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ABSTRACT

THIS PAPER presents a first-order perturbation analysis of the stress concentration effects caused by slightly
undulating surfaces. The perturbation approach that we use treats the undulating surfaces as being
perturbed from a reference state in which the surface is perfectly flat. The magnitude of the perturbation
is assumed to be sufficiently small compared to other length scales of the bulk material so that a half-plane
model can be used for simplification. First-order-accurate perturbation solutions have been derived for the
stress distribution along a sinusoidally wavy surface and for the attenuation of the stress concentration
away from the undulating surface. The interactions among different surface perturbation waves are
investigated by comparing the result of stress concentration factor at the trough of a single wave per-
turbation along an otherwise flat surface to that for periodically wavy surface. We also examine some of
the 3-D effects by using the perturbation algorithm to calculate the stress concentration at undulating
surfaces of clastic hall-spaces. In all cases, it is found that wavy surfaces can magnify the bulk stress easily
by a factor of 2 or 3 when the surface profile does not deviate substantially from flatness. This stress
concentration effect is significant especially for already highly stressed heteroepitaxial semiconductor thin
films, suggesting that the surface morphology of the film surfaces can play an important role in nucleating
dislocations and crack-like surface flaws before the bulk stress reaches a critical level.

INTRODUCTION

MrcHaniCAL failures of structures often result from brittle fracture or plastic defor-
mation nucleated at material surfaces, due to surface defects and inhomogencities
inherited from the manufacturing processes as well as damage from environmental
corrosion and impact loadings. In this paper, we examine, via a first-order per-
turbation algorithm, the stress concentration effects caused by slightly undulating
surfaces. The method we use is based on a linear perturbation approach to inclusion
and void problems formulated recently by the author (Gao, 1990).

The impetus to undertake the present work also comes from an ongoing effort to
understand the surface nucleation of dislocation half-loops in semiconductor hetero-
epitaxial structures. As reviewed by many authors (e.g. PLo0G, 1986; OkamoOTO,
1987), materials composed of semiconductor layers with different lattice parameters
have found numerous applications in electronic and optical devices. The lattice mis-
match creates strain which results in formation of dislocations in the structure. The
dislocation nucleations are also found in thin film structures that comprise integrated
circuit and magnetic disks. 1t is of extremely high technological importance to reduce
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the dislocation densities to manufacture high performance, high yield electronic
devices. Nix (1989) recently reviewed some of the mechanical properties of thin films
on substrates and pointed out that very large stresses (e.g. 0.5 GPa), generated by
strain sources such as thermal mismatch and cpitaxial lattice mismatch, may be
present to cause plastic deformation and fracture. Under such high stresses, a slight
magnification of the bulk stress by surface inhomogeneities such as micro-level bumps
and troughs 1s likely to play a role in triggering nucleation processes of dislocations
and cracks.

With the above motivation, we shall investigate the stress concentration at undu-
lating surfaces via a first-order perturbation algorithm. The perturbation approach
employs certain known elastic Green’s functions for perfectly flat surfaces and treats
an undulating surface as being perturbed from a reference flat surface. We carry out
the perturbation analysis for sinusoidally wavy surfaces of clastic half-planes, with
simple solutions given for the stress concentration factors near the surface. It is found
that the slightly wavy surfaces can easily magnify the bulk stress by a factor of 2 or
3 according to

S = 1+4n(A/2) (1

where S is the stress concentration factor. 4 the wave amplitude and « the wavelength
of the surface. At deeper locations away from the surface, the stress is attenuated
exponentially at a characteristic depth about 0.2/, independent of the wave amplitude
A. The perturbation analyses suggest that the surface morphology can sometimes play
an important role in nucleating cracks and dislocations before the bulk stress reaches
a critical level.

The stress concentration factor at a single wave trough along an otherwise flat
surface is also calculated by the linear perturbation approach. The single-wave stress
result does not differ much from that for a periodically wavy surface, indicating that
the interaction effects among different surface perturbation waves are not substantial.
To examine the 3-D effects, we extend the perturbation analysis to slightly undulating
surfaces of elastic half-spaces subjected to bi-axial bulk stresses. The 3-D undulating
surfaces cause slightly lower, but nevertheless of the same order, stress concentrations
compared to their 2-D counterparts.

PERTURBATION APPROACH

In this section we follow a perturbation algorithm formulated earlier in Gao (1990)
for elastic inclusion and void problems and present a special version within the context
of surface perturbations. The undulating surface of concern here is assumed to be
close to a perfectly flat one with perturbation magnitude small compared to other
length scales of the bulk material. Hence it suffices to treat an elastic half-plane as we
do in the following.

