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Summary 

Theoretical analyses of plasmon lineshapes and dispersion in model 
stage I and stage II graphite intercalation compounds (GIC's), with applica- 
tion to FeC18 intercalated graphites are presented. From a general analytic 
model of the longitudinal dielectric response functions we discuss the elec- 
tronic properties of graphite intercalation compounds which are effectively 
probed in inelastic electron scattering spectra below 3 eV. Band structure 
and local field effects are then explicitly included in numerical calculations 
of energy loss spectra in these compounds. We note that band structure 
effects are very significant in determining plasmon dispersion and damping in 
these compounds, and find that a model band structure with band param- 
eters extracted from previous studies of pristine graphite provides a good 
description of the observed spectra. 

1. Introduction 

Excitation spectra of both valence [1, 2] and core electrons [3, 4] in 
graphite intercalation compounds are currently being probed with inelastic 
electron scattering spectroscopy. The measurement of valence excitations by 
this technique is 15roving to be especially fruitful, as it allows a mapping of 
the momentum transfer (q) dependence of a characteristic low frequency 
plasmon in these compounds, which is generally observed as a plasma edge in 
optical (q = 0) measurements. This excitation is due to a plasma oscillation 
of the intercalation induced charge in the graphite layers, and measurement 
of its evolution with q provides direct information about the dispersion of 
both intraband electronic excitations and interband electronic transitions in 
these systems [1, 5]. In this paper we briefly outline our analyses of inelastic 
electron scattering spectra in stages I and II FeC13 intercalated graphite and 
examine the characteristic low frequency electronic excitations in these com- 
pounds. 
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2. General considerations 

The electronic properties of GIC's which are probed in these exper- 
iments are illustrated in the following simple analytic model. Consider a gas 
of electrons described by a lattice of  stacked charge sheets, with repeat 
length d. In each sheet the electrons obey a dispersion relation E(k) = 
/3]kl where k is directed in the basal plane. For ]ql ~ IkFI we  may then 
approximate the longitudinal dielectric response function for this system: 

e(q, ¢o) ~-. e~ + f(q, d) 

where in the limit q/k F "~ 1 

G(q) = 6qkF/(2~) 2. 

e 2 G(q )<  Jq'VCE]) 

Iql 2 <lq" VqEI>2-- ¢02 
(I) 

(2) 

In the above k F is the Fermi momentum of the two dimensional electron 
gas, e,o is a background dielectric constant and i ) denote an average over all 
azimuthal angles. In this approximate expression we have replaced the intra- 
band continuum by an average oscillator at ¢o =/Iq" VqEI) with degeneracy 
G(q). The f(q, d) is a function which is asymptotic to 4~/d from above in 
the limit qd -~. O. The deviation of f from this value for larger qd, results from 
local field corrections which we discuss in more detail in Section 4. For now, 
we note that  these corrections are correctly included in eqn. (1) only near 
the plasma frequency. The zeroes of eqn. (1) then define a plasmon disper- 
sion relation 

(~32p = (~q)2 + ~02 (3) 

where 

~'~0 2 = 6e2(kF{J)/Ordeoo) (4a) 

and 

= 2~/u. (4b) 

Hence 

¢~p(q) = ~ 0  + ~ 2 q 2 / ( 2 ~ 0 )  (5) 

for small q. Equations (4a) and (5) illustrate the principal results. ~20 
denotes the plasmon measured in an optical experiment. From eqn. (4) we 
see that ~20 scales as (kF~) 1/2, i.e., as the square root  of  the shift of the 
Fermi energy in a GIC. Further.knowledge of/~, obtainable, for instance, 
from a band calculation, may then be used to determine k F o r  equivalently 
the two dimensional charge density [6] .  Note, however, that  given an 
accurate value of  ~ the measured plasma frequency scales only as the fourth 
root  of the two dimensional charge density. From eqn. (5) we expect  the dis- 
persion of  the plasmon to be quadratic at small q. This power  law with 
which the plasmon disperses is generally strongly affected at larger q by the 
reduced dimensionality of  the GIC (implicit in f(qd)). Finally, the dispersion 



