

Transmission

Soliton Trans-
-tron. Lett. 28,

iteration in the
Diode Using

sing Cascaded

Raybon, B. L.
Division multi-
LA, February

Characteris-
A Andrekson,
/echt, "Soliton
(G2.1, Amster-

of Short Soli-
B5, 381-390,
d E. Yamada,
Trapping and
91.

Semiconductor Waveguide Optical Switches and Modulators

KAZUHIKO SHIMOMURA

Department of Electrical and Electronics Engineering
Sophia University
7-1 Kioi-cho, Tiyoda-ku, Tokyo 102

SHIGEHISA ARAI

Department of Physical Electronics
Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku, Tokyo 152

Abstract *Semiconductor waveguide optical switches and modulators are reviewed from the view point of material and structure. As material for switches and modulators, effects of both variations of refractive index and absorption are considered. As for the structure of switches and modulators, basic characteristics of devices, including length, speed, and consumption power, are investigated, and recent experimental performances are shown. For further improvement of switches and modulators, the importance of low-dimensional quantum-well structures and strained quantum-well structures are pointed out.*

Introduction

A traditional telecommunication network consists of three main systems, such as subscriber, transmission, and exchange systems. Optical communication systems have brought considerable developments in the subscriber and the transmission systems. The primary requirement for the trunk transmission systems is to provide high information capacity between central offices, which can be in congested metropolitan areas, suburban locales, or between cities, along its routes. In Japan, single-mode fiber capable of transmitting large capacity information with a long wavelength carrier is effectively utilized in the F-400M system, which transmits digital signals with the bit-rate of 400 Mbit/s at 1.3 μ m wavelength, and in the F-1.6G system, which has four times the transmission capacity while maintaining the same repeater spacing [1].

As known from the many applications, optical fiber transmission systems have been introduced into telecommunication networks extensively and rapidly, and this can directly be attributed to high performance and reliability of the systems, which are supported by the progress of optoelectronics technology. In the future, wide-band and low-loss properties of single-mode optical fiber will permit broad-band communication services to be provided between widely spaced repeaters and also allows users to set up a uniform integrated services digital network (ISDN) capable of handling all types of services. This demand for broad-band services in connection with numerous applications extends the ISDN architecture to broad-band

Received: November 2, 1992; accepted: December 9, 1992.

ISDN (B-ISDN) [2], various narrow-band and broad-band services currently available can be supplemented by a whole new range of broad-band services including moving images and high-speed transmission of high-definition documents, i.e., images and graphics, and of large volume of texts and data.

In this way, optical transmission and subscriber systems have made great progress through the development of optical fibers with huge transmission bandwidth, low-noise and very fast detectors, and high-speed single wavelength lasers. However, in exchange systems, which are still composed of conventional electronic devices, optical switches for direct optical exchange systems are under development. Future networks systems, which will be much higher-speed and higher-capacity, very high speed direct optical-switching systems will play a very important role, especially in the realization of broad-band ISDN. Hence, an optical-switching device will be a key device for the construction of such high-speed optical-switching systems and photonic-integrated circuits [3].

In this article, we review the semiconductor optical switches and modulators from the point of view of the devices for optical communication systems. We describe the needs of optical switches and modulators and then explain semiconductor materials used in optical switches and modulators. Characteristics of optical switches and modulators, i.e., speed and consumption power, together with a review on various types of switches and modulators are given. Finally, we discuss the future material aspects of semiconductor optical switches and modulators.

Needs of Optical Modulators and Switches

Optical Modulators

Long-haul trunk transmission systems will need substantially increased transmission capacity in response to requirements of high-speed digital services. Much effort has been expended to overcome the repeater spacing limit in developing a practical large capacity system.

For systems operating at wavelengths where the fiber dispersion is nonzero, frequency chirp of the light signal limits the maximum repeater spacing. This limit comes from the dynamic spectral broadening of light sources and chromatic dispersion of single-mode fiber [4]. Whenever an existing dynamic single-mode laser diode (DSM-LD) [5] emits an optical pulse with large signal amplitude, the temporal carrier density is simultaneously varied; hence, wavelength chirping, i.e., instantaneous wavelength variation of the single longitudinal mode, is caused. This excess spectral broadening under high-speed direct modulation causes the compression or expansion of transmitted pulses in dispersive fiber. In the near future, high-speed (≥ 10 Gbit/s) and long-repeater spacing (≥ 100 km) systems will come into realization and a chirp-free modulation will become important in these systems.

Optical Switches

On the other hand in exchange systems, they are still composed of conventional electronic devices and cannot directly exchange optical signals. By considering the progress of high-speed, high-capacity, and long-repeater spacing of transmission

systems, the
sion systems

Today's
and provide
via analog n
information
compact dis
uncompresse
proposals for
another factc
teleconference
B-ISDN.mus
definition TV
range, deper
Therefore, to
the following

- (i) a dyr
- (ii) a var
- multi

These de
in place of e
data rate and
costs of elect
to-optical inte
to the lower s

Optical-Switch

Optical-switch
space division

In a space
a single chant
part of the s
required) outp
advantage of
the switch is a
switching, syn
required prov
switching syst
protection, an
and where re
transmission t
band services
division switch
the switch; he
connected via

The numt
by using time

currently available services including documents, i.e.,

we have made great improvements in transmission bandwidth using lasers. Optical electronic components under development and higher-speed optical switching are very important.

and modulators in systems. We will discuss the basics of optical switching together with a variety of optical modulators.

based transmission services. Much work is currently developing a

on is nonzero, causing dispersion. This limits the bandwidth and chromatic dispersion of single-mode fiber amplitude, the dispersion chirping, i.e., dispersion is caused. This makes the communication near future, optical systems will be important in these

of conventional transmission

systems, the switching system at the interface between exchange and transmission systems will play a very important role in the network.

Today's networks are essentially voice based at somewhat less than 10^5 bit/s and provide data services in 1 k to 10 kbit/s effective bit rate range, primarily via analog modems, thus representing only a two order of magnitude range of information from sources and sinks. High-quality sound (stereo), as is found on compact discs using a linear digital code, requires in excess of 10^6 bit/s, and uncompressed television requires on the order of 10^8 bit/s (100 Mbit/s). New proposals for high-definition television increase the uncompressed bandwidth by another factor of approximately five to ten, and more 3D TV or high-volume video teleconference system requires in excess of 10^{11} bit/s (100 Gbit/s) bit rates. The B-ISDN must effectively run over an application range from telemetry to high-definition TV as a minimum, representing perhaps six to eight orders of magnitude range, depending on the degree of compression of video signal that is used. Therefore, to handle future information needs, the broadband networks require the following characteristics for the switch:

- (i) a dynamic range of signal bandwidth $10 \text{ kbit/s} \sim > 100 \text{ Gbit/s}$
- (ii) a variety of different types of connections, that is, point-to-point, point-to-multipoint, one-way, bidirectional.

These demands for the network encourage the introduction of optical switches in place of electronic switches. Electronic switching has limitations on both the data rate and the switching reconfiguration rate achievable; and one of the major costs of electronic switching as opposed to optical switching is that of electronic-to-optical interfaces and of the demultiplexing from the high-speed fiber channels to the lower speed that electronics can handle.

Optical-Switching System

Optical-switching systems can be categorized from the switched parameter, namely, space division, time division, and wavelength division switching systems.

In a space division switch, each line entering and exiting the switch represents a single channel. Switching is accomplished by providing a spatial path, an internal part of the switch that connects one input line to one (or more if multicast is required) output line. This type of switching arrangement capitalizes on a principle advantage of optical switches because the information rate that can pass through the switch is much greater than that in electronic systems. In such space division switching, synchronization of the high bit rate input and output channels is not required provided that glitches during switching are acceptable. Therefore, this switching system seems applicable to particularly trunk transmissions for facility, protection, and route restoration, where very broadband signals can be anticipated and where reconfiguration speed is not required to be comparable to the transmission bit rate. Another potential application area is the switching of wide band services in the loop or for local area networks. The limitation of space division switching is that each information channel requires its own input line to the switch; hence, it may be limited by the number of channels that can be connected via the switching matrix.

The number of physical input and output lines to the switch can be reduced by using time division and wavelength division switching systems. In a time division

switching system, each physical line contains several time-multiplexed channels. A particular channel is represented by its timeslot within the frame period. As a result, the total number of input channels to the switch is increased by the number of time-multiplexed channels per input line. This system offers system design flexibility, including the possibility of adjustable bandwidth allocation in different baseband channels and the possibility of simple hardware in which only a single transmitter laser is required for all channels.

As compared with the time division switching system, the wavelength division switching system has two advantages. One is bit rate independence of individual wavelength channel. Then, various speed broadband signals can be exchanged without difficulty. The other advantage is that there is no necessity for high-speed operation in switching control circuits. Moreover, it has the potential capability for extension to a wide area network in partnership with the wavelength division multiplexed (WDM) transmission system. Therefore, this wide area network will be able to provide optical bit rate independent connection between subscribers. Like above-mentioned advantages, wavelength division switching systems are very attractive because of their flexibility. However, to construct this switching system, a high-selectivity tunable optical filter, a wide-range variable wavelength light source, and a wavelength converter are required.

Hence, various types of switching devices are needed to realize these systems. Above all, directive optical switches will be a key component in the optical-switching systems, and we mainly review these switches.

Recently, there has been increasing interest in optical information systems. In these systems, optical bistable devices for optical memories or optical gates become important components. For these devices, a self-electro-optic effect device (SEED) [6] or vertical-to-surface transmission electrophotonic device (VSTEP) [7] were investigated, but we do not discuss these devices in this paper.

Material for Semiconductor Optical Switches and Modulators

Until now, a number of optical-switching and modulating elements have been developed in both lithium niobate (LiNbO_3) [8–10] and III-V compound semiconductor crystals. With recent improvements in III-V epitaxial growth technologies, such as organo-metallic vapor phase epitaxy (OMVPE) and molecular beam epitaxy (MBE), the capability to grow high-purity semiconductor heterostructures with nearly atomically smooth interfaces was demonstrated, and with this technology the III-V optical switches and modulators have been extensively studied. Moreover, because III-V materials offer the obvious advantage of monolithic integration of active or passive photonic devices to form the foundation of photonic integrated circuits (PIC's), III-V compounds materials may eventually replace lithium niobate.

One of the most important differences between dielectric and semiconductor materials is the existence of the optical absorption in the semiconductor material. In the optical switches and modulators using dielectric materials, the operational principle is the change of the refractive index through the electro-optic effect. On the other hand, in semiconductor material, both the absorption and the refractive index change through various effects, and the guided light is controlled by the change of absorption ($\Delta n''$) or refractive index ($\Delta n'$) of the material.

Because of this peculiar characteristic of semiconductor materials, operational principles of semiconductor optical switches and modulators are categorized into

two group
imaginary
tion or ga
index ($\Delta n'$)
is written

Absorption

Absorptio
index (Δn)
quantum-c
bleaching,

The e
the optica
semicondu
commonly
the condu

In rec
techniques
to make si
novel phys
fabricated
ultrathin a

The ef
band gap
semicondu

As sh
electron if

ed channels. A λ period. As a by the number system design on in different 1 only a single

length division e of individual be exchanged for high-speed l capability for length division network will be bscribers. Like is are very at- hing system, a th light source,

these systems. tical-switching

on systems. In gates become device (SEED) TEP) [7] were

its have been bound semiconductor technologies, beam epitaxy structures with technology the ed. Moreover, integration of n integrated hium niobate. emiconductor ctor material. e operational optic effect. On the refractive rolled by the

s, operational egorized into

two groups with respect to the origin of the operation. One is the change of the imaginary part of complex refractive index ($\Delta n''$), which is the change of absorption or gain, and the other is the change of the real part of complex refractive index ($\Delta n'$), which is the refractive index. The complex refractive index variations is written as

$$\Delta \bar{n} = \Delta n' - j\Delta n'' \quad (1)$$

Absorption or Gain

Absorption or gain, which corresponds to the imaginary part of complex refractive index ($\Delta n''$), is changed through the Franz-Keldysh effect in bulk structures, quantum-confined Stark effect (QCSE) in quantum-well structures, carrier bleaching, and stimulated emission.

The electric-field dependence of optical absorption (electroabsorption) near the optical band edge in semiconductors has been extensively studied. In bulk semiconductors, the resultant shift and broadening of the band edge absorption, commonly explained as photon-assisted tunneling of electrons from the valence to the conduction band, is usually known as the Franz-Keldysh effect [11, 12].

In recent years, vast improvements have been made in the crystal growth techniques to fabricate artificial semiconductor nanostructures. It is now possible to make structures that show quantum size effects and that consequently exhibit novel physical properties not encountered in thicker materials. The most widely fabricated and utilized of these nanostructures in optics are quantum-wells, i.e., ultrathin alternating semiconductor layers of different composition.

The effect of electric-field on the optical properties of quantum-wells near the band gap show qualitatively different behavior in contrast with conventional bulk semiconductors.

As shown in Fig. 1, in the absence of electric field, wavefunctions of an electron in the conduction band and a hole in the valence band are symmetric

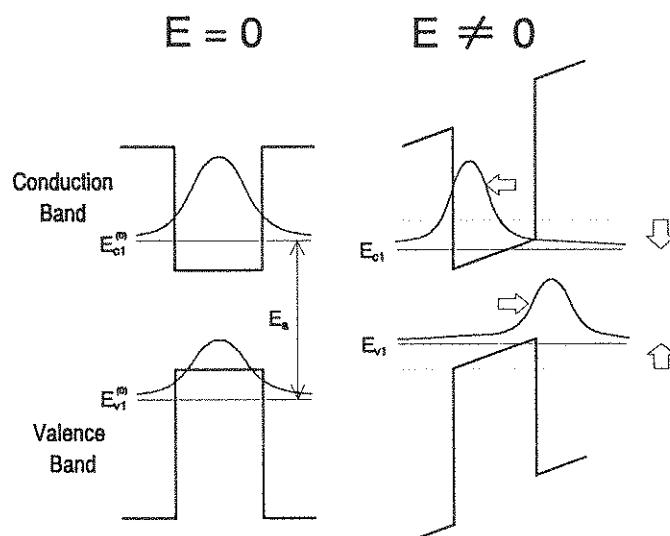


Figure 1. Wavefunctions in a quantum well without and with applied electric field.

(fundamental levels) at the center of the well. On the other hand, by applying the electric field perpendicular to the quantum-well layer, the square well potential gets inclined, and the electron and hole are pulled to opposite sides of the well. At the same time, the quantization level E_{1e}, E_{2e}, \dots in the conduction band decreases relatively, and the quantization level $E_{1h}, E_{2h}, \dots, E_{11}, E_{21}, \dots$ in the valence band increases. Thus, with the increase of applied electric field, effective energy gap $E_{1e} - E_{1h}$ decreases; and as a consequence of spatial separation of wavefunctions, the coupling of electron and hole that satisfies the selection rule ($\Delta n = 0$) decreases. On the other hand, the originally forbidden quantum-well transition ($\Delta n \neq 0$) will become an allowed transition.

Except for the above interband optical transition, it is necessary to consider the transition with respect to the Coulomb attraction on electron and hole pairs, that is exciton. In quantum-wells with layer thickness of the order 10 nm, electric fields applied perpendicular to the layers result in large shifts in the optical absorption to lower photon energies, with the exciton resonances remain well resolved even for shifts in exciton energy much larger than the zero field binding energy and fields > 50 times the classical ionization fields.

These effects have been explained in terms of the Stark shift of a strongly confined hydrogenic system (QCSE) [13]. Electric fields perpendicular to the quantum-well layers pull the electrons and holes toward opposite sides of the layers resulting in an overall net reduction in energy of an electron-hole pair and a corresponding Stark shift in the exciton absorption. The walls of the quantum-well impede the electron and hole from tunneling out of the well. When the well is narrow (~ 10 nm) compared to the three-dimensional exciton size, the electron-hole interaction, although slightly weakened by the separation of electron and hole, is still strong, and well-defined excitonic states can still exist. Thus, exciton resonances can remain for much higher fields than would be possible in the absence of this confinement, and large absorption shifts can be seen without excessive broadening. In the absence of this excitonic effect, electroabsorption in quantum-well structures have been referred to as quantum-confined Franz-Keldysh effect (QCFK) [14].

Carrier bleaching [15–17] is caused by the band filling and screening of the electron-hole interaction. Band filling reduces the absorption by diminishing the phase space available for exciton creation. Screening reduces the oscillator strength by weakening the coulomb attraction until electron and hole ultimately become unbound.

Optical switches using laser diodes were obtained through gain change by stimulated emission. When the current is injected, the optical absorption is reduced and the optical signal exits the laser diode switch by the amplification, and the incident light is absorbed under no injection current.

Refractive Index

Refractive index, which corresponds to the real part of complex refractive index ($\Delta n'$), is changed through electro-optic effect, free carrier injection, quantum-confined Stark effect (QCSE), carrier depletion, and quantum-well electron transfer.

