smooth,
rather than fractal, functions of ¢ and £,

4, Post-paraxial theory of Talbot images

To study Talbot images beyond the paraxial approximation, we first expand
the square root in equation (4) to order n* rather than »%. This gives the comb wave
in terms of the post-paraxial propagater Ypp(E, €), defined (cf. equation (8)) by

wcomb(ga C) Az exp (ikz) q.L'pl:)(aa C)s (29)

where

oo 2
Yoplé, €) = Z exp {in [2§n — (:712 - (2—};) Cn4] }

n=—0c0

It will be sufficient to specialize to the rational planes { = p/q.

We start by following the argument of section 2 and make the substitution {12);
after an application of the Poisson summation formula, this leads to the analogue of
equation (15), namely

P 1 & : B
'Fbpp (éa E) = WH;DO Aln; q, P)épp (5 - E): (30)

where the post-paraxial analogue of the & function is defined as

o0 2
6pp(y)zj du exp {in[Zuy—(%) gu‘*]}. @31

It is clear that the sharp Talbot images emerge in the ‘geometrical’ limit Afa — 0,
in which 65p(y) — &(). To study the details of this emergence, it will be useful to
define the non-paraxiality parameter
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e=2¢n, (32)
a

We note that equation (31) is the same function as that describing diffraction
through the cusp of a caustic and perpendicular to its symmetry axis [25]; the Airy
function that typically arises when Gaussian integrals are generalized in analogous
physical situations [11] does not occur here, because the square root in equation (4)
is a function of 7% and so its expansion does not contain n,

After a contour rotation, 6, can be expressed in terms of a convergent integral,

as
(4m)** (4m)3/*
6Pp(y)= 172 Dpp 172 ¥yl (33)

where

dx exp (—x*) cos [xt exp (—}im)). 34)

P Lo LTy

This is the diffraction function describing the post-paraxial blurring of the
paraxially sharp Talbot images. Its principal properties are

Dpp(t) = Do (=1, J dt Do (5) = 1,

-

exp (—1im)
Dyp(0) = p4—rcs

exp (—1im) 3 £\
Dyp(t) ~ W le(Z) ] {HESSX

() (35)

Figure 6 shows graphs of the real and imaginary parts of D, ().

For the Ronchi grating (2), the post-paraxial replacement gpp(¢, ¢) of the
paraxially perfect reproductions g{§) of the individual slits is obtained from
equations (3), (29), (30}, (33) and (34) as

ReD

ppD)

Figure 6.  Post-paraxial generalization (34} of the 6 function, describing the blurring of
the Talbot images.
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Figure 7. (@) Post-paraxial intensity (36) of the Talbot image of a slit of a Ronchi grating
with € = 0.001 246; this corresponds, for example, to the Talbot plane (=1 of 2
grating with @ = 0-508 mm (50 lines in~ '}, illuminated by light with A = 632-8 nm.
(&) Magnification of (g) showing weak fringes on the dark side of the slit.

%0 \sin [e(€)x(€ + )] = sin [e()x(€ — 1)

1
gopl&. €) = EL dxexp (—x* .

; (36)

where

4m)3/4 )
ele) = g-e-i—)ﬁ— exp (—%m).

This is the difference between two integrals of the functions Dy, corresponding to
post-paraxial diffraction from the two edges of the slits. An example of the blurring
introduced by this violation of paraxiality is shown in figure 7.

A conclusion from this section is that the sharp edges of the Talbot images are
replaced post-paraxially by fringes whose size, from the scalings (32) and (33) and
the observation (from figure 6) that the first zero of Re [Dp()] is near ¢ = 7 is

wlf A

172
— A2 _p, /4 2
Dy oage = 533 €'* = 0-47¢ (a) . (37)

Thus the degradation of the Talbot images gets slowly worse with increasing
distance from the grating. It is interesting to compare Aépp edge With the size Afegge
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of the fringes associated with ordinary Fresnel (i.e. paraxial) diffraction from the
edge of a single slit. Standard theory [26] gives

Alegge = (2. (38)

In the Talbot effect, coherent diffraction from the infinite array of slits reduces the
scale of this blurring to zero paraxially, and to A&y, g post-paraxially. The
reduction factor is

Abypeage _ B+ (AN (39)
Abegge 282\ 2)

which is very small in all contexts relevant to the Talbot effect.