91 

coefficient scales at ~2/~2 0 and could, in principle be used to estimate/~. The 
fundamental properties illustrated in this example are then: 

(1) the plasma frequency provides a direct measurement of the shift of 
the Fermi energy, kF~ ; 

(2) the plasma frequency gives a somewhat cruder measure of the 
induced charge density (~nl/4); 

(3) the plasmon will disperse quadratically at small q; 
(4) the dispersion coefficient probes the band dispersion parameter, 6, 

and scales inversely as ~2 0. 
We note that this simple model, while quite successful at identifying the 

relevant electronic parameters for these measurements, is inappropriate for a 
detailed quantitative analysis of the plasmon spectra. This latter analysis is 
sensitive to complications resulting from a non ideal band structure and local 
field effects in GIC's. Hence, in the following we resort to numerical 
analysis. 

3. Band structure 

We have constructed a nine parameter tight binding model to describe 
the graphite ~ electron band structure. These parameters describe interac- 
tions between elements of an orthonormal basis of u orbitals and include in 
plane interactions up to third nearest neighbors, interplane interactions up to 
second nearest neighbors on contiguous planes, a single interaction between 
nearest neighbors on second neighbor planes, and a slight shift in the 
diagonal matrix elements for the two distinct carbon sites (presumed to be 
of electrostatic origin [7] and relevant only for pristine graphite and stage 
III and higher stage compounds). The parameters were chosen to reproduce 
the 4.4 eV peak in e2(0, ¢o) observed optically [8] while maintaining reason- 
ably good agreement with the overall bandwidth and various gaps obtained 
in the LCAO analysis of Painter and Ellis [9] (which, in turn, is quite consis- 
tent with angle resolved photoemission data) [ 10]. We find remarkably little 
flexibility in the choice of these interaction parameters, which we 
conveniently derive by block diagonalizing the Hamiltonian at symmetry 
points and then fitting to a prescribed set of transition energies. The param- 
eters are listed in Table 1 and the resulting band structure for 3D graphite is 
given in Fig. 1. 

4. Evaluation of  the longitudinal dielectric response function 

Following the usual analysis of the self consistent response to an 
external perturbation of valence electrons in solid which interact via the 
coulomb interaction we obtain the dielectric response function [ 11, 12] 
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TABLE1 

Interaction parameters for y electrons in graphite 
The notation Mn~ denotes an interaction between 
orbitals on sites ~ and ~ on planes separated by n layers. 
Unprimed ~, ~ denote nearest neighbor pairs between 
these layers, primed ~ denote next neighbor pairs. 
Energies are in eV. 

MOaa = 0 
MObb = - -0 : I  
MOab = --2.63 
MOab ' = --0.145 
MOaa ' = Mbb' ffi 0.150 
Mlaa = --0.0875 
Mlaa ' = 0.1042 
M1ab ' = --0.1563 
Mlbb ' --0.2333 

M2bb = --0.0254 

i2t____-_~L I*I L A r M K H 
Fig.  1. Band structure of  three dimensional graphite using the interaction matrix elements 
listed in Table 1. 

4~e  2 
ea, a,(~, o~ ) = e~8 ~,a, - 

~I~ + 61J~ + 6'I 

~: [f0(E.' (k + ~)) -- f0(E.(f~))] × 
~r t , n  ~ 

E.,(£ + ~) -- E.(k) -- h~ 

(~,nlet(~ + o)"~lk + q, n')(k + ~, n [e -i(q + °')'~I/~,n) (6) 

where e. is a background term, ~ is the unit cell volume, the f0 are Fermi 
functions, the {G} are reciprocal lattice vectors and the sum extends over the 
Brillouin zone and band indices n and n'. The macroscopic (measured) 
dielectric function may then be recovered from eqn. (6): 

e(q,  co) = 1/{e(q, co))-1o,o . (7) 

Dropping everything but  the G = G'  terms in eqn. (6), expression (7) reduces 
to the Cohen-Ehrenre ich  dielectric funct ion [13] .  The off diagonal terms in 
eqn. (6) are very significant, however, since they incorporate microscopic 
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local field corrections into the dielectric function, which we anticipate to be 
very important  whenever the eigenfunctions Ik, n) in the solid differ signif- 
icantly from plane waves. Thus, the off  diagonal terms should be especially 
relevant in graphite, and even more so in GIC's, where ~ electron states are 
well localized to the individual graphite layers. To make the subsequent  
calculations, including local field effects, tractable we make the reasonable 
assumptions. 