By the free carrier injection, there are two effects that contribute to change the refractive index: plasma effect and band-filling effect. The plasma effect is due

to the free absorption energy state momentum lattice transitions absorption longer wavelength induce a change in the fundamental injection. The band empty into the band gap to lower energy refractive index.

As expected, different from the larger values related to the in the quantum and a large measured refractive index.

Depletion of linear electron band-filling when the depletion (2) an increase in carriers. The mechanism is the same as carrier quenching, by using, for example, quantum-well states. Electrons move to the edge of the structure. Factors with optical structure is the application of quantum well absorption.

α_p Parameters In a semiconductor, the change in the refractive index is due to the free absorption energy state momentum lattice transitions absorption longer wavelength induce a change in the fundamental injection. The band empty into the band gap to lower energy refractive index.

by applying the well potential of the well. At band decreases the valence band wavefunctions, rule ($\Delta n = 0$) well transition

try to consider and hole pairs, 10 nm, electric in the optical is remain well o field binding

t of a strongly dicular to the e sides of the hole pair and a quantum-well when the well is the electron- electron and hole, Thus, exciton in the absence hout excessive n in quantum- Keldysh effect

reening of the iminiishing the illator strength nately become

ain change by absorption is olification, and

refractive index ion, quantum- well electron

ute to change a effect is due

to the free carrier absorption both in the conduction and valence bands. The absorption of a photon by a free carrier in the band implies the transition to higher energy states in the same band and requires some interaction to satisfy the momentum conservation rule. The additional momentum can be provided by lattice interaction via phonons or by scattering with ionized impurities. Because transitions inside the same band usually involve small energy changes, free carrier absorption has an important contribution to the overall absorption spectra for longer wavelengths below the bandgap energy; and this free carrier absorption will induce a corresponding refractive index variation. The band-filling effect is due to the fundamental absorption edge shift with the change of a Fermi level by carrier injection. In an *n*-type material when the carriers are removed, the conduction band empties its energy states with the consequent moving of the Fermi level down into the bandgap region. As a result, the fundamental absorption edge will shift to lower energies, producing an increase of the absorption and corresponding refractive index variation.

As explained previously, electroabsorption in quantum-well structure is much different from the bulk structure. Hence, for the refractive index variation a much larger value will be expected since both the refractive index and the absorption are related together through Kramers-Krönig relation. This refractive index variation in the quantum-well structure was theoretically predicted by Yamamoto et al. [18], and a large refractive index variation (i.e., more than 4%) was experimentally measured by Nagai et al. [19]. Also exciton resonances play a significant role in the refractive index variation of the quantum-well structures.

Depletion edge translation (carrier depletion) is the combined effects of the linear electrooptic effect, the Franz-Keldysh effect, the plasma effect, and the band-filling effect that produce a refractive index variation in the depletion region when the device is reverse biased. Two major physical effects in the carrier depletion are: (1) an increase in the electric field inside the depletion region and (2) an increase in the depletion region width with the consequent removal of carriers.

The main concept of the quantum-well electron transfer [20] is almost the same as carrier bleaching, that is, electronic control of phase space absorption quenching. The number of electrons in the quantum-well is electrically controlled by using, for example, a quantum-well field effect transistor structure. When the quantum-well is filled with the carriers, the optical absorption associated with those states simply disappears from the spectrum. Consequently, the absorption edge moves to higher photon energy as the lower energy states are filled with electrons. These are particularly well suited for waveguides, where useful modulators with only one quantum well were made. The quantum-well electron transfer structure is designed with a quantum well and a reservoir for charges. By the application of voltage, the mobile charges will move back and forth between the quantum well and the reservoir, resulting in the change in the refractive index and absorption of the quantum-well.

α_p Parameter

In a semiconductor optical switch and modulator, the guided light is controlled by the change of absorption ($\Delta n''$) or refractive index ($\Delta n'$) of the material. However, in semiconductor materials, refractive index variation is accompanied by variation

of absorption, through the Kramers-Krönig relation, and additional problems will occur. For instance, in electroabsorption modulator, the wavelength chirping will occur by refractive index variation; and also in the intersectional waveguide type, total internal reflection will be destroyed by an increase of absorption.

Hence, the influence of this absorption change to the refractive index variation or its opposite on the operational properties of optical switches and modulators should be investigated. In this aspect an important parameter α_p , named index-loss variation ratio [21] is characterized, which is defined by the ratio of real ($\Delta n'$) to imaginary parts ($\Delta n''$) of the complex refractive index variation due to the external force (electric-field or injection current) in the same manner as linewidth enhancement factor in semiconductor lasers [22]. This is given by

$$\alpha_p = \frac{\Delta n'}{\Delta n''} = \frac{4\pi n'}{\lambda} \cdot \frac{\Delta_{eq}}{\Delta \alpha_{loss}} \quad (2)$$

where n' is the refractive index of the material without external factor, Δ_{eq} is the relative change of refractive index ($=\Delta n'/n'$), $\Delta \alpha_{loss}$ is the change of absorption coefficient with external factor, and λ is the wavelength of incident light.

Structure of Semiconductor Optical Switches and Modulators

Using the changes of absorption or refractive index as explained in the previous sections, many types of optical switches and modulators have been demonstrated. In this section, we explain the device structures and characteristics of semiconductor modulators and switches. First we show the required device length of four types of switches and modulators, which is the most important structural parameter of these devices. Then we explain general characteristics of switches and modulators, such as operation speed and consumption power.

Characteristics of Semiconductor Optical Switches and Modulators

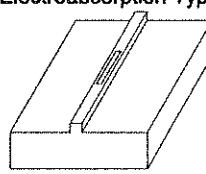
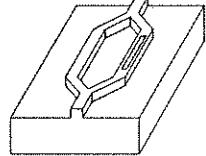
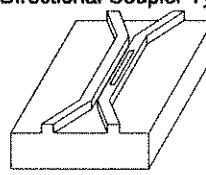
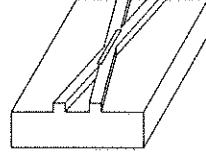
Device Length. In the optical switches and modulators, the length of the electrode is the most important structural parameter for the performance and characteristics of the device. Here we compare their electrode length in the ideal case, for the electroabsorption type, Mach-Zehnder type, Directional Coupler type, and intersectional waveguide type as listed in Table 1, in which Ξ is the extinction ratio to be obtained, λ is the operational wavelength, n_{eq} is the equivalent refractive index of the waveguide, $\Delta \alpha$ and Δ_{eq} are the variations of absorption and relative refractive index ($=\Delta n'/n'$), respectively, and w is the width of the waveguide. In the electroabsorption type device, the electrode length is determined by the absorption change $\Delta \alpha$ (cm^{-1}) and extinction ratio Ξ (dB). In the Mach-Zehnder type device, it should be adjusted so as to satisfy the condition $\Delta \beta \cdot l = \pi$. In the Directional Coupler type, the device length is obtained by coupled-mode theory under the condition of minimum coupling length; in the intersectional waveguide type device, the electrode length is determined by the width of waveguide and critical angle θ_c of total internal reflection.

For applications of optical switches and modulators, response speed and consumption power are the most important features similar to electronic devices.

In the following, we will discuss the characteristics of these four types of switches and modulators.

Speed. The speed of optical switches and modulators is determined by the lifetimes of carrier density in the active region. In the electroabsorption type switch, the speed is limited by the carrier lifetime. In the Mach-Zehnder type switch, the speed is limited by the carrier lifetime and the time required for the carrier to travel through the waveguide. In the Directional Coupler type switch, the speed is limited by the carrier lifetime and the time required for the carrier to travel through the waveguide. In the intersectional waveguide type switch, the speed is limited by the carrier lifetime and the time required for the carrier to travel through the waveguide.

ional problems
ve length chirp-
nal waveguide
sorption.
index variation
nd modulators
med index-loss
f real ($\Delta n'$) to
to the external
width enhance-





(2)

ctor, Δ_{eq} is the
of absorption
light.

n the previous
demonstrated.
f semiconduc-
h of four types
parameter of
d modulators,

the electrode
characteristics
case, for the
pe, and inter-
ction ratio to
refractive index
and relative
e waveguide.
mined by the
ach-Zehnder
 $l = \pi$. In the
-mode theory
al waveguide
waveguide and
e speed and
ronic devices.

Table 1
Electrode Length of Four Types of Optical Switch/Modulator

Type	Electrode Length (l)
Electroabsorption Type 	$\frac{E}{4.34\Delta\alpha}$
Mach-Zehnder Type 	$\frac{\lambda}{2n_{eq}\Delta_{eq}}$
Directional Coupler Type 	$\frac{\sqrt{3}\lambda}{2n_{eq}\Delta_{eq}}$
Intersectional Type 	$\frac{2}{m} \cdot \frac{w}{\sqrt{2\Delta_{eq}}} \quad (\theta = m\theta_c)$

In the following discussion, we show the speed and consumption power of optical switches and modulators driven by electric field.

Speed. The speed of the switches and modulators by carrier injection is determined by the lifetime of injected carriers. It is typically a few nanoseconds for the injected carrier density of around 10^{18} cm^{-3} . On the other hand, electric-field effect type switches and modulators, which operate by using the electro-optic effect, Franz-Keldysh effect, and quantum-confined Stark effect, are expected to operate at high speed. Actually the speed of the electric-field effect type device is limited by the time for charging the capacitor of the device through the resistor of the source. In the frequency domain, the speed of the device is measured by the frequency at which the modulated signal power drops to the half of its minimum (i.e., 3 dB cut-off frequency $f_{3 \text{ dB}}$). By neglecting the capacitance and inductance of the chip

mount, we obtain

$$f_{3 \text{ dB}} = (2\pi R \cdot C_{\text{dev}})^{-1} \quad (3)$$

where R is the resistance of the source and C_{dev} is the capacitance of the device given by

$$C_{\text{dev}} = \epsilon S/d \quad (4)$$

where S is the area (=length \times width) of applied electric field to the device and d is the width of depletion layer, which is not the thickness of the waveguide. Equation (3) shows that the simplest way to increase the speed of the device is to reduce the capacitance.

The area of applied electric field can be reduced by shortening the length of device, which is decided by the electro-optic coefficient of the material. For example, we show the relation between speed and material parameter of interferometer-type device. The length of electrode, which is shown in Table 1, is rewritten in terms of the linear electro-optic coefficient dn/dE and applied electric field E as

$$l = \frac{\lambda}{2(dn/dE)E} \cdot \frac{1}{\xi n_{\text{eq}}} \quad (5)$$

In Eq. (5) ξ is the optical confinement factor and n_{eq} is the equivalent refractive index of the waveguide for lateral direction. Hence, the capacitance C_{dev} and the cut-off frequency $f_{3 \text{ dB}}$ can be expressed as

$$C_{\text{dev}} = \frac{\epsilon \lambda}{2(dn/dE)E} \cdot \frac{w}{\xi n_{\text{eq}}} \quad (6)$$

$$f_{3 \text{ dB}} = \frac{(dn/dE)E}{\pi \epsilon \lambda} \cdot \frac{\xi n_{\text{eq}} d}{w} \cdot \frac{1}{R} \quad (7)$$

Equation (7) reveals that $f_{3 \text{ dB}}$ is proportional to the material parameter dn/dE where the value of dn/dE is $7.7 \times 10^{-9} \text{ cm/V}$ for LiNbO_3 [23], and $1.6 \times 10^{-7} \text{ cm/V}$ for the quantum-film structures [18].

Figure 2 shows the relation between cut-off frequency $f_{3 \text{ dB}}$ and electro-optic coefficient dn/dE from Eq. (7) at an applied electric field $E = 1 \times 10^5 \text{ V/cm}$. Waveguide thickness and width are respectively $d = 0.5 \mu\text{m}$, $w = 2 \mu\text{m}$. As for the low-dimensional quantum-well structure, we discuss more detail in the last section. As can be seen, for a given waveguide structure, the speed of device consisting of the quantum-well structure increases up to approximately twenty times that of the dielectric material.

Consumption Power. When the optical switches or modulators operate at high speed, they require large consumption power. Consumption power P_c at a modulation frequency f is given by

$$P_c = \frac{(2\pi f C_{\text{dev}})^2 R}{1 + (2\pi f R C_{\text{dev}})^2} V^2 \quad (8)$$

Figure 2. Relation between $f_{3 \text{ dB}}$ and dn/dE for a quantum-film structure.

where V is the voltage across the device, R is the resistance of the source, and C_{dev} , which is given by Eq. (4).

where

This equation reveals that the value of the cut-off frequency is proportional to the electro-optic coefficient and the applied electric field.

Figure 3 shows the relation between cut-off frequency $f_{3 \text{ dB}}$ and electro-optic coefficient dn/dE as a function of the applied electric field E . When the modulation frequency is 10^9 Hz , the consumption power P_c is 100 mW for $dn/dE = 1.6 \times 10^{-7} \text{ cm/V}$ and 10 mW for $dn/dE = 7.7 \times 10^{-9} \text{ cm/V}$. The consumption power is proportional to the square of the electro-optic coefficient and the square of the applied electric field.

Figure 4 shows the relation between cut-off frequency $f_{3 \text{ dB}}$ and the electro-optic coefficient dn/dE for a quantum-film structure. The consumption power P_c is proportional to the square of the electro-optic coefficient and the square of the applied electric field. The consumption power is proportional to the square of the electro-optic coefficient and the square of the applied electric field.

(3)

e of the device

(4)

the device and
the waveguide.
the device is toing the length
material. For
parameter of
1 in Table 1, is
 Σ and applied

(5)

lent refractive
 $\approx C_{\text{dev}}$ and the

(6)

aterial param-
 NbO_3 [23], andd electro-optic
 $\times 10^5 \text{ V/cm}$.
um. As for the
e last section.
e consisting of
es that of theerate at high
at a modula-

(8)

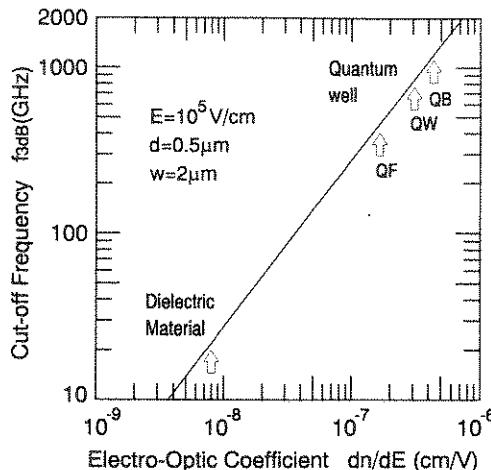


Figure 2. Relation between cut-off frequency $f_{3 \text{ dB}}$ and electro-optic coefficient dn/dE where QF is the quantum-film, QW is the quantum-wire, and QB is the quantum-box structure.

where V is the source voltage. P_c can be expressed in terms of the applied voltage V_{dev} , which is necessary for switching or modulating as

$$P_c = (2\pi f C_{\text{dev}})^2 R V_{\text{dev}}^2 = \left(\frac{f}{f_{3 \text{ dB}}} \right)^2 \frac{V_{\text{dev}}^2}{R} \quad (9)$$

where

$$V_{\text{dev}} = \frac{|V|}{\sqrt{1 + (f/f_{3 \text{ dB}})^2}} \quad (10)$$

This equation indicates that the consumption power P_c is determined by the value of the applied voltage to the device, the source resistance, and the normalized modulation frequency (i.e., $f/f_{3 \text{ dB}}$).

Figure 3 shows the relation between P_c and the normalized frequency $f/f_{3 \text{ dB}}$ as a function of V_{dev} , where the source resistance is assumed to be $R = 50 \Omega$. When the modulation frequency is equal to the cut-off frequency $f_{3 \text{ dB}}$, the consumption power P_c is less than 500 mW for $V_{\text{dev}} < 5 \text{ V}$. It is possible to obtain $P_c < 100 \text{ mW}$ under the condition of $V_{\text{dev}} < 2 \text{ V}$. In any case, to attain a low-consumption power switch or modulator, it is important to reduce the voltage applied to the device. For this purpose, it is necessary to increase the electro-optic coefficient of the material. If we use Eq. (6) in case of an interferometer-type device, the consumption power [Eq. (9)] becomes

$$P_c = \left(f \cdot \frac{\pi \varepsilon \lambda}{(dn/dE)} \cdot \frac{w}{\xi n_{\text{eq}}} \right)^2 R \quad (11)$$

Figure 4 shows the comparison of consumption power between the dielectric material and the quantum-well structure, where dn/dE of these materials are the same as those used in Fig. 3. As can be seen, the consumption power of the device

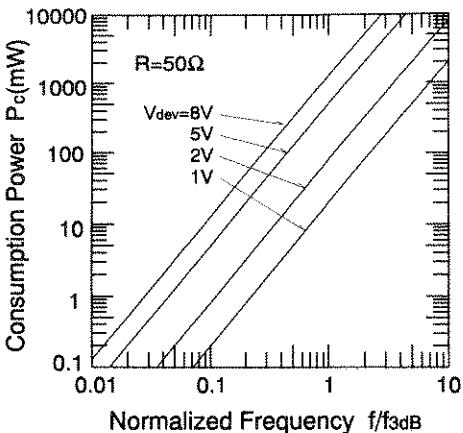


Figure 3. Relation between consumption power P_c and normalized frequency $f/f_3 \text{ dB}$ as a function of V_{dev} .

using quantum-well structure can be reduced to about 1/400 times that of the dielectric material-based device.