The analytical theory presented here, in which the square root in equation (4) is
expanded to order n*, gives the lowest-order post-paraxial correction to the Fresnel
approximation. It is of course possible to make exact computations of the blurring
of the edges of the slits in the Talbot images. However, our numerical explorations,
and comparison with some published computations [7], show that the theory based
on the function (34) gives results indistinguishable from exact computations for all
gratings with A/a<1 that are interesting for the Talbot effect.

Nevertheless we can use the full nonparaxial theory, in the form (5), to give two
other measures of the sensitivity of the Talbot images (in ¢ as well as £). These are
based on the observation that evanescent waves |r| > a/) can be neglected in the
sum (5); even the first such wave is of order exp [—C(a/)\)3/2].

With the sum cut off at |{n| = #y., = int (a/)), the fastest possible & and ¢
variations come from n = a1, and 7 = 0 respectively, giving

A A
Agpp,min = ;: AC})p.min = (;) - (40)

When converted to variations in x and 2, these blurring distances simply reflect the
fact that no non-evanescent monochromatic wave field can vary on scales smaller
than A. However, the decay of | g,| means that these rapid variations are extremely
weak, and equation (40) gives unrealistic measures of the non-paraxial blurring.

More realistic are the measures of £ and ¢ sensitivity calculated by spatial
averaging of the intensity and its derivatives. We shall present general formulae
and evaluate them explicitly for the Ronchi grating (7). Defining

2 27172
a nA
d,={2}y h-(2
G)b-(2)] @
and, neglecting evanescent waves, we obtain, from equation (5), the intensity as

IEQ=EON" =) > ghaexp {2inlE(n— m)+ ((dn — d)]}.  (42)

fmn|<a/A

To obtain the mean intensity, we average over a period of the Talbot plane, that
is over 0 € £ € 1, thereby eliminating the terms with m # n:
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=73 lal (43)

[nl<afA

Evaluating the sum for the Ronchi grating (appendix) gives, to leading order in

A a,
)~z (44)

To obtain an estimate of the fluctuations, we study the average
% = < ZZZZg;g,,gsg: exp {2iR[§(n —m —r+5) + {(d, —d — d, + ds)]}>.
. rs|<al A
(45)

Now the average is over a region of space, that is over both a grating period
0 < £ £ 1 in each Talbot plane and a sufficiently large interval in { to eliminate all
cross-phases d,;; the surviving terms are those where # = m and » = 5, and where
n=rand m =3 Thus

I =233 laullaul’ = 200" (46)

|| <a/A

This shows that on the average the fluctuations of the Talbot wave mimic those of
a function with random phases and power spectrum |gn|2.
The simplest average describing intensity variations within a Talbot plane is

I\ 1/
()"

In terms of this quantity, we can define an average blurring Aé,p . of a Talbot
tmage as the distance over which the fractional change of intensity is unity. Thus

I
Abppav = -(*3 (48}

To get an expression for Iy, we differentiate equation (42) and use the same
argument that led from equation (45) to equation (46):

Ié :4n222(r—s)2]g,|2|g,|2. (49)

Jrs|<a/A

For the Ronchi grating, evaluation of the sums (appendix) leads to

1/ a\?
A&mvzz(g) . (50)

Comparing this result with A&y, cqge (equation (37)), we note the absence of the
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factor ¢1/*, indicating that at many Talbot distances the post-paraxial blurring of

the edges of the slit images exceeds the blurring elsewhere in the images.
In an analogous manner, the intensity variations between Talbot planes can be

described by
2y 12
()"

Then, an average ‘depth of focus” A, ,, of the Talbot images can be defined by (cf.
equation {48))

I
Alppar =2 (52)
s
The analogue of equation (49) is
1= "> "(d, —d)|al|al (53)
|rst<a/A

and leads, for the Ronchi grating (appendix), to

1 A 3/2 hY 3/2

5. Finitely many slits

To sufficient approximation, the paraxial wave ¥, n(£, () for a finite grating
with N slits is obtained from the representation (9), for the infinite grating, by
truncating the sum over diffracted beams, each regarded as having width Na, to
include those that overlap at the point (x, ). An elementary geometrical argument
[8] shows that near the middle of the Talbot images, that is for |£|<N/2, the
contributing diffracted beams are those with |#| < N/2¢ (the limit of ‘walk-off’ of
the diffracted beams). Extensive numerical and analytical examination of this
approximation [8] shows that it is very accurate when N 1. Thus