(1) that  the eigenstates Ik, n) may be factored into a product  of  a 2 
dimensional Bloch function and a second function describing the localization 
of  the basis functions to each layer graphite [14] and, 

(2) that local field effects within the basal plane are insignificant so that  
we may drop G ¢ G' terms in eqn. (6) if G-G'  is not  parallel to the c axis. 
With these assumptions, restricting our attention to q directed in the basal 
plane we reduce eqn. (6) to the form: 

x ( q , w ) l q l  2 
co) =  .sa,a, + + G + 6 ' 1 P * ( G ) P ( G " )  (8) 

where ×(q, co ) denotes a two dimensional "layer polarizability": 

4~e 2 (~ . ,~ le  iq " r l~, , ' ,~+~ ) (~. ' ,£~+~le- iq  " I~P.,k) 
×(¢,co) - Z 

~[q[2 fLn,n' E n ' ( £  + q)  - -  En(fe ) - -hco  

X [ /0(E, , (k  + ~ )  -- fo(E,/fe))] (9) 

where the ¢ are the two dimensional Bloch states suggested above and p(G) 
are Fourier components  of the c-axis profile of  the charge density of  each 
layer. The product  form of the second expression in eqn. (8) allows an exact  
formal inversion of  the dielectric matrix, from which we obtain the macro- 
scopic dielectric function: 

e~ + XoX(q, co) 
e(q, w) = (10) 

×(q, co) 
1 + ~ (X0 - -  1) 

£oo 

where Xo = ~,([qj2/[q + G[2) jp(G)j2. If the c axis charge profile on each layer 
is given by a delta function, Xo may be evaluated exactly yielding [15] : 

qd sinh(qd) 
~ - o  - (11) 

2 cosh(qd) -- 1 

The plasmon frequencies are then given by the zeroes of  the numerator  of 
eqn. (10) [16] .  (f(q, d) of eqn. (1) = 4~X0/d.) In general, however,  Xo must  
be evaluated numerically, the profile p (z) is taken as a Gaussian weighted by 
a polynomial  with coefficients chosen to reproduce the position of  the peak 
in the charge density of  a Ha r t r ee -Fock -S la t e r  C 2p orbital. 

Finally, we comment  on the evaluation of  the matrix elements in eqn. 
(9). We may decompose ¢~ ~(r) into a set of  Bloch orbitals: 

~,, ~(r) = Y. Cnkieik'ra1(k, r). (12) 
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Then each matrix element is expressable as an inner product  on an operator 
A(h, h + q): 

n ~ (~n(k, r)le-~q'~I~n'(k + q, r)) = Zc"k,~*Ati(k, k + q)ck+q,~. (13) 

The utility of  expression (13) is that  the A~j are described quite accurately 
by a small q expansion. In fact Aij = ~ ~j holds for Iql ~ half a Brillouin zone 
width. Thus the complete matrix element in eqn. (13), which is poorly 
approximated by a small q (dipole) expansion, may be accurately evaluated 
including higher multipole terms, merely be using the small q behavior of  A, 
and the coefficients (cn~) which are directly obtained in the band calcula- 
tions. 

Following evaluation of  e(q, ¢~ ), the energy loss function Im 1/e(q,  co ) 
is obtained directly. Since the experiments under consideration are per- 
formed on HOPG samples in which macroscopic (micron diameter) micro- 
crystals are aligned along the c axis but  are randomly oriented in the basal 
plane, we average the energy loss cross section over an ensemble of basal 
plane orientations with respect to the direction of  q. This has little effect  on 
the plasmon peak position (which is reasonably isotropic with respect to 
rotations in the basal plane), but  does smooth the shapes of  the response 
functions e l (q ,  ~ ) and e2(q, co) somewhat. 