In the following section, we review the state of the art of various types of semiconductor switches and modulators experimentally reported so far. Operational principle and device structure of these devices are summarized in Table 2.

Modulator

Intensity Modulator—Waveguide Type. An external modulation technique is attractive because the modulation function can be separated from the light generation function, and this allows the reduction of wavelength chirping under a high-speed modulation [24].

Among several types of semiconductor modulators, electroabsorption (EA) modulator has been confirmed for high-speed and low-chirp characteristics, and it seems to be the most suitable for an integrated structure because of its structural simplicity.

Figure 4. Comparison of consumption power P_c between dielectric material and quantum well structure.

$\Delta n''$	FK
$\Delta n'$	QCSE
$\Delta n'$	SE
$\Delta n'$	EO
$\Delta n'$	CI
$\Delta n'$	QCSE
$\Delta n'$	CD
$\Delta n'$	QET

$\Delta n''$	FK:
$\Delta n'$	QCS:
$\Delta n'$	SE:
$\Delta n'$	EO:
$\Delta n'$	CI:
$\Delta n'$	QCS:
$\Delta n'$	CD:
$\Delta n'$	QET

Most of operated by E cal intensity demonstrating [40]. The dev applied voltag

Electroabs structure has relatively low roabsorption using this QC reported for It an applied vol

As explair the long-haul sorption modu less than 1 for

From the tor modulators laser and a m with electroab [49]. These bu

Table 2
Operational Principle and Structure of Semiconductor Optical
Switches and Modulators

Semiconductor Optical Switch and Modulator									
	<i>Modulator</i>			<i>Switch</i>					
	IM(W)	IM(T)	REF	MZ	PS	LD	GS	DC	X
$\Delta n''$	FK	[37-49]		[83]					
	QCSE	[50-73]	[77-82]	[84-96]			[121]		
	SE					[119, 120]	[122]		[139]
$\Delta n'$	EO			[97, 98]	[104, 105]			[123-129]	
	CI							[130]	[140-148]
	QCSE	[74, 75]		[99-101]	[106-112]			[131-138]	[149-152]
	CD				[113-118]				[153]
	QET	[76]		[102, 103]					[154]

<i>Principle</i>		<i>Modulator</i>	<i>Switch</i>	<i>Structure</i>					
$\Delta n''$	$\Delta n'$	IM:	REF:	MZ:	PS:	LD:	GS:	DC:	X:
FK:	FK: Franz-Keldysh effect								
QCSE:	QCSE: Quantum-confined Stark effect								
SE:	SE: Stimulated emission								
EO:	EO: Electro-optic effect								
CI:	CI: Free carrier injection								
QCSE:	QCSE: Quantum-confined Stark effect								
CD:	CD: Carrier depletion								
QET:	QET: Quantum-well electron transfer								

Most of electroabsorption modulators consist of bulk material, which are operated by Franz-Keldysh effect. An GaInAsP/InP buried-heterostructure optical intensity modulator made of Fe-doped semi-insulating InP buried layers demonstrating a bandwidth of 11.2 GHz was realized at a wavelength of 1.53 μm [40]. The device length of the modulator was 200 μm , and its extinction ratio at an applied voltage of -8.5 V was 20 dB.

Electroabsorption modulator consisting of a multiple quantum-well (MQW) structure has capability of high-speed operation, large extinction ratio under relatively low applied voltage, and small device length because of its large electroabsorption coefficient through the quantum-confined Stark effect (QCSE). By using this QCSE, high-speed modulation bandwidth exceeding 40 GHz has been reported for InGaAs/InAlAs MQW intensity modulator operating at 1.55 μm with an applied voltage of -5 V and 10 dB extinction ratio [61].

As explained in the introduction, chirp-free modulation is very important for the long-haul high-bit-rate optical fiber transmission system. In these electroabsorption modulators, the linewidth enhancement factor α has been reported to be less than 1 for both bulk and MQW structures [41, 64].

From the viewpoint of stable operation, monolithic integration of semiconductor modulators with lasers has an advantage to reduce the coupling loss between a laser and a modulator. Figure 5 shows the monolithic integrations of a DFB laser with electroabsorption modulators using the Franz-Keldysh effect in bulk structure [49]. These bulk modulators have been under development for a long time, and in

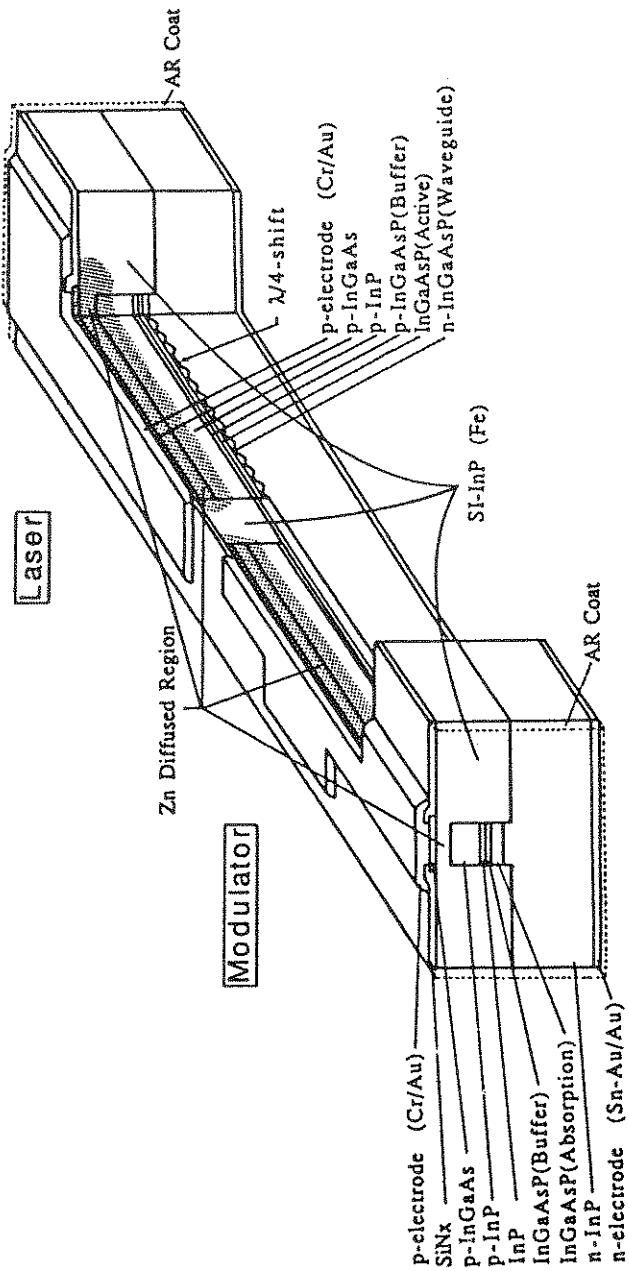


Figure 5. Schematic structure of integrated light source with an asymmetric $\lambda/4$ -shifted DFB laser and an EA modulator [49].

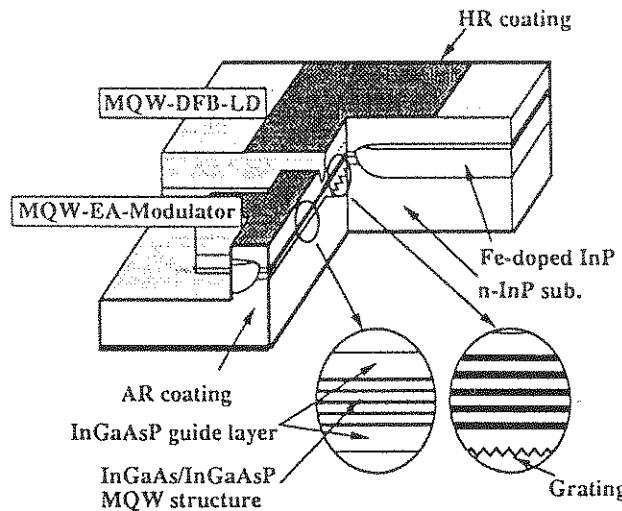
Figure 6. Sch
area growth t

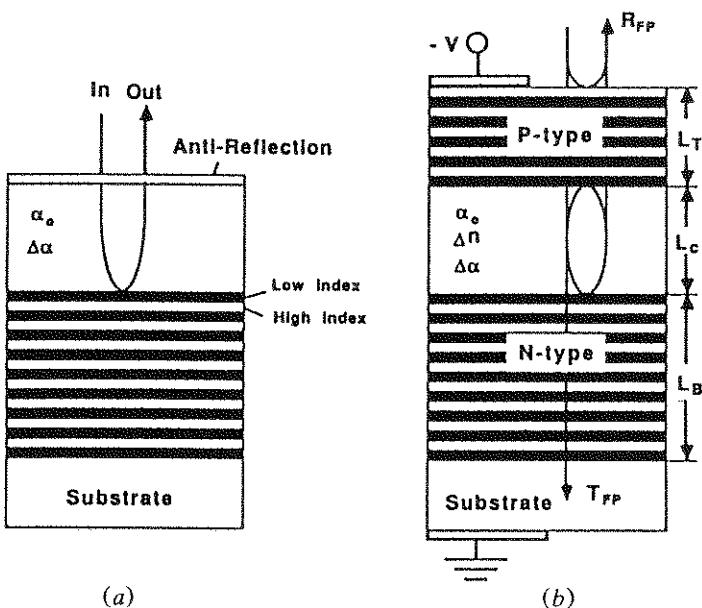
a transmiss
(2.4 Gbit/s-
MQW struc
and DFB la
at 4 V oper

In these
integration
growth usi
freedom in
pounds. Th
masks, on
ing the sha
able to op
technique
in Fig. 6, v
operating a
voltage of

Transverse
the plane
considerab
processing

A MC
because o
impulse re
and as a
individual
matrix ad
been fabr




Figure 6. Schematic structure of MQW EA modulator integrated DFB laser using selective area growth technique by MOCVD [73].

a transmission system, 10 Gbit/s modulation [45] and over 100 km transmission (2.4 Gbit/s-135 km) [48] have been demonstrated. In a monolithic light source with MQW structure for both electroabsorption modulator (InGaAs/InAlAs MQW) and DFB laser (InGaAsP/InGaAs MQW), a 3 dB bandwidth in excess of 16 GHz at 4 V operation voltage for a 20 dB extinction ratio has been demonstrated.

In these devices, two-step epitaxial growth has been used for the monolithic integration of a modulator and a laser. Recently, it was reported that selective area growth using metal organic chemical vapor deposition offers a new degree of freedom in designing the composition and growth thickness of III-V bulk compounds. The bandgap energy of the compound crystal depends on the pattern of masks, on which epitaxial growth is prevented, and it can be controlled by varying the shape of mask pattern. Moreover, this idea indicates that it might be applicable to optical-integrated devices consisting of different compositional layers. The technique was applied to an EA modulator/DFB laser-integrated device as shown in Fig. 6, which showed a 13 dB extinction ratio at an applied voltage of -2 V operating at 1.55 μ m, and a 10 Gbit/s modulation was achieved with a low-drive voltage of 1 V in the InGaAs/InGaAsP MQW system [70-73].

Transverse Type. Semiconductor optical modulators that operate on light normal to the plane of the device, usually named a spatial light modulator (SLM) are of considerable interest because of their potential applications in optical information processing, optical computing, or optical interconnection.

A MQW structure has been shown to be useful for the element of a SLM because of its large electroabsorption effect. An on/off ratio of 1.7:1 and an impulse response of 131 ps were reported in a single-device MQW modulator [78]; and as a two-dimensional array of SLM, 2 \times 2 [80] or 3 \times 3 [81] array of individually contacted, electrically driven modulators, and 4 \times 4 [82] array with matrix address lines, which allow elements to be selected line by line, have also been fabricated.

Figure 7. Schematic structure of reflection modulators: (a) Absorption modulator, and (b) Fabry-Perot modulator [93].

Reflection Modulator. In transmission type intensity modulators fabricated on lossy substrates such as AlGaAs/GaAs device, it is necessary to remove the substrate, but this process may be inconvenient and limit their applications. An alternative approach is to incorporate an epitaxial multilayer dielectric mirror between the substrate and the QCSE device as shown in Fig. 7. The device operates in reflection mode that results in an increase of the extinction ratio because the incident light passes twice through the quantum-well region. Furthermore, it is possible to fabricate unique optical modulators by placing the active region between Fabry-Perot cavities formed with epitaxially grown multilayer mirrors. These Fabry-Perot devices can have much larger contrast ratio because of the multiple reflections of the light through the material. Especially, an asymmetric Fabry-Perot modulator based on AlGaAs/GaAs MQW has exhibited an extinction ratio in excess of 20 dB [89] and operating voltage of less than 3 V [95].

Mach-Zehnder Modulator. Mach-Zehnder modulator has a single-input and output waveguide and the two Y-branches as a 3 dB splitter and a combiner [25, 26]. When the light from the two arms arrives at the second Y-branch in-phase condition, the intensity in the output waveguide becomes maximum. However, by introducing a π -phase shift between the light in the two arms, the field distribution at the output branch forms the second-order waveguide mode, which is not supported by the single-mode output waveguide, then the light is lost by radiation resulting in the off-state.

The chirping characteristics of the Mach-Zehnder modulator can be controlled by the driving condition and can realize the chirpless modulation by push-pull driving of the two arms of the Mach-Zehnder modulator.

In a extinction
1.55 μ m
 $V_{\pi} \times L$ =
MQW str
another re
amplifier
and coupl

Phase Mo
keying opt

For th
junction d
both the e
shift effic
operating
respective

A co
advantage
electro-
AlGaAs/
mm has
(V_{π} = 3.8
bandwidt
InGaAlA

Optical Si

Optical-Si
applicabl
waveleng
applicabl
others ar
beyond t

As fo
has two
two outp
connecte
The first
physicall
the gate
of them
passively
it may
However
the outp

Bei
directive

In a device consisting of bulk InGaAsP/InP double heterostructure, an extinction ratio of 7 dB has been reported with a 4.5 V switching voltage at 1.55 μm wavelength where the voltage-length product for π phase shift is $V_\pi \times L = 22.5 \text{ V} \cdot \text{mm}$ [97]. On the other hand, in a device using InGaAsP/InP MQW structure, it was significantly reduced to $V_\pi \times L = 1.9 \text{ V} \cdot \text{mm}$. There was another report concerning an integration of compressively strained InGaAs QW amplifier with the MQW Mach-Zehnder modulator to compensate propagation and coupling losses in order to improve the net fiber-to-fiber gain [100].

Phase Modulator. Optical phase modulators are required for use in phase-shift-keying optical communications and coherent optical information processing.

For the depletion-edge-translation effect in a reverse biased p^+ -p-i-n- n^+ or p-n junction double heterostructure, refractive index variation is enhanced by utilizing both the electro-optic and the free-carrier effects. In these devices, very-high phase shift efficiencies of $60\text{--}100^\circ/\text{V mm}$ and $37.5^\circ/\text{V mm}$ have been obtained at operating wavelengths of $1.06\text{--}1.15 \mu\text{m}$ [115] and $1.3 \mu\text{m}$ wavelength [118], respectively.

A contribution by an excitonic effect to the refractive index Δn provides advantages for MQW phase modulators over bulk material ones through enhanced electro-optic effect and its quadratic dependence on the applied electric field. In AlGaAs/GaAs MQW phase modulator, phase shift efficiency as large as $520^\circ/\text{V mm}$ has been reported [108]. As for $1.55 \mu\text{m}$ wavelength devices, a low voltage ($V_\pi = 3.8 \text{ V}$), small intensity modulation depth below 1.5 dB, and modulation bandwidth without any degradation up to 20 GHz have been reported in the InGaAlAs/InAlAs MQW structure [112].

Optical Switches

Optical-Switching Elements. There are, in general, three kinds of switching elements applicable to optical exchange systems, namely, space-division, time-division, and wavelength-division optical switches. In this section, only space-division switches applicable to an optical matrix array exchange system are reviewed, because the others are related to optical memory and wavelength conversion devices, which are beyond the scope of this paper.

As for the optical-switching element consisting of 2×2 input/output ports, it has two states: the so-called "bar state" in which the input ports are connected to two output ports in parallel and "cross state" in which the input port is cross connected. There are two types of switches to provide optically this beta function. The first is the generic directive switch type in which light via some structure is physically directed to one of two different outputs. Another alternative approach is the gate switch in which the input signal is passively split into two parts, and each of them enters a simple on/off modulator. The outputs from those gates are passively combined to provide two possible outputs. Because of its simple function, it may be easier to achieve beta function compared with a directive switch. However, the gate switch has an inherent 3 dB split loss and 3 dB combining loss at the output, which may be overcome by using optical amplifiers.