Ton(6 Q= Y guoxp(Qmibn - in(nd) (E<IN), (55)

H=—ny
where ny = int (N/2().
T'o cast this in a form that exhibits the Talbot effect, we consider the wave from
a finite comb of § slits, by taking g, = 1 in equation (55), restrict ourselves to the

rational planes ¢ = p/q and split the sum as in equation (12), where now ! runs
between tny/q. Thus the N-slit paraxial propagator becomes

p.N (é, g) =Y exp [in (2sg - %s‘*)] sin [n (2 + @) (56)

= sin (mg€")

where £ is defined by equation (16). For finite N, the quantity
sin [€'(2ny + g)]/sin (ngf’) describes the blurring of the Talbot images (within
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the paraxial approximation) and so is the (unsurprising) finite-slit analogue of the
post-paraxial generalization Dpp() (equation (34)) of the é function. In the limit
N - oc of an infinite grating, the quantity sin [n€’(2ny + ¢)]/sin (ng€’) tends to the
Talbot § comb, that is

sin [r€'(2ny + )} 1! ( __) -
sin (ngé&’) qn_z_:oo E 2N =0 e7

and the sum over s, when evaluated at the positions £ of the Talbot images, gives
the phase factors A(m; ¢, p), so that the paraxial propagator (15) for the infinite
grating is regained.

For large N, the quantity sin [t€'(2ny + g)]/sin (ng€") in equation (56) is
dominated by peaks at the Talbot positions £’ = n/g, with subsidiary narrow
fringes whose widths give a measure of the blurring of the Talbot images. The
widths are

A‘gN.min = ]% {58)

‘We use the subscript min because this blurring is precisely that corresponding to
the highest Fourier component in equation (55). A more thorough exploitation of
this idea [20] includes the degradation of Talbot images outside the central region
£ 2= 0. The same Fourier component gives the fastest ( variation, and hence the
‘depth of focus’

4

ACN.min = ﬁ (59

(see also [27]).

Now we study the spatially averaged & and ( sensitivity of the finite- N paraxial
intensity, following the analogous treatment, in the previous section, of the non-
paraxial fluctuations. The intensity is

INGE Q) = [P (& O
=3 ganexp {in]26(n — m) — C(n* — m?)]}. (60)

|mnf < ny

By analogy with equations (47), (48), (51) and (52) we define the mean square
intensity derivatives, and £ and ¢ blurrings, by
<( )2>”2
(61)

AT\ 2\ 172
e ()Y

AEN av =5 ACN,av E

.‘q |
—r

The derivatives are given by equations (49) and (53) with the limits in the sum
replaced by tny and d, replaced by --#?/2. For the Ronchi grating (7), the average
image blurring and depth of focus are
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Figure 8. ‘Curlicues’ traced in the complex plane with axes Re S, ImS by the
Talbot sums (63) for 1< L <5000, for (a) {=50"2—7=007107, (b
¢=(5Y2 - 1/2 061803, (¢) { =273 2 0.79370 and (d) { = 1/n.

¢\ pf €Y
Abyaw =1 = R A =6 = 62
£N,a (SN) CN,av (N) ( )

(the sum involved in Ay ,y is evaluated in the appendix).

With finite N, there is a transition from the Fresnel to the Fraunhofer regime.
We do net pursue this, because it has been studied in detail [28] elsewhere.

It is very interesting to study how the Talbot image wave at a given field point
(£, ¢) varies as the number N of grating slits is increased. The dependence is
qualitatively the same for any & and for convenience we choose the centre £ = 0.
Then for narrow slits, the wave (55) (with g, = 1) depends on the sum

L
SuQ) =) exp (inn?) (L>1). (63)

n=1

This class of sums has been analysed in detail [8]. As L increases, the sum of unit
vectors in the complex plane of Sz((), representing the phase and intensity of the
Talbot wave, traces out curves of fantastic complexity, whose structural elements,
‘curlicues’, are discrete generalizations of the Cornu spiral. The curves have a
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= —

Figure 9, Experiment to observe Talbot images. Light from a 10 mW He-Ne laser L
(beam diameter, 1 mm) passes through a 50x beam broadener B and strikes a
moveable Ronchi grating G. The image in the desired Talbot plane P, at distance
z = {zr from G, is magnified by a 20x microscope objective M and focused onto
the film plane of a lensless camera C.