5. Results 

In Fig. 2 we show two maps of  electronic excitations in the q, ¢o plane 
for stage I and stage II FeCla intercalated graphite, respectively. For the 
stage I calculations we assume a shift of  the Fermi energy of  0.9 eV with 

oJ(eV 

0 0.1 0.2 0.3 0 0.1 0.2 
q ( ~ 1 )  q (.~-I} 

0.3 

Fig. 2. Electronic excitation spectra in the q, co plane in stage I (left) and stage II (right) 
FeC13 intercalated graphite. The heavy lines give the plasmon dispersion relation and the 
squares give the plasma frequencies measured in optical experiments. 
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respect to  pristine graphite, and a background dielectric constant  of  3. (We 
will comment  on these fi t ted parameters later.) The effects of  intercalation 
are to open a sizeable gap in the spectrum of single particle interband excita- 
tions and to introduce a strong, low frequency cont inuum due to intraband 
transitions. In response to these latter oscillators, el is driven sharply 
through zero, recrossing zero on the plasmon dispersion curve. The plasmon 
is weakly damped by the shaded interband continuum, but  becomes 
increasingly strongly damped by  a lifetime induced tail from the intraband 
spectrum as it approaches the continuum (for q approaching 0.25 A -1). The 
situation is considerably more complicated for the stage II compound as 
shown in the right hand panel. In this calculation a shift of the Fermi energy 
of 0.65 eV with respect to  pure graphite is introduced, and again the back- 
ground e~ = 3. As in the stage I compound,  excitations within the band(s) 
which are partially depopulated by intercalation provide a very strong intra- 
band continuum which extends down to co = 0. Somewhat  weaker "inter- 
valence" band transitions (i.e., between the two lowest  ~ bands) dominate 
the spectrum from 0.4 to 0.7 eV, and most  of  the valence conduct ion band 
excitations are located above 1 eV. The intervalence band excitations shown 
in this Figure, which are not  present in the stage I material, are expected to 
have a rather pronounced effect  on the plasmon, shown as the heavy solid 
line. In particular, we see that  the plasmon crosses this intervalence thresh- 
old near q = 0.12 A -1, i.e., long before it approaches the intraband threshold. 
Thus, these new stage II "intervalence" band excitations are expected 
rapidly to damp the plasmon as q increases. 

These effects are illustrated in more detail in Fig. 3 where we compare 
the calculated and observed plasmon lineshapes in the two materials. An 
intrinsic electron lifetime of  ~1 .8  × 10 -14 s (0.0375 eV) is included in these 
lineshape calculations. In the stage I material we see that  the plasmon is a 
very well defined resonance at q = 0.1 A -1 . Its intensity decays rapidly as q 
increases, though it is still a well defined excitation up to q = 0.20 A -~. 
Finally, in reasonable agreement with the experimental traces, the plasmon is 
severely overdamped as it closely approaches the intraband single particle 
cont inuum at q = 0.25 A -1. The stage II plasmon, on the other hand is 
considerably weaker at q = 0.10 A -1 (note the vertical scale change) and is 
barely discernible past q = 0.15 A -1 (as it crosses the intervalence threshold 
noted above), thus explaining the significantly more rapid decay observed 
experimentally. 

In Fig. 4 we plot the theoretical and experimental dispersions obtained 
for the plasmons in stage I and stage II FeCls intercalated graphite. In both 
the theoretical and experimental results for the two materials the dispersion 
is well described by a quadratic in q over the momentum range of  interest. 
This is consistent with the discussion of  Section 2, though that simple treat- 
ment  would not  justify the range in q over which the power  law is observed 
to hold. The dispersion coefficients, which are expected to scale inversely as 
~20 between the two systems, in fact change somewhat  faster. This appears 
to be a bandstructure effect  induced by antiscreening from the "inter- 
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Fig. 3. Theoretical and experimental plasmon lineshapes for stage I (left) and stage II 
(right) FeC13 intercalated graphite. The theoretical results for the stage I and stage II 
compounds assume Fermi level shifts of 0.9 eV and 0.65 eV, respectively. 
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Fig. 4. Experimental and theoretical plasmon dispersion in stage I and stage II FeCI3 
intercalated graphite. The squares give plasma frequencies measured in optical exper- 
iments and the circles give measured or calculated results for inelastic electron scattering. 