Figure 1 shows a flat surface along the cartesian x-axis. The half-plane is subjected
to a uniform lateral bulk stress ¢, = T, such as the mismatch stresses in semiconductor
thin films. In addition to T, a concentratd point force P is placed at a position {(x, »),
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FiG. 1. An elastic half-plane subjected to lateral bulk stress 7 and a concentrated point force P at (x, y).

with P;0u,(x, y) (subscripts i, j, k, I, ... range over x, y) equal to the work done by the
force at an incremental displacement du(x, y).

Imagine that the flat surface is relocated (e.g. by cutting or adding a layer of variable
thickness of the same material) to a neighbouring undulating position by some variable
normal distance da(x’) at a location x’ (Fig. 2). Treating da(x") as infinitesimal, the
change in total energy I' (strain energy plus potential energy) of the system is

O = Pou(x,y) +J woa(x’) dx’, (2)

where w denotes the strain energy density distribution along the surface. The per-
turbation term in (2) is consistent with a general energy relation discussed by RICE
and DRUCKER (1967).

The energy quantity ' represents a state variable which can depend only on the
magnitude of P;, u; and the location of the surface. Therefore the right-hand side of
(2) is a perfect differential. Applying a Legendre transformation to (2) and using the
Maxwell reciprocal relation, it follows (for details see Gao, 1990) that the variation
in the displacement u;(x, ) associated with the surface perturbation da(x’) under the
same bulk stress T'is

zoow
5”{(,’(, y) = - E{ oa(x ) dx Ll (3)

where the derivative with respect to P, is evaluated with the surface held fixed in the
original flat position.

Yy
dalx’)
/—]\
X' X

F1G. 2. A slightly undulating surface of a half-plane, treated as being perturbed from the reference flat
position along the x-axis by da(x”).
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For linear elastic solids, the strain encrgy density function w is quadratic in terms
of the stress components, i.¢.

L 1
W= 08 = 28400k (4)

where .S, 4, is the compliance moduli tensor. Along the traction-free surface the strain
energy density simplifies to

(5)

where H = E for plane stress and H = E/{1 —v?) for plane strain; £, v are Young's
modulus and Poisson ratio respectively. The relation

ow

= . .Z'”-/H
(?Pm O vy (6)

then follows when we identify

00,

V(i x, vy =
L) =

(7
as the surface stress Green's function, i.c. the surface stress at x” due to a unit point
force in m direction at x, y.

Equations {3) and (6) must hold no matter what the magnitude of P, is and in
particular, they must hold when P, = 0. corresponding to the original bulk stress
condition in absence of the point force P,, When P, = 0, 6., = g, = T, and (6) yield

Su, (x,y) = — b TUAX" N, v)dalx’y dx’ (8)
to first order in da(x"). Here L7.(x": x. y) is the stress Green's function for the elastic
half-plane with perfectly flat surface. The displacement variation (8) can be substituted
into the constitutive relations to calculate the stress and strain variations due Lo the
perturbation da(x"). Of particular interest here is the stress variation

do(x.p) = =T ( iu(x' s x, poa{xydx’ )

+

where the kernel functions i,»ﬂ,-(x";.\', v} may be directly calculated from Green's

functions ', by
1 [ fosi. emi\ 2uve., 63k,
s, [,u(‘ e ')+ KY€ ] (10)

0T ax; Ox; 1—2v ax,

7

u being the shear modulus and §;, the Kronecker delta. Hence, knowledge of Green’s
functions 7.(x"; x, y) allows us to calculate, to first order accuracy, the variation of
the displacement field by (8) and the variation of the stress field by (9) when the flat
surface is perturbed by da(x").

Similar perturbation expressions can be derived for the 3-D geometry of an elastic
half-space subjected to bi-axial bulk stresses o0, = o = T with surface perturbed
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from an initially flat position in the x, z plane to a slightly undulating position by a
variable normal distance da(x’, z"). In that case, one can show, similarly to (8), that

Oty (X, Y, 2) = = S j J X2 X,y 2)oa(x’, 2y dx de (1

where
EMXL 2 x,y.z) = 02 x, 0, ) 2N, 2T X, v, 2). (12)

Here Z0.(x",z"; x, »,2), Z2(X, z s X, y,z) are the 3-D stress Green’s functions for

elastic half-spaces, e.g. . (x', z"; x, ¥, z) is the stress component o, at surface location
x’,z due to a unit point force in m direction at x, y, z. Subscripts i, j, k, / range over
x, v, z in the 3-D regime. The 3-D Green’s functions X for an elastic half-space may
be extracted from the point force solutions of MINDLIN (1936). Analogously to (9),
one can also write the stress variation in three dimension as

00, (x, y.2) = — TJ j fl[,(x’,z’; X,y z2)0a(x’, zydx" dz’. (13)

The 3-D stress kernel functions i,-(x',z’;x,y, z) are determined from the Green's
functions £ in a similiar fashion to (10).