MP G B L
R

Z

hierarchical structure that depends sensitively on the arithmetic nature of the
Talbot position ¢, as figure 8 illustrates. To understand the hierarchy, a
renormalization transformation of S(¢) was developed [8], in which the sum for
given L and ¢ is related to a magnified version of the sum with a smaller value of L
and a different value {’, related to ¢ by a chaotic mapping. The same mapping,
applied directly to the paraxial propagater (8) (i.c. for infinite N), will probably
yield further insight into the fractal ‘mountains of Talbot’ (figure 5), but we do not
pursue this aspect here.

6. Experiments with a Ronchi grating

Using laser light with A = 632-8 nm (figure 9), we illuminated a Ronchi grating
with 50 lines in~", that is with @ = 0-508 mm. Therefore the Talbot distance was
#r = 407-81 mm. This means that the natural ‘unit cell’ of the Talbot effect,
namely Ax =a, Az =zr, was enormously elongated (by a factor afd = 803)
relative to the dimensionless unit cell A =1, A =1. The laser beam was
broadened and spatially filtered into a paralle]l beam with a diameter of 2 in; so
the number of illuminated grating periods was N = 100. The aim of the
experiments was to record the transverse and longitudinal fractal intensity patterns
described in section 2.

Consider first the transverse fractal, with dimension D, = % In the ideal case of
perfect paraxiality and infinite N, observation of this fractal would require perfect
orientation of the screen, in order to avoid seeing the typical fractal with D, = %. In
reality, observation is possible because of the blurring and defocusing described in
sections 4 and 5. Moreover, it is greatly facilitated by the elongation of the pattern
in the = direction, because a theoretically allowed misorientation of the screen from
perfect transversality in £, { space is multiplied by a/X in the physical x, z space.

We magnified the Talbot images (figure 9), and photographed them in a series
of transverse planes near { = (g = 1-golden mean= (3 — 51/2y/2 = 0-381 966,
Each image was scanned into a computer, and the intensity profiles within a unit
cell were determined by analysing the scans with a densitometer program. These
experimental profiles are shown in figures 2(i)—(p). They should be compared
with the corresponding theoretical intensity profiles in figures 2{a)-{h). Perfect
agreement is not expected, because of the very blurring and defocusing that makes
the observation possible. Before estimating these effects, we first note that the non-
paraxiality parameter (32) was ¢ = 0-00077.
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In our experiment, the different measures of defocusing defined by equations
(40), (54), (59) and (62) were

Alppmin = 3-15 x 1075, Alppaw = 2-9 X 107°,

(64)

Alnmin = 5-8 x 1075, Alnaw =5-8x107%
The largest, and therefore theoretically dominating, of these defocusings is that
corresponding to the average intensity variation due to the finite number of slits; it
corresponds to a defocusing distance zr Alnay =024 mm. This maximum
defocusing limits the degree of rational approximation to (¢ that we can hope to
achieve. Because

(e —4=-0-118, (e — = 0-049, (c —%=—-0-018,
e — 2= 0-0070, (e — 3 = —0-0026, Cc — & =0-0010,  (65)
(c—H=-39x107" —H=315x107",

we can hope to distinguish ¢ = £, but not { = £, from {g.

Whether in fact these approaches to the transverse fractal Talbot image can be
distinguished depends on the blurring within the Talbot planes. The different
measures of blurring defined by equations (37), (40), (50}, (58) and (62) were, in
our experiment,

Appedge = 0-0130,  Abpomin = 0-0012, Ay, = 0-0088, 6
Al min = 0-0038, Aby g = 0-022, (66)
The largest, and therefore theoretically dominating, of these blurrings is again that
corresponding to the average intensity variation due to the finite number of slits; it
corresponds to a blurring distance @ Ay ., = 11 pm (in order to photograph these
images, they were magnified, and this blurring distance became much greater than
the grain size of the film).

These theoretical estimates show that in our experiment the resolution is
limited by the number of slits rather than paraxiality. They suggest that we can
hope to distinguish detail in the transverse Talbot fractal down te about 2% of the
grating spacing. Inspection of the fine structure of figure 2 shows that we do in fact
achieve this; to the expected resolution, the positions and, roughly, the heights, of
the observed intensity minima and maxima correspond to those expected
theoretically. (We did not attempt to measure the fractal dimension of the curve
in figure 2 (p) (e.g. by box counting), and so to test the theoretical prediction of
D = %, because such measurements are notoriously unreliable for small data scts
such as that in our experiment.)