Because of the passive splitting and combining losses of gate type switches, directive type switches have most frequently been used for switch arrays. Most

common directive switch devices are: (a) directional coupler [27] or reversed $\Delta\beta$ directional coupler [28] and (b) intersectional switch [29–31].

Directional coupler. In this structure, a pair of phase-matched optical waveguides are arranged in parallel with a small separation so that the guided light wave is periodically coupled back and forth between the guides in the direction of light propagation due to evanescent coupling. The coupling strength depends on the interwaveguide separation and the waveguide mode size, which, in turn, depends on the wavelength, polarization, and the confinement factor of the waveguide. By arranging electrodes at the waveguides, the refractive index can be changed via an applied electric field. Hence, the original phase matching between the waveguides gets destroyed and switching of light between the outputs can be accomplished.

While a directional coupler provides better characteristics in the bar state by electrical control, it is difficult for the cross state, since the coupling length depends on strip waveguide width and the index difference of the waveguide, which strongly depend on fabrication process. To achieve a perfect cross state, the interaction length must be adjusted to the coupling length l or odd integer multiple of l . This limitation can be overcome in reversed $\Delta\beta$ type directional coupler switch, in which equal magnitude but opposite polarity of $\Delta\beta$ can be obtained over the two half length sections or, in general, over N sections. It can be shown that over a relatively large range of coupling values one can achieve better characteristics in both the cross and bar states.

Intersectional switch. Operational principle of intersectional switch is based on total internal reflection (TIR) induced by a refractive index variation due to the QCSE or other effects as explained in the previous section. Bar and cross states are changed by electronically controlled reflectivity of the mirror arranged at the center portion of intersecting waveguides. This phenomenon is insensitive to polarization of incident light, and critical angle can be increased when the refractive index difference between two media is large. If we consider an optical switch connected to single-mode optical fiber end, polarization-independent property is very important since the polarization of the light transmitted through a typical fiber randomly fluctuates. Merits of an intersectional optical switch are: (i) wider tolerance in the operation wavelength, and in the size fluctuation of the waveguide; (ii) polarization insensitive; (iii) small and simple electrode structure; and (iv) easy-to-fabricate matrix switch array. However, when an intersecting angle is small, the operation of the switch is considered as a mode interaction between the two eigenmodes of the waveguide structure or simply zero gap directional coupler, and these merits will vanish. Under a condition of intersecting angle larger than 2° , an intersectional switch with all these merits can be regarded as the best type of switching element for optical switch array.

In the following section, we show the reported semiconductor optical switch element and optical switch array.

Gate Switch. In the GaAs/AlGaAs MQW system, a gate 2×2 matrix switch has been fabricated [121]. This 2×2 optical gate matrix switch consisted of four GaAs/AlGaAs MQW electroabsorption modulator, miniaturized optical splitters and combiners having corner mirrors, and the switch size of 3 mm and 1.2 mm, respectively. The crosstalk was -20 dB at 12 V, and the insertion loss was 24 dB,

which include respectively, 8

One of the potential light-absorbing as power-split switches feasible matrix. Switching characteristics a minimum fi

As the characteristics have been demonstrated, injection current is approximately 100 mA. The switch is and injection current was demonstrated to be 2 mA.

Directional Coupler. The directional coupler operated at 1.3 μ m. The switch is 2 m \times 2 mm and 1.3 dB insertion loss.

In the GaAs/AlGaAs system with double-layered structure, the insertion loss at long wavelength is 1.3 dB. The switch is 2 mm \times 2 mm and 1.3 dB insertion loss. It is the best performance for the bar switch.

As an optional coupling, the

Figure 8. Schematic Mask layout

or reversed $\Delta\beta$ led optical wave-the guided light in the direction of strength depends which, in turn, it factor of the wave index can be switching between outputs can be

in the bar state coupling length waveguide, which cross state, the integer multiple sectional coupler obtained over can be shown to achieve better

itch is based on function due to the and cross states or arranged at is insensitive to when the refractive optical switch property through a typical h are: (i) wider the waveguide; structure; and (iv) angle is small, between the two al coupler, and greater than 2° , an e best type of

optical switch

matrix switch has consisted of four optical splitters and 1.2 mm, loss was 24 dB,

which include a 9 dB propagation loss. The mirror, scattering, splitting losses were, respectively, 8, 4, and 3 dB.

One of the features of semiconductor materials is that they provide not only the potential for electrically controlled optical gain and gating functions but also light-absorbing or light-amplifying detection. Thus, passive waveguide losses as well as power-splitting and -combining losses can be compensated for, making zero-loss switches feasible. Because of these merits, a 2×2 InGaAsP/InP laser amplifier gate matrix switch operating at $1.55 \mu\text{m}$ was demonstrated (see Fig. 8) [122]. Switching characteristics was 40–50 dB extinction ratio, net chip gain of 14 dB, and a minimum fiber-to-fiber loss of 4 dB at 100 mA injection current.

As the current injection type switch, laser diode switches (LD switches) have been demonstrated [119]. In this switch, gain and loss are controlled by the injection current and the optical signal is directly switched. When the injection current is applied, the optical signal passes through the active layer of the LD switch and amplified. On the other hand, the incident light is absorbed under no injection current conditions. By using this LD switch, optical matrix switch array was demonstrated [120].

Directional Coupler. In the InGaAsP/InP double heterostructure, directional coupler operated by carrier injection have been demonstrated. Total length of the switch is 2 mm. Switching is achieved at 4 mA, and crosstalk of more than -20 dB and 1.3 dB insertion loss have been demonstrated.

In the GaAs/AlGaAs system, a lot of electro-optic directional coupler switches with double-hetero structure have been demonstrated because of low-absorption loss at long wavelength region. By using the MBE crystal growth and reactive ion beam etching technique, the device length shorter than 1 mm ($980 \mu\text{m}$) has been fabricated. Its switching voltage is 5 V, and extinction ratio for the cross state and for the bar state is 17 dB and 14 dB, respectively [124].

As an optical matrix switch arrays, both 4×4 and 8×8 electro-optic directional couplers have been demonstrated. The 4×4 GaAs/AlGaAs optical matrix

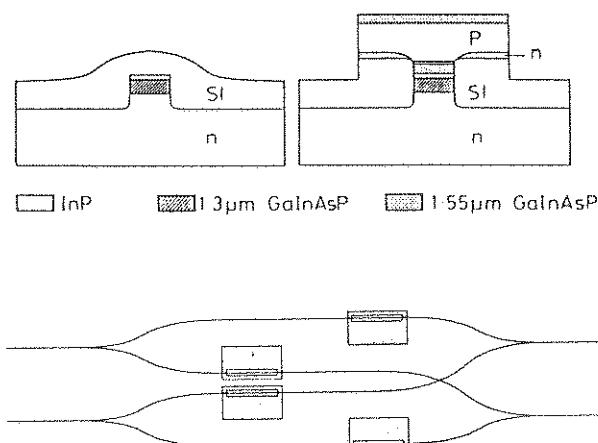


Figure 8. Schematic cross sections of passive and active parts of waveguide structure, and Mask layout of 2×2 semiconductor laser amplifier gate switch arrays [122].

switch array, as shown in Fig. 9, was constructed from twelve electro-optic alternating $\Delta\beta$ directional couplers with simplified tree architectures, a strictly non-blocking architecture [127]. It has obtained uniform characteristics, such as small switching voltage deviation of 9.0 ± 0.5 V for cross state and 21.9 ± 1.5 V for bar state, and little path dependence in ± 0.5 dB propagation loss. The 8×8 GaAs/AlGaAs optical matrix switch array was constructed from sixty-four electro-optic alternating $\Delta\beta$ directional couplers with the same simplified tree architecture as used in 4×4 matrix switch array. The 8×8 matrix switch have a chip size of 26.5×3 mm² and a minimum total loss of 8.7 dB [128]. All of these matrix switch arrays were fabricated by MBE for crystal growth and RIBE for waveguide fabrication.

As mentioned in modulators, the excitonic electroabsorption is increased in the quantum-well structure and device characteristics is improved in contrast to the bulk structure. Hence electrorefraction, which is connected through the Kramers-Kronigh relation, is expected to be enhanced in the quantum-well structure, and the switching characteristics of switches whose operational principle are based on this refraction will be improved. The use of the quantum-well structure provides the reduction of the length of the switch, increase of the switching speed, and the reduction of the consumption power. And many electrorefractive switches have been fabricated by using quantum-well structure. InGaAsP/InP MQW directional coupler switches with active lengths under 600 μ m operating at 1.3 and 1.55 μ m have been demonstrated [131, 132]. Devices were fabricated from p-i-n MQW waveguide structure.

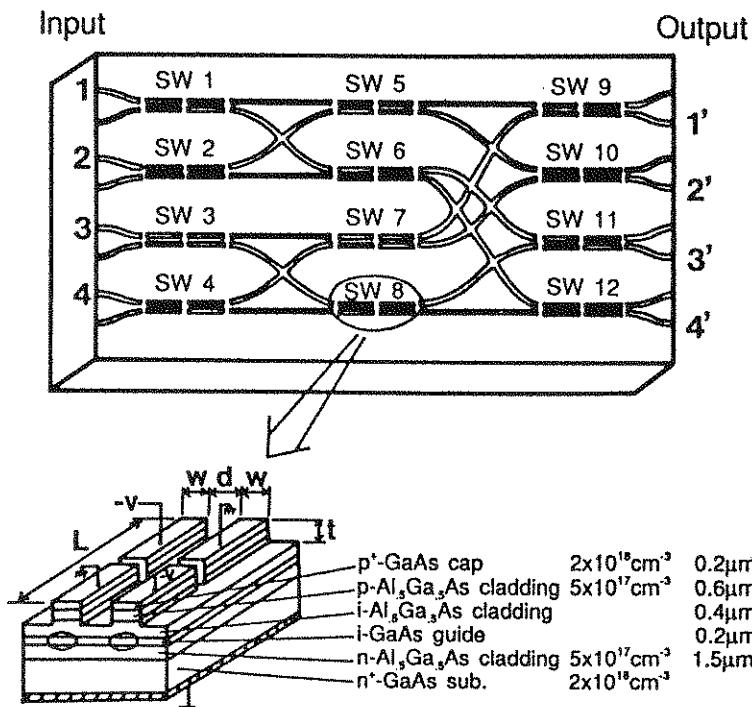


Figure 9. Schematic structure of 4×4 matrix switch array with electro-optic directional couplers [127].

n - In
separa
n - In
bulk

Figu

One of the
als is the fre
Especially in
to the claddi
barrier. The
stacked on th
with an appr
material. Th
directional c
example, the
contrability
growth tech
molecular be

The first
system [129]
MQW verti
tally. In the
eters were
GaInAs/ In
Fig. 10, were

However
matrix swit
waveguide. I
is necessary
directional c

Intersectiona
injection we
carrier injec

As an e
ture (S^3) o
X-crossing v

ro-optic alter-
a strictly non-
such as small
1.5 V for bar
8 × 8 GaAs/
electro-optic
r architecture as
a chip size of
matrix switch
or waveguide

s increased in
contrast to the
the Kramers-
structure, and
are based on
ture provides
eed, and the
switches have
W directional
and 1.55 μm
p-i-n MQW

input

,

?

?

?

1.2 μm
1.6 μm
1.4 μm
1.2 μm
.5 μm

optic directional

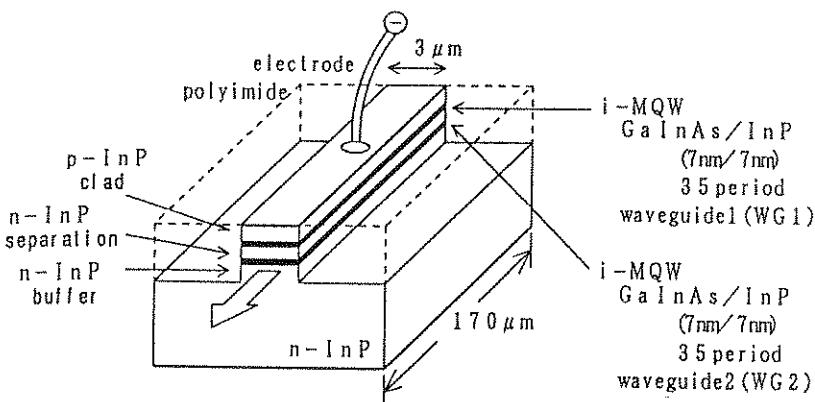
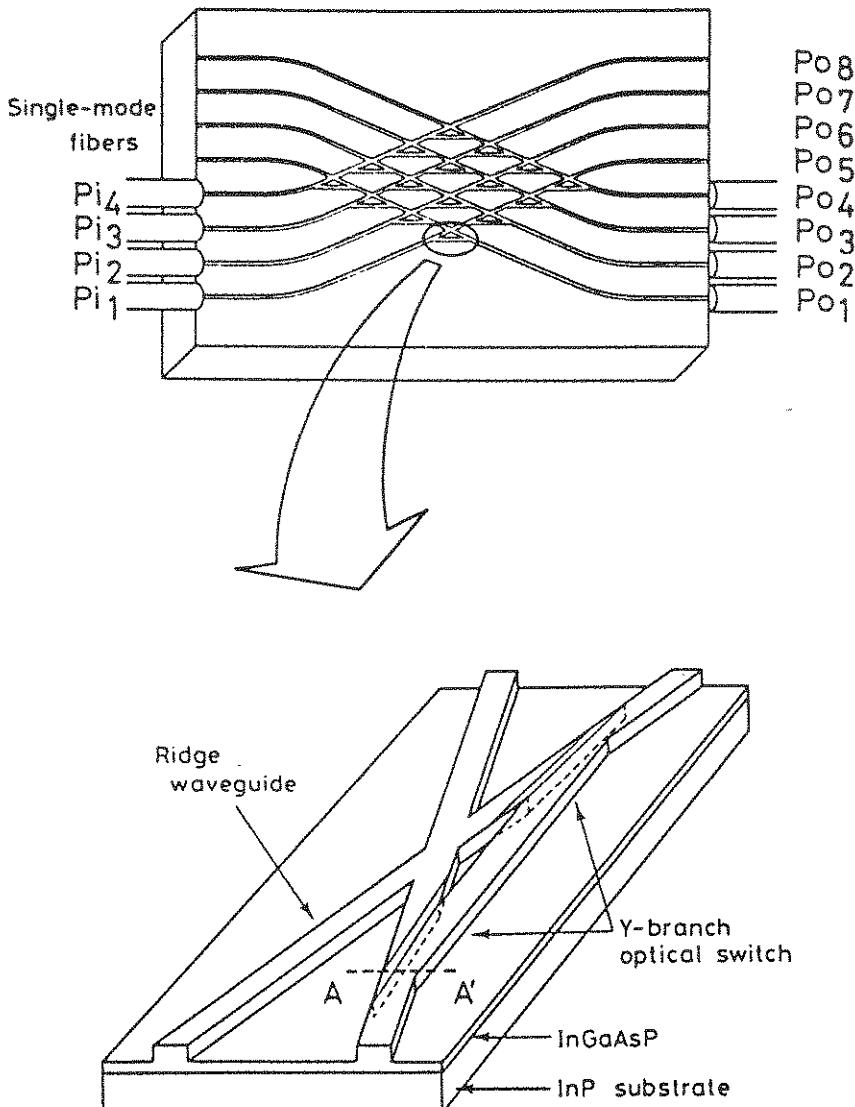


Figure 10. Schematic structure of vertical type directional coupler [136].


One of the important merits of semiconductor materials over dielectric materials is the freedom of the waveguide geometry design for the vertical direction. Especially in the MQW structure, the refractive index difference of the waveguide to the cladding can be controlled by changing the thickness of quantum well and barrier. The vertically arranged directional coupler, in which two waveguides are stacked on the substrate where two waveguides are separated by a separation layer with an appropriate thickness, is the peculiar switch structure in the semiconductor material. The operational principle is the same as that of conventional planar directional coupler, but a vertical directional coupler has additional advantages, for example, that the control of coupling length is easier because of the accurate controllability of thickness and compositions of the waveguide by recent crystal growth technique, such as organo metallic vapor phase epitaxy (OMVPE) or molecular beam epitaxy (MBE).

The first demonstration of vertical directional coupler was performed in GaAs system [129]; and recently, with the development of crystal growth technique, MQW vertical directional coupler was studied both theoretically and experimentally. In the GaAs/GaAlAs MQW system, coupling lengths and extinction parameters were reported. In the long wavelength region, switching operations of GaInAs/InP MQW high-mesa geometry vertical directional coupler, as shown in Fig. 10, were demonstrated with a very short device length $l = 170 \mu\text{m}$ [136].