valence" oscillators below 1 eV in the stage II material. That is, the presence 
of  intervalence oscillators above 0.4 eV in the stage II material displaces this 
plasmon to higher frequency than would be anticipated from the discussion 
of  Section II. 
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Finally, the dispersion coefficients, given as the slopes of the theoretical 
results plotted in Fig. 4 fall systematically below the dispersion coefficients 
found experimentally. With reference to the results of  Section 2 this is 
at tr ibuted to an underest imate of the band dispersion parameters in the 
model band structure. We note that  previous calculations using a band struc- 
ture with significantly larger dispersion (nearest neighbor interaction = 3 eV) 
provided a very satisfactory account  of the plasmon dispersion [ 5],  and it is 
quite likely that  our current  band parameters, which are chosen to provide 
overall agreement with theoretical and experimental data over the full 
Brillouin zone, may,  in fact, provide a less accurate dispersion for these 
bands over a restricted region of  the zone near the H-K axis. We conclude 
therefore that  the experimental plasmon dispersion indicates that  the 
bands are slightly more dispersive near the H-K axis than is predicted in the 
model band structure. 

In view of this uncertainty,  it appears advisable to restrict at tention to 
the momen tum range ~<0.1 A -1 when fitting theoretical parameters to these 
experimental results. In this range the uncertainty in the plasmon dispersion 
has little effect  on the calculated plasmon frequency which, we note, 
depends principally on the shift of  the Fermi energy. For this reason, the 
Fermi energy shifts quoted above are obtained by fitting to experimental 
data at q = 0.10 A -1, i.e., at the smallest m o m e n t u m  transfers experimental- 
ly accessible. Even with this precaution, these results may be affected 
slightly by the choice of background screening, e ~ = 3 (which agrees very 
well with previous estimates from optical studies [ 17] ). Further  variation of 
e~ in the range 2 < e® < 4 introduces + 50 meV shifts in the calculated plas- 
mon peak positions. Short  of  a far more detailed microscopic theory there 
seems to be no unambiguous method  for excluding e~ values somewhat 
higher or assessing the stage dependence of  this quantity. For the present, we 
note that  the background screening chosen in these calculations is quite 
plausible and the results are reasonably insensitive to small variations in this 
value. 

Integrating our model densities of  states over the Fermi energy shift 
fi t ted in these calculations we estimate a conduction charge density of 
~0.027 holes/C in the stage I compound and ~0.014 holes/C in the stage II 
compound.  Despite the possible absolute errors in these estimates enumer- 
ated above, it is quite interesting that  the stage II value is quite accurately 
given as half the value of the stage I charge transfer. This result, and the 
fit ted Fermi level positions, are in quite good agreement with Fermi level 
positions identified from analysis of  the C ls  core exciton lineshape in these 
compounds [4] .  

6. Conclusion 

We have presented a theoretical analysis of  the low frequency plasmon 
spectra in stages I and II FeCl3 intercalated graphite. Many of the differences 
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between the plasmon spectra in these two compounds are anticipated and 
qualitatively explained on the basis of a simple model for the dielectric 
response functions. The real systems, however, are sufficiently non-ideal, to 
be quantitatively sensitive to band structure effects (and, to a lesser extent, 
local field effects) in these solids. Numerical calculations including these 
effects provide a good description of the observed spectra. Fitting theoretical 
spectra to experimental data at q = 0.10 A -1 we estimate Fermi energy shifts 
of 0.9 eV and 0.65 eV in stages I and II FeC13 intercalated graphite, respec- 
tively, with respect to pristine graphite. 
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