Now consider the longitudingl Talbot fractal, with dimension D¢ =4, lan
principle it is possible to measure this by photographing the image from a tilted
grating, but in practice the resolution is toc low. Therefore we modified the
arrangement in figure 9 by replacing the camera with a photodiode and measuring
the intensity directly. Careful alignment was necessary, because the previously
mentioned elongation of the pattern in the z direction greatly magnifies any
misorientation (in contrast with the transverse case, where misorientation is
reduced) and introduces the risk of getting lost in the ‘mountains of Talbot’,
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Figure 10. Longitudinal Talbot fractal, with dimension D; = %, in the plane £ = 0, for the
range 0 € ¢ < 0-1: (@) computed from equation (24) and sampled at 200 points
(corresponding to intervals AC = 5 x 107*); (b) measured at intervals Az =0-2 mm
(also corresponding to A =5 x 107%).

which makes comparison with theory difficult. Therefore we exploited the
symmetry of the pattern and measured the intensity for £ = 0. Our measurements
covered a =z range of 40 mm, corresponding to a ¢ range of 0-1. Over this range, it
was necessary to keep the fringe pattern centred on the pinhole of the photodiode
to an absolute accuracy of 5 um, because, as explained following equation (66}, the
expected blurring of the fractals in x was about 10 pm. We measured the intensity
at intervals in z of (-2 mm, slightly less than the expected blurring of 0-24 mm
explained after equation (64).

The result of these measurements is shown in figure 10 (), to be compared with
the theory in figure 10 (a) which is calculated with the same number of sample
points. Although the observed blurring seems slightly greater than that estimated
theoretically, the agreement is convincing and demonstrates the existence of the
longitudinal fractal.

For historical interest, we repeated Lord Rayleigh’s [3] experimental study of
the Talbot effect in white light. We used a halogen bulb instead of his gas flame, a
green interference filter (AM A= 0-1) instead of his coloured glass filter
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(AM/X =2 0-5) and, following his recommendation, a collimating lens. The results
(not shown here) are crude in comparison with those of our laser experiments. The
transverse Talbot fractals are very blurred, and Rayleigh, with his coloured glass,
could have seen only the most prominent features.

Appendix, Fluctuation sums for the Ronchi grating
For the grating (7), the mean intensity (43) is

1 1 1
=2+ Y]
4 2 |k|<a/2/\(2k+1)2
1 23 1 2 & 1
=—+=y —— = —, (A1)
4 n2§(2k+1)2 n2k§A(2k+1)2

The penultimate sum is 72/8, and the last sum can be approximated by an integral,
giving equation (44).
For the £ derivative (49), we have

2_ g2 2,2 2 _ 1_,¢
Ig=82 3 Zlal’ 3 lal’=8 3 1x5=41, (A2)

lr<afA ls<a/A| Je<a/2A|

leading directly to equation (50).
For the ( derivative (53), we have

2
=2 3 gl Y el - Y dlal] |- (A3)
|r|<a/A Js|<a/X [r|<afA
This involves three different sums. The first is {(using equation (41))

4f 2
7.2 _ (4 2 A 2112
5 ator = (3)| 5w - (3) ]

br|<afX [r|<afA J¥l<a/A

af 2

a) 1 A ()\)
s} l5-=-(&) Y 1
(/\ 2 7la ") Wt

”VW 22\> A4
“\3)\z 7)) (A%

The second sum is just equation (44). The third sum is
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= ant-(3) el [ (2)]")

|r|<a/,\ |r|<a/)«
a\ /1 A . 2J'“fz"dk[l—(.?k)\/a)]m—l)
~ (X) 2 wa ® ) 452

1/a\* A
e - _— - A 5
2(5) (%) (A3
On combining these, equation {A 3) becomes
a\3
I§z4(x) (m—3), (A6)

from which equation (54) follows immediately.
Finally, the second resuit in equation {62) depends on equation (61) and

NC =7’ Z Z (7 2)2Igr|2|gslz

|rsl<N/2¢
2
= 2t Z T4|g,|2 Z |gs|2_ Z Tzlgrlz
I<N/2 Isl<N/2¢ Irl<N/2¢
2
1 1
_ 21 L
=2 > QR+1DP5-— Z 1
|| <V f4¢ ||V /¢
_1/NY’ A7
~ulT)

Here the last equality relies on the fact that in the penultimate member the first
sum dominates and can be replaced by an integral. The second result in equation
(62) follows at once.
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