However, for the practical use of vertical directional coupler as an optical matrix switch array, it is necessary to separate the output lights from each waveguide. In order to achieve this structure, more than two times epitaxial growth is necessary; and as another approach needless of regrowth process, a vertical directional coupler with a built-in TIR region was demonstrated [137].

Intersectional Switch. Many of the intersectional optical switches based on carrier injection were demonstrated because the refractive index variation induced by the carrier injection is greater than that of the electro-optic effect in the bulk material.

As an element of optical matrix switch array, a single-mode single-slip structure (S^3) optical switch made of two Y-branch TIR optical switches and an X-crossing waveguide was proposed. As shown in Fig. 11, in this structure, the

Figure 11. Schematic structure of single-slip structure (S^3) optical switch as a unit cell of a nonblocking 4×4 optical switch array [143].

crossing angle of an X -crossing waveguide is twice as large as the Y -branching angle. In the conventional X -waveguide optical switch, the width of the reflecting mirror is limited by the width of the waveguide, but the Y -branching waveguide in the S^3 optical switch does not suffer this limit and minimizes the reduction of crosstalk due to the evanescent field coupling through the width of the reflecting mirror. By using this optical switch structure, a nonblocking 4×4 optical matrix switch array was demonstrated [143]. The fabricated 4×4 optical matrix switch array has an 8 mm length, the crosstalk reached -19.1 dB, and the minimum total insertion loss is 20.4 dB including the fiber connection loss. Furthermore, to improve the insertion loss and crosstalk, the S^3 optical switch integrated in the

traveling-wave [146].

However the switching order of seven transistor op 60 ps [148].

To prevent optic effect coefficient in switches operate the appearance extensively fraction in the in the GaIn. The intersection observed. If an intersect demonstrate

In order necessary fc Recently, at [151]. As shown by only one large-sized at $1.55 \mu\text{m}$,

traveling-wave amplifier in the slip waveguide of the S^3 switch was demonstrated [146].

However, the problem of the carrier injection type optical switch is that the switching speed is limited by the lifetime of the injected carriers and is in the order of several nanoseconds. In order to improve this switching speed, a bipolar transistor optical switch was proposed and the switching speed is estimated to be 60 ps [148].

To prevent the limitation of the speed through the carrier injection, electro-optic effect is expected to provide fast switching operation. But the electro-optic coefficient in the bulk system is too small—there are a few intersectional optical switches operated by total internal reflection, and the operation of almost all the switches are similar to the zero gap directional coupler. On the other hand, with the appearance of quantum-well material, intersectional optical switch was studied extensively by using the large electrorefraction effect. Through the large electrorefraction in the quantum-well structure by QCSE, switching operation was achieved in the GaInAsP/InP MQW structure operating at $1.3 \mu\text{m}$ for the first time [149]. The intersecting angle was 4° and the polarization-dependent properties were observed. In the GaInAs/InP MQW system, intersectional optical switch with an intersecting angle of 6° , switching voltage of 8 V operating at $1.6 \mu\text{m}$ was demonstrated [150].

In order to fabricate the intersectional optical switch, a reflecting mirror is necessary for the operation of this switch, and this requires the regrowth process. Recently, an intersectional optical switch without regrowth process was proposed [151]. As shown in Fig. 12, this optical switch of the rib waveguides was fabricated by only one pattern-etching process, and this process is suitable for fabricating a large-sized matrix switch array. In the GaInAs/InP MQW optical switch operating at $1.55 \mu\text{m}$, less than 2 V switching voltage was observed [152].

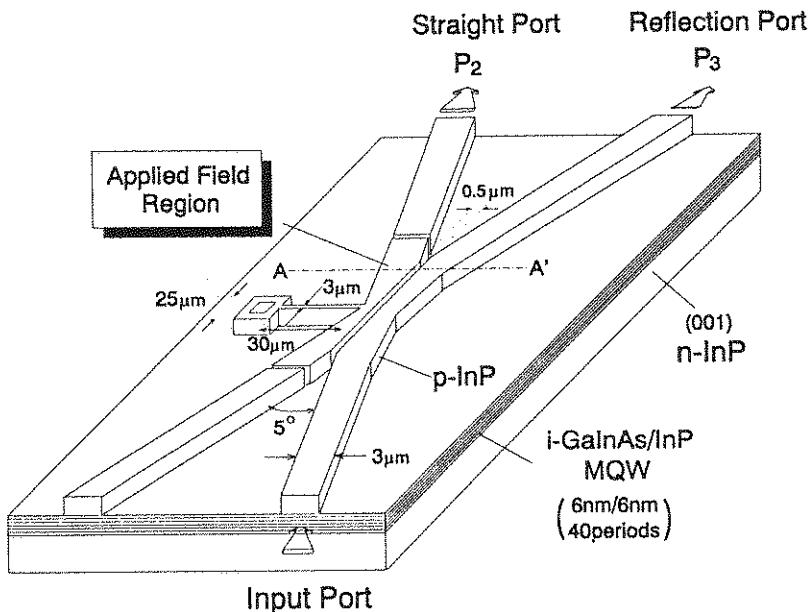


Figure 12. Schematic structure of MQW intersectional waveguide optical switch [151].

By using the depletion edge translation effect, AlGaAs/GaAs double heterostructure intersectional optical switch was demonstrated [153]. The intersecting angle was 6.8° and operating wavelength was $1.1 \mu\text{m}$; and by using the electron transfer effect in the quantum-well structure, InGaAs/InAlAs MQW intersectional optical switch was demonstrated [154]. The reflecting mirror was fabricated by the ion implantation, and the intersecting angle was 4° and operating wavelength was $1.55 \mu\text{m}$.

Future Aspect

In the last section, we discuss the further improvement of the characteristics of the semiconductor optical switches and modulators from the point of view of material.

As a material of semiconductor, quantum-well structures have large electroabsorption or electrorefraction effect over bulk material through the QCSE. This effect will be enhanced by introducing the low-dimensional quantum-well structure, that is, quantum-box or quantum-wire structure [156-159]. At first, we show the theoretical calculation of electro-optic effect in the low-dimensional quantum-well structure. Figure 13 shows the theoretically obtained field-induced refractive index variation spectrum and its wavelength window of $\text{Ga}_{0.47}\text{In}_{0.53}\text{As}/\text{InP}$ quantum-box, -wire, and -film structures where the index-loss variation ratio $|\alpha_p|$ is larger than 10 [21]. In this calculation, the size of the quantum well is 10 nm of film, and those of wire and box are $10 \text{ nm} \times 10 \text{ nm}$ and $10 \text{ nm} \times 10 \text{ nm} \times 10 \text{ nm}$, respectively. The applied electric field is $1 \times 10^5 \text{ V/cm}$. The wavelength of absorption edge for the transition between the first electron state and the first heavy-hole state is represented by λ_{11} and $\lambda_{11(B)} = 1.407 \mu\text{m}$ in the quantum-box, $\lambda_{11(W)} = 1.506 \mu\text{m}$ in the quantum-wire, and $\lambda_{11(F)} = 1.584 \mu\text{m}$ in the quantum-film, respectively. For the switch or modulator, the operational wavelength should be longer than λ_{11} to make the device immune from the fundamental absorption loss. Figure 14 shows the relation between the absolute value of refractive index variation and α_p obtained from the Fig. 13 where the solid line indicates the negative refractive index variation and the dashed line the positive one. The

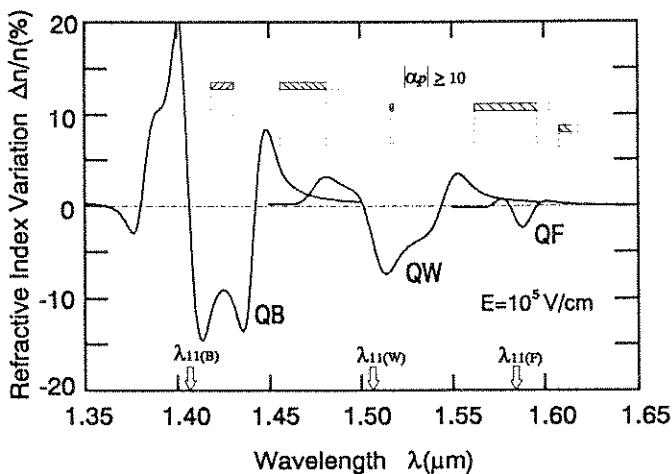
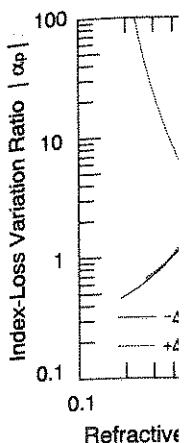



Figure 13. Refractive index variation spectrum of low-dimensional quantum-well structures.

absolute value that of the pos length range fo in the quantum window satisfy structures, and reflects the der sawtooth (wire range where t variation rate | than the peak use, the operat variation requi the electro-opt structure; and the absolute v construct the c

On the o quantum-well : GaInAs(P) / In variation was quantum-box s tion was only t account the op wire) and 0.065 were fabricat pattern or a m wire) or five was 210 nm be three-layered ccess with the F at room tempe laser is approx

As double heterostructures intersecting along the electron MQW intersecting structure was fabricated and operating

characteristics of the new of material, large electroabsorptive QCSE. This quantum-well structure, first, we show onal quantum-induced refractive $\text{In}_{0.53}\text{As}/\text{InP}$ on ratio $|\alpha_p|$ is well is 10 nm $\text{nm} \times 10 \text{ nm} \times$ wavelength of λ and the first quantum-box, the quantum-well length should be λ and the absorption refractive index α_p indicates the negative one. The

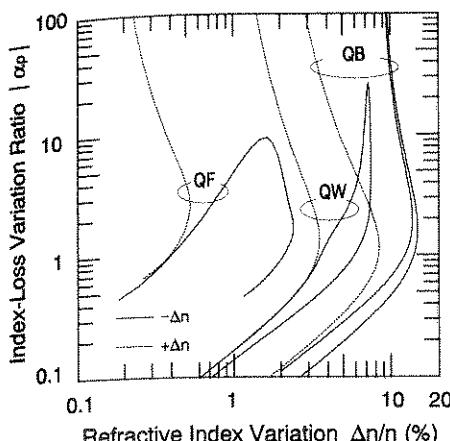


Figure 14. Relation between refractive index variation and index loss variation ratio α_p .

absolute value of the negative refractive index variation is almost twice as large as that of the positive one irrespective of the quantum-well structure. In the wavelength range for negative refractive index variation, there is no wavelength window in the quantum-film structure for the condition of $|\alpha_p| \geq 10$, but the wavelength window satisfying this condition appears in the quantum-wire and quantum-box structures, and this wavelength window is wider in the quantum-box. This fact reflects the density of states of the quantum-well structures from staircase (film) to sawtooth (wire) and delta function (box). On the other hand in the wavelength range where the positive refractive index variation takes place, the index-loss variation rate $|\alpha_p|$ becomes larger than 10 at the wavelength of $5 \sim 10 \text{ nm}$ longer than the peak wavelength of positive refractive index variation. For practical use, the operational wavelength region is limited by the minimum refractive index variation required for the switch or modulator. As can be seen from these figures, the electro-optic effect will be enhanced in the low-dimensional quantum-well structure; and one more merit of low-dimensional quantum-well structure is that the absolute value of index-loss variation ratio will be increased, and we can construct the optical switch operating by "pure" refractive index variation.

On the other hand, as the experimental results of the low-dimensional quantum-well structure, field-induced refractive index variation was observed in $\text{GaInAs(P)}/\text{InP}$ quantum-wire and quantum-box structures. The refractive index variation was reported to be 4% in the quantum-wire [160] and 7% in the quantum-box structure [161], even though the equivalent refractive index variation was only 0.017% (quantum-wire) and 0.0046% (quantum-box) by taking into account the optical confinement factor ξ of the waveguide, i.e., 0.43% (quantum-wire) and 0.065% (quantum-box). These quantum-wire and quantum-box structures were fabricated by etching a basic multilayered quantum-film wafer with a wire pattern or a mesh pattern, where the number of layers was only three (quantum-wire) or five (quantum-box), and pitch of the quantum-wire or quantum-box was 210 nm because holographic lithography patterning was employed. Actually a three-layered GaInAs/InP quantum-wire laser was fabricated by the similar process with the period of 70 nm using an electron-beam lithography, and it operated at room temperature [162]. The optical confinement factor ξ of this quantum-wire laser is approximately 1.2%. Another approach to increase the optical confinement

factor of the quantum-wire or the quantum-box structure is under development by a selective growth on the side wall of a stacked multiple thin film structure [163]. Since technical difficulties can be overcome in the future and the realistic values of the optical confinement factor of low-dimensional quantum-well structures will be increased year by year, we cannot tell the realistic value at the moment. For instance, the optical confinement factor of the quantum-wire structure can be increased significantly if the fabrication process becomes successful, for example, by a combination of electron-beam lithography and dry-etching, or the fractional layer epitaxy (FLE) on tilted substrate [164–166], or epitaxy on V-grooved substrate [167].

One more important characteristic of the optical modulators and switches is the polarization control. The ordinary quantum-film or quantum-wire structure depends on the polarization, and electroabsorption or electrorefraction coefficient of TE mode is larger than that of TM mode. On the other hand, the quantum-box structure is independent of polarization. Hence quantum-box structure is the most attractive material for the optical modulators and switches also in the point of view of polarization control.

Another approach to control the polarization is to use the strained quantum-well structures [168]. The electroabsorption or electrorefraction in the strained quantum-well structures can reduce the polarization dependence because of their unique polarization properties of the interband transition dipole moments [169]. In the strained MQW electroabsorption modulator, the polarization dependence was largely reduced, and modulation efficiency was improved by using strained quantum-well structure [170]. Also in the Mach-Zehnder modulator, a strained quantum-well structure was introduced to eliminate the polarization dependence [171]. At present, the strained quantum-well structures play an important role for the realization of polarization-independent optical switches and modulators.

Conclusion

As can be seen from the above performances of semiconductor optical switches and modulators, semiconductor materials have superior characteristics over dielectric materials. Among many characteristics of semiconductor material, the important merits of semiconductor optical switches and modulators are: (i) compact size, (ii) high speed, and (iii) monolithically integrable. All of them are key points for stable systems.

In the transmission systems, the source of semiconductor optical modulators integrated with single-mode laser will replace the directly modulated semiconductor laser. On the other hand, in the exchange systems, semiconductor optical switches as an element of matrix optical switch array have shown superior features, such as high-speed operation and low power consumption. Furthermore, the optical switch array integrated with semiconductor optical amplifiers will be able to attain the zero-loss matrix switch array.

In the near future, with the progress of the fabrication process of fine structures, semiconductor optical switches and modulators will approach the ideal structure by using the low-dimensional quantum well as an ultimate semiconductor material.

Acknowledgments

The autho
Technology
Ravikumar
Associate P
for fruitful

References

1. T. Kim, *Select.*
2. B. Schaefer, *SAC-4*,
3. Y. Suetomi, *Lasers*,
4. F. Koyanagi, *Single-Mode Fibers*,
5. Y. Suetomi, *with a*
6. D. A. B. Miller and W. R. Hunter, *Electronic Properties of Semiconductors*, *Electron. Mater.*
7. K. Kasai, *Structural Properties of Semiconductors*, *Appl. Phys.*
8. R. C. Anderson, *Electron. Mater.*
9. R. C. Anderson, *Electron. Mater.*
10. R. C. Anderson, *Commun. Electron. Mater.*
11. K. Tanaka, *Appl. Phys.* **130**, 221 (1983).
12. J. Callan, *Appl. Phys.* **130**, 221 (1983).
13. D. A. B. Miller, *Wood, J. Appl. Phys.* **52**, 2222 (1981).
14. D. A. B. Miller, *Wood, J. Appl. Phys.* **52**, 2222 (1981).
15. D. S. Chuu, *“Optical Properties of a Single-Mode Fiber”*, *Appl. Phys.* **52**, 2222 (1981).
16. A. Kastner, *Well-Defined Optical Properties of a Single-Mode Fiber”*, *Appl. Phys.* **50**, 708 (1981).
17. H. Sakurai, *Absorption Coefficient of a Single-Mode Fiber”*, *Appl. Phys.* **50**, 708 (1981).

development by structure [163]. realistic values of utes will be moment. For uture can be l, for example, the fractional oved substrate

and switches is wire structure ion coefficient e quantum-box ure is the most e point of view

ned quantum- i the strained e because of pole moments zation depend- ed by using er modulator, e polarization play an impor- switches and

optical switches is over dielec- al, the impor- compact size, key points for

al modulators ed semiconductor optical erior features, hermore, the will be able to

cess of fine each the ideal emiconductor

Acknowledgments

The authors acknowledge Dr. Y. Suematsu, president of Tokyo Institute of Technology, for continuous encouragements. They also acknowledge Dr. K. G. Ravikumar of Fujikura Ltd. for valuable suggestions. Moreover, they thank Associate Professor M. Asada and Professor K. Iga of Tokyo Institute of Technology for fruitful discussions.

References

1. T. Kimura, "Fiber Optic Transmission Systems—Status and Trends in Japan," *IEEE J. Select. Area in Commun.*, **SAC-4**, 498–505, July 1986.
2. B. Schaffer, "Switching in the Broad-Band ISDN," *IEEE J. Select. Area in Commun.*, **SAC-4**, 536–541, July 1986.
3. Y. Suematsu, and S. Arai, "Integrated Optics Approach for Advanced Semiconductor Lasers," *Proc. IEEE* **75**, 1472–1487, November, 1987.
4. F. Koyama, and Y. Suematsu, "Analysis of Dynamic Spectral Width of Dynamic-Single-Mode (DSM) Lasers and Related Transmission Bandwidth of Single-Mode Fibers," *J. Quantum Electron.* **QE-21**, 292–297, April 1985.
5. Y. Suematsu, S. Arai, and K. Kishino, "Dynamic Single-Mode Semiconductor Lasers with a Distributed Reflector," *J. Lightwave Tech.* **LT-1**, 161–176, March 1983.
6. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, "The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation," *IEEE J. Quantum Electron.* **QE-21**, 1462–1476, September 1985.
7. K. Kasahara, Y. Tashiro, N. Hamao, M. Sugimoto, and T. Yanase, "Double Heterostructure Optoelectronic Switch as a Dynamic Memory with Low-Power Consumption," *Appl. Phys. Lett.* **52**, 679–681, February 1988.
8. R. C. Alferness, "Guided-Wave Devices for Optical Communication," *IEEE J. Quantum Electron.* **QE-17**, 946–959, June 1981.
9. R. C. Alferness, "Waveguide Electrooptic Modulators," *IEEE Trans. Microwave Theory Tech.* **MTT-30**, 1121–1137, August 1982.
10. R. C. Alferness, "Waveguide Electrooptic Switch Arrays," *IEEE J. Select. Area in Commun.* **6**, 1117–1130, August 1988.
11. K. Tharmalingam, "Optical Absorption in the Presence of a Uniform Field," *Phys. Rev.* **130**, 2204–2206, June 1963.
12. J. Callaway, "Optical Absorption in an Electric Field," *Phys. Rev.* **134**, A998–A1000, May 1964.
13. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Electric Field Dependence of Optical Absorption near Band Gap of Quantum-Well Structures," *Phys. Rev. B* **32**, 1043–1060, July 1985.
14. D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, "Relation Between Electroabsorption in Bulk Semiconductors and in Quantum Wells: The Quantum-Confinement Franz-Keldysh Effect," *Phys. Rev. B* **33**, 6976–6982, May 1986.
15. D. S. Chemla, I. Bar-Joseph, C. Kligshirn, D. A. B. Miller, J. M. Kuo, and T. Y. Chang, "Optical Reading of Field-Effect Transistor by Phase-Space Absorption Quenching in a Single InGaAs Quantum Well Conducting Channel," *Appl. Phys. Lett.* **50**, 585–587, March 1987.
16. A. Kastalsky, J. H. Abeles, and R. F. Leheny, "Novel Optoelectronic Single Quantum Well Devices Based on Electron Bleaching of Exciton Absorption," *Appl. Phys. Lett.* **50**, 708–710, March 1987.
17. H. Sakaki, H. Yoshimura, and T. Matsusue, "Carrier Concentration Dependent Absorption Spectra of Modulation Doped *n*-AlGaAs/GaAs Quantum Wells and

Performance Analysis of Optical Modulators and Switches Using Carrier Induced Bleaching (CIB) and Refractive Index Change (CIRIC)," *Japan. J. Appl. Phys.* **26**, L1104-1106, July 1987.

18. H. Yamamoto, M. Asada, and Y. Suematsu, "Electric-Field Induced Refractive-Index Variation in Quantum-Well Structure," *Electron. Lett.* **21**, 579-580, June 1985.
19. H. Nagai, Y. Kan, M. Yamanishi, and I. Suemune, "Electroreflectance Spectra and Field-Induced Variation in Refractive Index of a GaAs/AlAs Quantum Well Structure at Room Temperature," *Japan. J. Appl. Phys.* **25**, L640-L642, August 1986.
20. M. Wegener, T. Y. Chang, I. Bar-Joseph, J. M. Kuo, and D. S. Chemla, "Electroabsorption and Refraction by Electron Transfer in Asymmetric Modulation-Doped Multiple Quantum Well Structures," *Appl. Phys. Lett.* **55**, 583-585, August 1989.
21. K. Shimomura, Y. Suematsu, and S. Arai, "Analysis of Semiconductor Intersectoral Optical Switch/Modulator," *IEEE J. Quantum Electron.* **26**, 883-892, May 1990.
22. C. H. Henry, "Theory of the Linewidth of Semiconductor Lasers," *IEEE J. Quantum Electron.* **QE-18**, 259-264, February 1982.
23. I. P. Kaminow, and E. H. Turner, "Linear Electrooptical Materials," in R. J. Pressley (Ed.), *Handbook of Lasers with Selected Data on Optical Technology*, The Chemical Rubber Co., Cleveland, 452, 1971.
24. F. Koyama, and K. Iga, "Frequency Chirping in External Modulators," *IEEE J. Lightwave Tech.* **6**, 87-93, January 1988.
25. V. Ramaswamy, M. Divino, and R. K. Standley, "Modified Balanced-Bridge Switch with Two Straight Waveguides," *Appl. Phys. Lett.* **35**, 145-147, July 1979.
26. F. Auracher and R. Keil, "Design Considerations and Performance of Mach-Zehnder Waveguide Modulators," *Wave Electron.* **4**, 129-140, December 1980.
27. E. A. J. Marcatili, "Dielectric Rectangular Waveguide and Directional Coupler for Integrated Optics," *Bell Syst. Tech. J.* 2071-2102, September 1969.
28. H. Kogelnik, and R. V. Schmidt, "Switched Directional Couplers with Alternating $\Delta\beta$," *IEEE J. Quantum Electron.* **QE-12**, 396-401, July 1976.
29. H. Naitoh, K. Muto, and T. Nakayama, "Mirror Type Optical Branch and Switch," *Appl. Opt.* **17**, 101-104, January 1978.
30. C. S. Tsai, B. Kim, and F. R. EL-Akkari, "Optical Channel Waveguides Switch and Coupler Using Total Internal Reflection," *IEEE J. Quantum Electron.* **QE-14**, 513-517, July 1978.
31. S. K. Sheem, "Total Internal Reflection Integrated-Optics Switch: A Theoretical Evaluation," *Appl. Opt.* **17**, 3679-3687, November 1978.
32. F. Stern, "Dispersion of the Index of Refraction near the Absorption Edge of Semiconductor," *Phys. Rev.* **133**, A1653-A1664, March 1964.
33. H. Yamamoto, M. Asada, and Y. Suematsu, "Theory of Refractive Index Variation in Quantum Well Structure and Related Intersectoral Optical Switch," *IEEE J. Lightwave Tech.* **6**, 1831-1840, December 1988.
34. M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, "Electroabsorption in GaAs/AlGaAs Coupled Quantum Well Waveguides," *Appl. Phys. Lett.* **50**, 1098-1100, April 1987.
35. J. Bleuse, G. Bastard, and P. Voisin, "Electric-Field-Induced Localization and Oscillatory Electrooptic properties of Semiconductor Superlattices," *Phys. Rev. Lett.* **60**, 220-223, January 1988.
36. T. Ishikawa, and K. Tada, "Observation of Quantum-Confined Stark Effect in a Graded-Gap Quantum Well," *Japan. J. Appl. Phys.* **28**, L1982-L1984, November 1989.
37. Y. Noda, M. Suzuki, Y. Kushiro, and S. Akiba, "1.6 GHz Electroabsorption Light Modulation in GaInAsP/InP Double Heterostructures with Strip-Loaded Planar Waveguide," *Electron. Lett.* **21**, 1182-1183, December 1985.
38. M. Suzuki, Y. Noda, Y. Kushiro, and S. Akiba, "Dynamic Spectral Width of an InGaAsP/InP Electroabsorption Light Modulator Under High-Frequency Large-Signal Modulation," *Electron. Lett.* **22**, 312-313, March 1986.
39. Y. Noda, "Heterostructure with a Strip-Loaded Waveguide," *Japan. J. Appl. Phys.* **27**, 1445-1450, July 1988.
40. H. Soda, "Heterostructure with a Strip-Loaded Waveguide," *Electron. Lett.* **24**, 1445-1450, July 1988.
41. H. Soda, "Heterostructure with a Strip-Loaded Waveguide," *Electron. Lett.* **24**, 1445-1450, July 1988.
42. M. Suzuki, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
43. M. Suzuki, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
44. M. Suzuki, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
45. H. Soda, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
46. M. Suzuki, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
47. M. Suzuki, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
48. M. Suzuki, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
49. H. Tanaka, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
50. T. H. Wood, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
51. S. Tarucha, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
52. K. Wakita, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
53. S. Tarucha, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.
54. Y. Kawano, "Heterostructure with a Strip-Loaded Waveguide," *IEEE J. Lightwave Tech.* **6**, 88-91, January 1988.

Carrier Induced *Appl. Phys.* **26**, Refractive-Index 1985.

ice Spectra and 1 Well Structure 1986.

nia, "Electroabsorption-Doped Multi-1989.

or Intersectional May 1990.

IEEE J. Quantum in R. J. Pressley, "The Chemical ators," *IEEE J.* d-Bridge Switch 79.

f Mach-Zehnder nal Coupler for with Alternating ch and Switch," dides Switch and *QE-14*, 513-517, : A Theoretical ection Edge of dex Variation in ' *IEEE J. Light-* ssard, and J. H. ell Waveguides,"

tion and Oscilla- *v. Lett.* **60**, 220- ark Effect in a November 1989. absorption Light -Loaded Planar al Width of an efrequency Large-

39. Y. Noda, M. Suzuki, Y. Kushiro, and S. Akiba, "High-Speed Electroabsorption Modulator with Strip-Loaded GaInAsP Planar Waveguide," *IEEE J. Lightwave Tech. LT-4*, 1445-1453, October 1986.

40. H. Soda, K. Nakai, H. Ishikawa, and H. Imai, "High-Speed GaInAsP/InP Buried-Heterostructure Optical Intensity Modulator with Semi-Insulating InP Burying Layers," *Electron. Lett.* **23**, 1232-1234, November 1987.

41. H. Soda, K. Sato, K. Nakai, H. Ishikawa, and H. Imai, "Chirp Behavior of High-Speed GaInAsP/InP Optical Intensity Modulator," *Electron. Lett.* **24**, 1194-1195, September 1988.

42. M. Suzuki, H. Tanaka, S. Akiba, and Y. Kushiro, "Electrical and Optical Interactions Between Integrated InGaAsP/InP DFB Lasers and Electroabsorption Modulators," *IEEE J. Lightwave Tech.* **6**, 779-785, June 1988.

43. M. Suzuki, H. Tanaka, and S. Akiba, "High-Speed Characteristics at High Input Optical Power of GaInAsP Electroabsorption Modulators," *Electron. Lett.* **24**, 1272-1273, September 1988.

44. M. Suzuki, H. Tanaka, and S. Akiba, "Effect of Hole Pile-Up at Heterointerface on Modulation Voltage in GaInAsP Electroabsorption Modulators," *Electron. Lett.* **25**, 88-89, January 1989.

45. H. Soda, M. Furutsu, K. Sato, N. Okazaki, S. Yamazaki, I. Yokota, T. Okiyama, H. Nishimoto, and H. Ishikawa, "High-Power Semi-Insulating BH Structure Monolithic Electro-Absorption Modulator/DFB Laser Light Source Operating at 10 Gb/s," in *Tech. Dig. 7th Internat. Conf. on Integrated Optics and Optical Fiber Communication* (IOOC '89, Kobe, Japan), paper 20PDB-5, July 1989.

46. M. Suzuki, H. Tanaka, M. Usami, H. Taga, and Y. Matsushima, "S.I.-InP Buried Planar-Type $\lambda/4$ Shifted DFB Laser/E-A Modulator Integrated Light Source and 2.4 Gb/s-118 km Penalty-Free Conventional Fiber Transmission," in *Tech. Dig. 7th Internat. Conf. on Integrated Optics and Optical Fiber Communication* (IOOC '89, Kobe, Japan), paper 20PDB-3, July 1989.

47. M. Suzuki, H. Tanaka, and S. Akiba, "2.4 Gbit/s 100 km Penalty-Free Conventional Fiber Transmission Experiments Using GaInAsP Electroabsorption Modulator," *Electron. Lett.* **25**, 192-193, 1989.

48. M. Suzuki, H. Tanaka, H. Taga, S. Yamamoto, H. Wakabayashi, and Y. Matsushima, "Subvolt Operation of E-A Modulator Integrated with $\lambda/4$ -Shifted DFB Laser for 2.4 Gb/s-135 km Transmission," *ECOC '90*, 1041-1044, 1990.

49. H. Tanaka, M. Suzuki, M. Usami, H. Taga, S. Yamamoto, and Y. Matsushima, "5-Gb/s Performance of Integrated Light Source Consisting of $\lambda/4$ -Shifted DFB Laser and EA Modulator with SI InP BH Structure," *IEEE J. Lightwave Tech.* **8**, 1357-1362, September 1990.

50. T. H. Wood, C. A. Burrus, R. S. Tucker, J. S. Weiner, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, "100 ps Waveguide Multiple Quantum Well (MQW) Optical Modulator with 10:1 On/Off Ratio," *Electron. Lett.* **21**, 693-694, August 1985.

51. S. Tarucha, H. Iwamura, T. Saku, and H. Okamoto, "Waveguide-Type Optical Modulator of GaAs Quantum Well Double Heterostructures Using Electric Field Effect on Exciton Absorption," *Japan. J. Appl. Phys.* **24**, L442-L444, June 1985.

52. K. Wakita, Y. Kawamura, Y. Yoshikuni, H. Asahi, and S. Uehara, "High-Speed Long-Wavelength Optical Modulation in InGaAs/InAlAs Multiple Quantum Wells," *Electron. Lett.* **21**, 951-953, October 1985.

53. S. Tarucha, and H. Okamoto, "Monolithic Integration of a Laser Diode and an Optical Waveguide Modulator Having a GaAs/AlGaAs Quantum Well Double Heterostructure," *Appl. Phys. Lett.* **48**, 1-3, January 1986.

54. Y. Kawamura, K. Wakita, Y. Itaya, Y. Yoshikuni, and H. Asahi, "Monolithic Integration of InGaAsP/InP DFB Lasers and InGaAs/InAlAs MQW Optical Modulators," *Electron. Lett.* **22**, 242-243, February 1986.

55. K. Wakita, Y. Kawamura, Y. Yoshikuni, and H. Asahi, "Long-Wavelength Waveguide Multiple-Quantum-Well (MQW) Optical Modulator with 30:1 On/Off Ratio," *Electron. Lett.* **22**, 907–908, August 1986.

56. T. H. Wood, E. C. Carr, C. A. Burrus, R. S. Tucker, T. H. Chiu, and W.-T. Tsang, "High-Speed Waveguide Optical Modulator Made from GaSb/AlGaSb Multiple Quantum Wells (MQWs)," *Electron. Lett.* **23**, 540–542, May 1987.

57. U. Koren, B. I. Miller, T. L. Koch, G. Eisenstein, R. S. Tucker, I. Bar-Joseph, and D. S. Chemla, "Low-Loss InGaAs/InP Multiple Quantum Well Optical Electroabsorption Waveguide Modulator," *Appl. Phys. Lett.* **51**, 1132–1134, October 1987.

58. K. Wakita, Y. Kawamura, and O. Mikami, "InGaAs/InAlAs Multiple Quantum Well Optical Modulators," *Tech. Dig. Internat. Conf. on Quantum Electronics (IQEC '88, Tokyo, Japan)*, paper TuB7, 218–219, July 1988.

59. K. W. Jelly, R. W. H. Engelmann, K. Alavi, and H. Lee, "Well Size Related Limitations on Maximum Electroabsorption in GaAs/AlGaAs Multiple Quantum Well Structures," *Appl. Phys. Lett.* **55**, 70–72, July 1989.

60. K. Wakita, I. Kotaka, O. Mitomi, H. Asai, Y. Kawamura, and M. Naganuma, "High-Speed InGaAlAs/InAlAs Multiple Quantum Well Optical Modulators," *IEEE J. Lightwave Tech.* **8**, 1027–1032, July 1990.

61. K. Wakita, I. Kotaka, O. Mitomi, H. Asai, Y. Kawamura, and M. Naganuma, "High-Speed InGaAs/InAlAs Quantum Well Optical Modulators with Bandwidths in Excess of 40 GHz at 1.55 μ m," *CLEO '90, CTuC6, Anaheim, CA*, 1990.

62. I. Kotaka, K. Wakita, K. Kawano, M. Asai, and M. Naganuma, "High-Speed and Low-Driving-Voltage InGaAs/InAlAs Multiquantum Well Optical Modulators," *Electron. Lett.* **27**, 2162–2163, November 1991.

63. A. C. Bryce, J. H. Marsh, L. L. Taylor, S. J. Bass, and D. R. P. Guy, "Large Modulation Depth, Single-Moded Quantum Well Waveguide Modulator Operating Around 1.57 μ m," *Electron. Lett.* **27**, 304–306, February 1991.

64. K. Wakita, I. Kotaka, O. Mitomi, H. Asai, and Y. Kawamura, "Observation of Low-Chirp Modulation in InGaAs-InAlAs Multiple-Quantum-Well Optical Modulators Under 30 GHz," *IEEE Photo. Tech. Lett.* **3**, 138–140, February 1991.

65. M. S. Whalen, T. H. Wood, B. I. Miller, U. Koren, C. A. Burrus, and G. Raybon, "Variation of Frequency Chirp with Wavelength in an InGaAsP/InP Multiple-Quantum-Well (MQW) Waveguide Electroabsorption Modulator," *IEEE Photo. Tech. Lett.* **3**, 451–452, May 1991.

66. K. Wakita, I. Kotaka, H. Asai, M. Okamoto, Y. Kondo, and M. Naganuma, "High-Speed and Low-Drive-Voltage Monolithic Multiple Quantum-Well Modulator/DFB Laser Light Source," *IEEE Photo. Tech. Lett.* **4**, 16–18, January 1992.

67. K. Sato, K. Wakita, and M. Yamamoto, "Strained InGaAsPa Multiquantum Wells for Optical Electroabsorption Waveguide Modulators," *Electron. Lett.* **28**, 609–610, March 1992.

68. E. Bigan, M. Allovon, M. Carre, C. Braud, A. Carenco, and P. Voisin, "Optimization of Optical Waveguide Modulators Based on Wannier-Stark Localization: An Experimental Study," *IEEE J. Quantum Electron.*

69. F. Devaux, E. Bigan, M. Allovon, J. C. Harmand, P. Voisin, M. Carre, F. Huet, and A. Carenco, "High-Frequency Operation of Very Low Voltage, 155 μ m Single-Mode Optical Waveguide Modulator Based on Wannier-Stark Localization," *Electron. Lett.* **28**, 48–50, January 1992.

70. M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uoni, and A. Takai, "Novel Structure MQW Electroabsorption Modulator/DFB-Laser Integrated Device Fabrication by Selective Area MOCVD Growth," *Electron. Lett.* **27**, 2138–2140, November 1991.

71. T. Kato, T. Sasaki, K. Komatsu, and I. Mito, "DFB-LD/Modulator Integrated Light Source by Bandgap Energy Controlled Selective MOVPE," *Electron. Lett.* **28**, 153–154, January 1992.

72. M. Aoki, M. Suzuki, M. Takahashi, H. Sano, T. Ido, T. Kawano, and A. Takai, "High-Speed InGaAsP Insulating Modulator," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

73. M. Aoki, "High-Ex Fabricate 580–582," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

74. R. W. W. Optical V Appl. Phys. Lett.

75. T. C. Hu Guide-AI February 1992.

76. O. Blum, Gustafson Waveguide 1992.

77. T. H. Wakita and W. J. Wells in 1992.

78. T. H. Wakita and W. J. Wells (Mesa) 1992.

79. U. Koren and D. S. Chemla Mesa Etching 1992.

80. T. H. Wakita "High-Speed AlGaAs Modulator," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

81. M. Aoki, "Optimization of InGaAsP/InP Multiple Quantum-Well Modulator," *Electron. Lett.* **27**, 2138–2140, November 1991.

82. M. McIlroy, "Spatial Index Modulation in Quantum Well Modulators," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

83. Y. Morita, "Wannier-Stark Modulation in Quantum Well Modulators," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

84. G. D. E. English, "Wannier-Stark Modulation in Quantum Well Modulators," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

85. W. Dolan, "Wannier-Stark Modulation in Quantum Well Modulators," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

86. K. W. J. Lee, "Optimization of InGaAsP/InP Multiple Quantum-Well Modulator," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

87. C. Amano, "Vertical Heterostructure Transistors," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

88. R. J. Sizelove, D. G. I. Jones, "Index Modulation in Quantum Well Modulators," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

89. M. Watanabe, "Wannier-Stark Modulation in Quantum Well Modulators," *Appl. Phys. Lett.* **58**, 580–582, October 1991.

"High-Speed (10 Gbit/s) and Low-Drive-Voltage (1 V Peak to Peak) InGaAs/InGaAsP MQW Electroabsorption-Modulator Integrated DFB Laser with Semi-Insulating Buried Heterostructure," *Electron. Lett.* **28**, 1157-1158, June 1992.

73. M. Aoki, M. Takahashi, M. Suzuki, H. Sano, K. Uomi, T. Kawano, and A. Takai, "High-Extinction-Ratio MQW Electroabsorption-Modulator Integrated DFB Laser Fabricated by Inplane Bandgap Energy Control Technique," *IEEE Photo. Tech. Lett.* **4**, 580-582, June 1992.

74. R. W. Wickman, A. L. Moretti, K. A. Stair, and T. E. Bird, "Electric Field-Induced Optical Waveguide Intensity Modulators Using $\text{GaAs}/\text{Al}_x\text{Ga}_{1-x}\text{As}$ Quantum Wells," *Appl. Phys. Lett.* **58**, 690-692, February 1991.

75. T. C. Huang, Y. Chung, D. B. Young, N. Dagli, and L. A. Coldren, "A Field Induced Guide-Antiguide Modulator on $\text{GaAs}/\text{AlGaAs}$," *IEEE Photo. Tech. Lett.* **3**, 141-143, February 1991.

76. O. Blum, J. E. Zucker, T. Y. Chang, N. J. Sauer, M. Divino, K. L. Jones, and T. K. Gustafson, "High-Contrast Electron-Transfer $\text{GaAs}/\text{AlGaAs}$ Multiple-Quantum-Well Waveguide Modulator," *IEEE Photo. Tech. Lett.* **3**, 327-329, April 1991.

77. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, "High-Speed Optical Modulation with $\text{GaAs}/\text{GaAlAs}$ Quantum Wells in a p-i-n Diode Structure," *Appl. Phys. Lett.* **44**, 16-18, January 1984.

78. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, "131 ps Optical Modulation in Semiconductor Multiple Quantum Wells (MQW's)," *IEEE J. Quantum Electron.* **QE-21**, 117-118, February 1985.

79. U. Koren, B. I. Miller, R. S. Tucker, G. Eisenstein, I. Bar-Joseph, D. A. B. Miller, and D. S. Chemla, "High-Frequency InGaAs/InP Multiple-Quantum-Well Buried-Mesa Electroabsorption Optical Modulator," *Electron. Lett.* **23**, 621-622, June 1987.

80. T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, and J. H. English, "High-Speed 2×2 Electrically Driven Spatial Light Modulator Made with $\text{GaAs}/\text{AlGaAs}$ Multiple Quantum Wells (MQW's)," *Electron. Lett.* **23**, 916-917, August 1987.

81. M. A. Z. Rejman-Greene, E. G. Scott, and E. McGodrick, "Planar 3×3 Array of InGaAs/InP MQW Surface Optical Modulators Grown by Gas-Source MBE," *Electron. Lett.* **24**, 1583-1584, December 1988.

82. M. McIlvankey, J. H. Marsh, J. S. Roberts, and C. Button, "Matrix-Addressed 4×4 Spatial Light Modulator Using the Quantum Confined Stark Effect in $\text{GaAs}/\text{AlGaAs}$ Quantum Wells," *Electron. Lett.* **26**, 1691-1693, September 1990.

83. Y. Mori, "Characteristics of 4×4 Photonic Switch Array with Gain and High Contrast," *Appl. Phys. Lett.* **58**, 438-440, February 1991.

84. G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, and J. H. English, "Multiple Quantum Well Reflection Modulator," *Appl. Phys. Lett.* **50**, 1119-1121, April 1987.

85. W. Dobbelaere, D. Huang, S. Kalem, and H. Morkoc, " $\text{AlGaAs}/\text{GaAs}$ Multiple Quantum Well Reflection Modulators Grown on Si Substrates," *Electron. Lett.* **24**, 1239-1241, September 1988.

86. K. W. Goossen, G. D. Boyd, J. E. Cunningham, W. Y. Jan, D. A. B. Miller, D. S. Chemla, and R. M. Lum, " $\text{GaAs}/\text{AlGaAs}$ Multiquantum Well Reflection Modulators Grown on GaAs and Silicon Substrates," *IEEE Photo. Tech. Lett.* **1**, 304-306, October 1989.

87. C. Amano, S. Matsuo, and T. Kurokawa, "Novel Photonic Switch Arrays Consisting of Vertically Integrated Multiple-Quantum-Well Reflection Modulators and Phototransistors: Exciton Absorptive Reflection Switch," *IEEE Photo. Tech. Lett.* **3**, 736-738, August 1991.

88. R. J. Simes, R. H. Yan, R. S. Geels, L. A. Coldren, J. H. English, A. C. Gossard, and D. G. Lishan, "Electrically Tunable Fabry-Perot Mirror Using Multiple Quantum Well Index Modulation," *Appl. Phys. Lett.* **53**, 637-639, August 1988.

89. M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, and C. Button, "Low-Voltage

Multiple Quantum Well Reflection Modulator with On : Off Ratio $> 100 : 1$," *Electron. Lett.* **25**, 984–985, July 1989.

90. Y. H. Lee, J. L. Jewell, S. J. Walker, C. W. Tu, J. P. Harbison, and L. T. Florez, "Electrodispersive Multiple Quantum Well Modulators," *Appl. Phys. Lett.* **53**, 1684–1686, October 1988.

91. R. H. Yan, R. J. Simes, and L. A. Coldren, "Electroabsorptive Fabry-Perot Reflection Modulators with Asymmetric Mirrors," *IEEE Photo. Tech. Lett.* **2**, 118–119, 1990.

92. A. Tomita, Y. Kohga, A. Suzuki, T. Terakado, and A. Ajisawa, "5 : 1 On-Off Contrast InGaAs/InP Multiple Quantum Well Fabry-Perot Etalon Modulator," *Appl. Phys. Lett.* **55**, 1817–1819, October 1989.

93. R. H. Yan, R. J. Simes, and L. A. Coldren, "Wide-Bandwidth, High-Efficiency Reflection Modulators Using an Unbalanced Fabry-Perot Structure," *Appl. Phys. Lett.* **55**, 1946–1948, November 1989.

94. R. H. Yan, R. J. Simes, and L. A. Coldren, "Extremely Low-Voltage Fabry-Perot Reflection Modulators," *IEEE Photo. Tech. Lett.* **1**, 273–275, 1989.

95. K.-K. Law, L. A. Coldren, and J. L. Merz, "Low-Voltage Superlattice Asymmetric Fabry-Perot Reflection Modulator," *IEEE Photo. Tech. Lett.* **3**, 324–326, April 1991.

96. K. W. Goossen, J. E. Cunningham, and W. Y. Jan, "Monolithic Integration of Normally-On and Normally-Off Asymmetric Fabry-Perot Modulators by Selective Antireflection Coating," *Appl. Phys. Lett.* **60**, 2966–2968, June 1992.

97. H. Takeuchi, K. Kasaya, and K. Oe, "Low-Switching-Voltage InGaAsP/InP Waveguide Interferometric Modulator for Integrated Optics," *IEEE Photo. Tech. Lett.* **1**, 227–229, August 1989.

98. R. G. Walker, I. Bennion, and A. C. Carter, "Low-Voltage, 50Ω GaAs/AlGaAs Traveling-Wave Modulator with Bandwidth Exceeding 25 GHz," *Electron. Lett.* **25**, 1549–1550, November 1989.

99. J. E. Zucker, K. L. Jones, B. I. Miller, and U. Koren, "Miniature Mach-Zehnder InGaAsP Quantum Well Waveguide Interferometers for $1.3 \mu\text{m}$," *IEEE Photo. Tech. Lett.* **2**, 32–34, January 1990.

100. J. E. Zucker, K. L. Jones, B. I. Miller, M. G. Young, U. Koren, J. D. Evankow, and C. A. Burrus, "Zero-Loss Quantum Well Waveguide Mach-Zehnder Modulator at $1.55 \mu\text{m}$," *Appl. Phys. Lett.* **60**, 277–279, January 1992.

101. H. Sano, S. Tanaka, M. Aoki, T. Ido, H. Inoue, and K. Ishida, "A Multi-Quantum Well Modulator for High Bit-Rate Transmission Systems," *4th Optoelectronics Conference (OEC'92)*, 17C3-2, Makuhari Messe, Japan, July 1992.

102. J. E. Zucker, M. Wegener, K. L. Jones, T. Y. Chang, N. Sauer, and D. S. Chemla, "Optical Waveguide Intensity Modulators Based on a Tunable Electron Density Multiple Quantum Well Structure," *Appl. Phys. Lett.* **56**, 1951–1953, May 1990.

103. J. E. Zucker, K. L. Jones, T. Y. Chang, N. Sauer, B. Tell, K. Brown-Goebeler, M. Wegener, and D. S. Chemla, "Compact Low-Voltage InGaAs/InAlAs Multiple Quantum Well Waveguide Interferometers," *Electron. Lett.* **26**, 2029–2031, November 1990.

104. R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and T. Florez, "Low-Loss GaAs/AlGaAs Waveguide Phase Modulator Using a W-Shaped Index Profile," *Appl. Phys. Lett.* **53**, 1803–1805, November 1988.

105. J. Nees, S. Williamson, and G. Mourou, "100 GHz Traveling-Wave Electro-Optic Phase Modulator," *Appl. Phys. Lett.* **54**, 1962–1964, May 1989.

106. U. Koren, T. L. Koch, H. Presting, and B. I. Miller, "InGaAs/InP Multiple Quantum Well Waveguide Phase Modulator," *Appl. Phys. Lett.* **50**, 368–370, February 1987.

107. K. Wakita, Y. Yoshikuni, and Y. Kawamura, "Highly Efficient InGaAs/InAlAs MQW Waveguide Phase Shifter," *Electron. Lett.* **23**, 303–304, March 1987.

108. J. E. Zucker, T. L. Hendrickson, and C. A. Burrus, "Low-Voltage Phase Modulation in GaAs/A January 1988.

109. J. E. Zu in GaAs 1988.

110. K. Waki Speed I Lightwate

111. J. B. D. "High I Electron

112. K. Waki Well El Photo. I

113. X. S. W Modula March 1

114. A. Alpir AlGaAs

115. L. A. C Speed I ductors,

116. J. Mae GaInAs

117. J. G. N K. Pedr Lightwa

118. S. S. L Separat Phys. L

119. M. Ikee

120. M. Ikee Japan.

121. A. Ajis thically Quant

122. M. Jar L. Thy Switch

123. K. Tai Hetero tact," paper

124. H. Tai Couple Nover

125. C. Wu AlGaA

126. H. Ha Modul

127. K. Koi GaAs/

0:1," *Electron. Lett.* **24**, 112-113, January 1988.

109. J. E. Zucker, T. L. Hendrickson, and C. A. Burrus, "Electro-Optic Phase Modulation in GaAs/AlGaAs Quantum Well Waveguides," *Appl. Phys. Lett.* **52**, 945-947, March 1988.

110. K. Wakita, I. Kotaka, O. Mitomi, H. Asai, Y. Kawamura, and M. Naganuma, "High-Speed InGaAlAs/InAlAs Multiple Quantum Well Optical Modulators," *IEEE J. Lightwave Tech.* **8**, 1027-1032, July 1990.

111. J. B. D. Soole, H. K. Tsang, I. H. White, H. P. Leblanc, R. Bhat, and M. A. Koza, "High Performance QCSE Phase Modulator for the 1.5-1.55 μ m Fibre Band," *Electron. Lett.* **26**, 1421-1423, August 1990.

112. K. Wakita, I. Kotaka, and H. Asai, "High-Speed InGaAlAs/InAlAs Multiple Quantum Well Electro-optic Phase Modulators with Bandwidth in Excess of 20 GHz," *IEEE Photo. Tech. Lett.* **4**, 29-31, January 1992.

113. X. S. Wu, A. Alping, A. Vawter, and L. A. Coldren, "Miniature Optical Waveguide Modulator in AlGaAs/GaAs Using Carrier Depletion," *Electron. Lett.* **22**, 328-330, March 1986.

114. A. Alping, X. S. Wu, and L. A. Coldren, "Wavelength Dependence of High-Performance AlGaAs/GaAs Waveguide Phase Modulators," *Electron. Lett.* **23**, 93-95, January 1987.

115. L. A. Coldren, J. G. Mendoza-Alvarez, and R. H. Yan, "Design of Optimized High-Speed Depletion-Edge-Translation Optical Waveguide Modulators in III-V Semiconductors," *Appl. Phys. Lett.* **51**, 792-794, September 1987.

116. J. Maehnss, W. Kowalsky, and K. J. Ebeling, "Optical Waveguide Phase Modulator in GaInAsP Using Depletion Edge Translation," *Electron. Lett.* **24**, 518-519, April 1988.

117. J. G. M. Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of Depletion Edge Translation Lightwave Modulators," *IEEE J. Lightwave Tech.* **6**, 793-808, June 1988.

118. S. S. Lee, Y. S. Kim, R. V. Ramaswamy, and V. S. Sundaram, "Highly Efficient Separate-Confinement PpinN GaAs/AlGaAs Waveguides Phase Modulator," *Appl. Phys. Lett.* **55**, 1865-1867, October 1989.

119. M. Ikeda, "Laser Diode Switch," *Electron. Lett.* **17**, 899-900, November 1981.

120. M. Ikeda, "Proposal of Laser Diode Integrated-Optical Matrix Switches," *IECE of Japan. E69*, 1072-1074, October 1986.

121. A. Ajisawa, M. Fujiwara, J. Shimizu, M. Sugimoto, M. Uchida, and Y. Ohta, "Monolithically Integrated Optical Gate 2 \times 2 Matrix Switch Using GaAs/AlGaAs Multiple Quantum Well Structure," *Electron. Lett.* **23**, 1121-1122, October 1987.

122. M. Janson, L. Lundgren, A.-C. Morner, M. Rask, B. Stoltz, M. Gustavsson, and L. Thylen, "Monolithically Integrated 2 \times 2 InGaAsP/InP Laser Amplifier Gate Switch Arrays," *Electron. Lett.* **28**, 776-7789, April 1992.

123. K. Tada, H. Hayashi, M. Tsuchiya, and H. Sakaki, "GaAs-(AlGa)As Double-Heterostructure Coupled Waveguide Optical Modulator/Switch with Schottky Contact," *Extended Abstracts 17th Conf. Solid State Devices and Materials* (Tokyo, Japan), paper B-1-7, 83-86, 1985.

124. H. Takeuchi, K. Nagata, H. Kawaguchi, and K. Oe, "GaAs/AlGaAs Directional Coupler Switch with Submillimetre Device Length," *Electron. Lett.* **22**, 1241-1243, November 1986.

125. C. Wuthrich, J. Faist, W. Baer, and F. K. Reinhart, "Low-Drive-Voltage, Low-Loss AlGaAs/GaAs 2 \times 2 Switch," *Electron. Lett.* **24**, 1047-1048, August 1988.

126. H. Hayashi, and K. Tada, "GaAs Traveling-Wave Directional Coupler Optical Modulator/Switch," *Appl. Phys. Lett.* **57**, 227-228, July 1990.

127. K. Komatsu, K. Hamamoto, M. Sugimoto, A. Ajisawa, Y. Kohga, and A. Suzuki, "4 \times 4 GaAs/AlGaAs Optical Matrix Switches with Uniform Device Characteristics Using

Alternating $\Delta\beta$ Electrooptic Guided-Wave Directional Couplers," *IEEE J. Lightwave Tech.* **9**, 871-878, July 1991.

128. K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, "First 8×8 Semiconductor Optical Matrix Switches Using GaAs/AlGaAs Electro-Optic Guided-Wave Directional Couplers," *Electron. Lett.* **28**, 441-443, February 1992.

129. K. Tada and K. Hirose, "A New Light Modulator Using Perturbation of Synchronism Between Two Coupled Guides," *Appl. Phys. Lett.* **25**, 561-562, November 1974.

130. G. Muller, L. Stoll, G. Schulte-Roth, and U. Wolff, "Low Current Plasma Effect Optical Switch on InP," *Electron. Lett.* **26**, 115-117, January 1989.

131. F. Hernandez-Gil, T. L. Koch, U. Koren, R. P. Gnall, and C. A. Burrus, "Tunable MQW-DBR Laser with Monolithically Integrated GaInAsP/InP Directional Coupler Switch," *Electron. Lett.* **25**, 1271-1272, September 1989.

132. J. E. Zucker, K. L. Jones, M. G. Young, B. I. Miller, and U. Koren, "Compact Directional Coupler Switches Using Quantum Well Electrorefraction," *Appl. Phys. Lett.* **55**, 2280-2282, November 1989.

133. M. Chmielowski and D. W. Langer, "Quantum Well Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 77-79, April 1989.

134. J. A. Cavailles and M. Erman, "Very Low Power Nonlinear directional Coupling in a p-i(MQW)-n Vertical Coupler Using an Electrooptic Feedback," *IEEE Photo. Tech. Lett.* **2**, 343-345, May 1990.

135. J. A. Cavailles, M. Erman, and K. Woodbridge, "Experimental Study of Switching in a p-i(MQW)-n Vertical Coupler," *IEEE Photo. Tech. Lett.* **1**, 373-375, November 1989.

136. M. Kohtoku, S. Baba, S. Arai, and Y. Suematsu, "Switching Operation in a GaInAs-InP MQW Integrated-Twin-Guide (ITG) Optical Switch," *IEEE Photo. Tech. Lett.* **3**, 225-226, March 1991.

137. S. Baba, K. Shimomura, and S. Arai, "A Novel Integrated-Twin-Guide (ITG) Optical Switch with a Built-In TIR Region," *IEEE Photon. Tech. Lett.* **4**, 486-488, May 1992.

138. T. Yamaguchi, K. Tada, and T. Ishikawa, "Vertical Multiple-Quantum-Well Directional-Coupler Switch with Low Switching Voltage," *IEEE Photon. Tech. Lett.* **4**, 723-725, July 1992.

139. D. A. H. Mace, M. J. Adams, J. Singh, M. A. Fisher, and I. D. Henning, "1 \times 2 Lossless Semiconductor Optical Switch," *Electron. Lett.* **27**, 198-199, January 1991.

140. T. Katsuyama, H. Nakamura, S. Sakano, H. Inoue, K. Morosawa, and H. Matsumura, "InGaAsP/InP Monolithic Integrated Circuits for Laser Switching and Optical Amplification," *Top Meeting Integ. Guided-Wave Opt. (IGWO'86)*, Atlanta, GA, paper PDP 11-1, 46-49, February 1986.

141. K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, "InGaAsP/InP Optical Switches Using Carrier Induced Refractive Index Change," *Appl. Phys. Lett.* **50**, 141-142, January 1987.

142. H. Inoue, and S. Tsuji, "Optical Amplification by Monolithically Integrated Distributed-Feedback Lasers," *Appl. Phys. Lett.* **51**, 1577-1579, November 1987.

143. H. Inoue, H. Nakamura, K. Morosawa, Y. Sasaki, T. Katsuyama, and N. Chinone, "An 8 mm Length Nonblocking 4 \times 4 Optical Switch Array," *IEEE J. Select. Area Commun.* **6**, 1262-1266, August 1988.

144. K. Wakao, K. Nakai, M. Kuno, and S. Yamakoshi, "InGaAsP/InP Optical Switches Embedded with Semi-Insulating InP Current Blocking Layers," *IEEE J. Select. Area Commun.* **6**, 1199-1204, August 1988.

145. F. Ito, and T. Tanifugi, "Carrier-Injection-Type Optical Switch in GaAs with a 1.06-1.55 μm Wavelength Range," *Appl. Phys. Lett.* **54**, 134-136, January 1989.

146. H. Inoue, T. Kiriha, Y. Sasaki, and K. Ishida, "Carrier-Injection Type Optical S³ Switch with Traveling-Wave Amplifier," *IEEE Photo. Tech. Lett.* **2**, 214-215, March 1990.

147. H. Yanaga, "Guided-Wave Modulator Materials," *IEEE Photo. Tech. Lett.* **8**, 111-113, June 1996.

148. K. Tada, "Modulator Materials," *IEEE Photo. Tech. Lett.* **8**, 114-116, June 1996.

149. K. G. Ravinder, K. Matsubara, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **8**, 117-119, June 1996.

150. T. Kikugawa, S. Arai, and K. Matsubara, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **8**, 120-122, June 1996.

151. K. Shimomura, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **4**, 355-357, May 1992.

152. K. Shimomura, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **4**, 358-360, May 1992.

153. T. C. Huang, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 168-170, April 1990.

154. J. E. Zuck, N. J. Sauer, and R. J. Schow, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 804-806, April 1990.

155. T. Kodama, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 807-809, April 1990.

156. I. Suematsu, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 810-812, April 1990.

157. D. A. B. Miller, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 813-815, April 1990.

158. K. Matsubara, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 816-818, April 1990.

159. K. G. Ravinder, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 819-821, April 1990.

160. K. G. Ravinder, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 822-824, April 1990.

161. T. Aizawa, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 825-827, April 1990.

162. Y. Miyakawa, Y. Suematsu, and K. Matsubara, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 828-830, April 1990.

163. K. Komatsu, "Vertical Light Modulator," *IEEE Photo. Tech. Lett.* **1**, 831-833, April 1990.

IEEE J. Lightwave
8 × 8 Semiconductor
Guided-Wave
of Synchronization
ber 1974.
t Plasma Effect
urus, "Tunable
ctional Coupler
oren, "Compact
n," *Appl. Phys.*
odulator," *IEEE*
nal Coupling in
EE Photo. Tech.
f Switching in a
November 1989.
n a GaInAs-InP
Tech. Lett. **3**,
e (ITG) Optical
-488, May 1992.
um-Well Direct
Tech. Lett. **4**,
"1 × 2 Lossless
91.
H. Matsumura,
Optical Ampli
GA, paper PDP
"InGaAsP/InP
l. Phys. Lett. **50**,
Integrated Dis
1987.
I. Chinone, "An
Area Commun.
Optical Switches
J. Select. Area
As with a 1.06-
89.
Type Optical S³
14-215, March

147. H. Yanagawa, K. Ueki, and Y. Kamata, "Polarization- and Wavelength-Insensitive Guided-Wave Optical Switch with Semiconductor Y Junction," *IEEE J. Lightwave Tech.* **8**, 1192-1197, August 1990.
148. K. Tada, and Y. Okada, "Proposal of Bipolar Transistor Carrier-Injected Optical Modulators and Switches," *Extended Abstracts 18th Conf. Solid State Devices and Materials* (Tokyo, Japan), paper D-2-4, 169-172, 1986.
149. K. G. Ravikumar, K. Shimomura, T. Kikugawa, A. Izumi, S. Arai, Y. Suematsu, and K. Matsubara, "Switching Operation in Intersectional Type Field Effect MQW Optical Switch," *Electron. Lett.* **24**, 415-416, March 1988.
150. T. Kikugawa, K. G. Ravikumar, K. Shimomura, A. Izumi, K. Matsubara, Y. Miyamoto, S. Arai, and Y. Suematsu, "Switching Operation in OMVPE Grown GaInAs/InP MQW Intersectional Optical Switch Structures," *IEEE Photo. Tech. Lett.* **1**, 126-128, June 1989.
151. K. Shimomura, T. Aizawa, N. Tanaka, and S. Arai, "Low-Drive Voltage Intersectional Waveguide Optical Switch Using GaInAs/InP MQW Structure," *IEEE Photon. Tech. Lett.* **4**, 359-362, April 1992.
152. K. Shimomura, N. Tanaka, T. Aizawa, and S. Arai, "2 V Drive-Voltage Switching Operation in 1.55 μ m GaInAs/InP MQW Intersectional Waveguide Optical Switch," *Electron. Lett.* **28**, 955-957, May 1992.
153. T. C. Huang, T. Hausken, K. Lee, N. Dagli, L. A. Coldren, and D. R. Myers, "Depletion Edge Translation Waveguide Crossing Optical Switch," *IEEE Photo. Tech. Lett.* **1**, 168-170, July 1989.
154. J. E. Zucker, K. L. Jones, G. R. Jacobovitz, B. Tell, K. Brown-Goebeler, T. Y. Chang, N. J. Sauer, M. D. Divino, M. Wegener, and D. S. Chemla, "InGaAs-InAlAs Quantum Well Intersecting Waveguide Switch Operating at 1.55 μ m," *IEEE Photo. Tech. Lett.* **2**, 804-806, November 1990.
155. T. Kodama, Y. Osaka, and M. Yamanishi, "Binding Energies of Wannier Excitons in $\text{Ga}_{1-x}\text{Al}_x\text{As}$ Quantum-Well Wires," *Japan. J. Appl. Phys.* **24**, 1370-1371, October 1985.
156. I. Suemune, and L. A. Coldren, "Band-Mixing Effects and Excitonic Optical Properties in GaAs Quantum Wire Structures—Comparison with the Quantum Wells," *IEEE J. Quantum Electron.* **24**, 1778-1790, August 1988.
157. D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, "Electroabsorption of Highly Confined Systems: Theory of the Quantum Confined Franz-Keldysh Effect in Semiconductor Quantum Wires and Dots," *Appl. Phys. Lett.* **52**, 2154-2156, June 1988.
158. K. Matsubara, K. G. Ravikumar, M. Asada, and Y. Suematsu, "Field Induced Refractive Index Variation in Quantum Box Structure for Intersectional Optical Switch," *Trans. IEICE of Japan.* **E72**, 1179-1181, November 1989.
159. K. G. Ravikumar, T. Aizawa, K. Matsubara, M. Asada, and Y. Suematsu, "Analysis of Electric Field Effect in Quantum Box Structure and Its Application to Low Loss Intersectional Type Optical Switch," *IEEE J. Lightwave Tech.*, October 1991.
160. K. G. Ravikumar, T. Kikugawa, T. Aizawa, S. Arai, and Y. Suematsu, "Field-Induced Refractive Index Variation Spectrum in a GaInAs/InP Quantum Wire Structure," *Appl. Phys. Lett.* **58**, 1015-1017, March 1991.
161. T. Aizawa, K. Shimomura, S. Arai, and Y. Suematsu, "Observation of Field-Induced Refractive Index Variation in Quantum Box Structure," *IEEE Photo. Tech. Lett.* October 1991.
162. Y. Miyake, H. Hirayama, S. Tamura, S. Ueno, K. Sekine, S. Arai, Y. Miyamoto, and Y. Suematsu, "Room Temperature Operation of GaInAs/GaInAsP/InP Quantum-Wire Laser," *Nat. Conv. Rec. of Japan. Soc. Appl. Phys.* **11a-ZM-4**, Okayama, October 1991.
163. K. Komori, A. Hamano, S. Arai, Y. Miyamoto, and Y. Suematsu, "Fabrication of

GaInAs/InP Quantum Wires by Organometallic-Vapor-Phase-Epitaxial (OMVPE) Selective Growth on Grooved Side Walls of Ultrafine Multilayers," *Japan. J. Appl. Phys.* **31**, L535-L538, May 1992.

164. P. M. Petroff, A. C. Gossard, and W. Wiegmann, "Structure of AlAs-GaAs Interfaces Grown on (100) Vicinal Surfaces by Molecular Beam Epitaxy," *Appl. Phys. Lett.* **45**, 620-622, September 1984.

165. T. Fukui, and H. Saito, "(AlAs)_{0.5}(GaAs)_{0.5} Fractional-Layer Superlattices Grown on (001) Vicinal Surfaces by Metalorganic Chemical Vapor Deposition," *Appl. Phys. Lett.* **50**, 824-826, March 1987.

166. M. Tsuchiya, P. M. Petroff, and L. A. Coldren, "Use of Tilted-Superlattices for Quantum-Well-Wire Lasers," *IEEE Trans. Electron. Devices* **36**, November 1989.

167. E. Kapon, S. Simhony, R. Bhat, and D. M. Hwang, "Single Quantum Wire Semiconductor Lasers," *Appl. Phys. Lett.* **55**, 2715-2717, December 1989.

168. A. R. Adams, "Band-Structure Engineering for Low-Threshold High-Efficiency Semiconductor Lasers," *Electron. Lett.* **22**, 249-250, February 1986.

169. T. C. Chong, H. W. Wan, and S. J. Chua, "Polarisation Dependence of Field-Induced Refractive Index Variation in Strained and Unstrained Quantum Well Structures," *Electron. Lett.* **26**, 1060-1061, July 1990.

170. K. G. Ravikumar, T. Aizawa, S. Suzuki, and R. Yamauchi, "Observation of Polarization Independent Electric Field Effect in InGaAs/InP Tensile Strained Quantum Well and Its Proposal for Optical Switch," *Appl. Phys. Lett.* **62**, 1992.

171. J. E. Zucker, "Integrated Multiple Quantum Well Amplifier and Mach-Zehnder Modulator," *Fourth Optoelectronics Conference (OEC'92)*, 17C3-1, Makuhari Messe, Japan, July 1992.

New in 199

Editor-in

Emma

Columbia

SCOPE

Inno
develo
transce
find ne
devices
dance

Opt

new jo
commu
device
empha

Issues

- Opti
- Opti
- New
- Fibre
- Fibre
- Long
- Fibre
- Fibre
- Fibre

AUDI

This
optical