Based on (8) and (9), a first-order perturbation approach to undulating surfaces is
formulated as follows. Assume the magnitude of the surface undulation is sufficiently
small. Then the given surface profile may be viewed as being perturbed from a
reference flat surface by a small perturbation da{x"}. The displacements and stresses
for the undulating surface are then written as

u,»(x,y} = u;)(x&y)'*—éui(xay)e 0'::,‘(3@}’) = 03(«‘C~y)+5‘7{;(xa}’)» (]4)

where u/(x, p), ofi(x,») are the displacements and stresses in the reference state, i.e.
the half-plane with a perfectly flat surface under lateral bulk stress 7, and du,(x, ),
60,;(x, y) are those given in (8), (9). The 3-D perturbation formulae (11), (13) provide
an extension to surfaces undulating in both x and z dimensions.

STRESS CONCENTRATION AT UNDULATING SURFACES: 2-D CASES

The crucial quantities in carrying out the perturbation analysis are the stress Green's
functions X} which may be extracted from the following point force solutions for a
half-plane quoted from GRrEeN and ZERNA (1968). When a point force P acts at a
position z = x+iy (Fig. 1), the surface stress can be written as

0{x"; X, p) = 4Re [Qx", 2)] (15
where the complex potential Q(x"; z) is given by
0 O(z—3) KQ P +iP,
QX 2) = e p 20T L X
52 ot x5 x—z’ 0= et 1) (16)

Here k = 3—4v for plane strain and x = (3—v)/(1+v) for plane stress. The stress
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Green’s functions X7, are extracted from the above elasticity solutions by alternating
(P.,P)={1,0), (0,1), which in turn leads to the derivation of the stress kernel
functions i,»f. Without presenting the lengthy but straightforward algebraic manipu-
lations we find

i:»\‘.l (x’ X, _V) = 72[ Re [(\"j—")?:l (17)

These stress kernel functions, when substituted into (9}, give the stress variations due
to arbitrary surface perturbation da{x"). Along the surface plane y = 0,

- 2
Zx,\'(-\ 7~\) - n‘()‘(/’__x): . (18)
so that the stress ¢, has been increased from the bulk stress level T to
21 dalx)
(x)y=T] 1+ ,dx’ . 19
O'.\,\(Y) [ +ch‘ 5 (X’——{\‘)“d\ril ( )

Within first-order accuracy, the tangential stress component at the undulating surface
is equal to o, as given in (19), although the tangent has been perturbed slightly from
the x direction.

Curiously, (19) is similar in form to a formula given by RicE (1985) for the variation
of stress intensity factor at a half-plane crack front when the front is perturbed to a
neighbouring position. As RiCe (1985) pointed out in his work within the context of
crack perturbation, the kind of singular integral expressed in (19) has a principal
value in the Cauchy sense only when the perturbation da(x”) satisfies

du(x) =0 (20)

at the observation point x since otherwise the stress kernel function has an inad-
missible singularity at x” = x. Fortunately, one has the freedom to relocate the
reference flat surface so that the condition (20) can always be met, because the
reference state is merely a virtual concept in the perturbation scheme. Under the bulk
stress T the Green’s function solutions Z7. for the reference flat surface are inde-
pendent of the vertical location of the reference surface with respect to the wavy
surface. This indicates that one may freely relocate the reference surface plane without
affecting the form of stress kernel functions ﬁi‘, expressed in (17), (18) if the variables
x—x’,y are understood in the relative sense as the horizontal and vertical distances
from the observation point (x, y) to the perturbation point (x) along the reference
surface.

A simple treatment of the inadmissible singularity in (19) is given as follows.
Assume that the given undulating surface can be described by the function ¢(x”) which
measures the distance from the x-axis to the surface at a position x'. At the chosen
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observation point x, we shall relocate the reference surface along a straight line at a
distance a(x) to the x-axis so that

oa(x") = a(x") —a(x) 21

vanishes at x” = x. Therefore by (19, 21) we may write the rigorously valid per-
turbation formula as

" atx) —atx) dx'], 22)

6 {x) = T[I + 2 PV j A A
T P (x —X)

accurate to first order in a(x") —a(x) for arbitrary surface profile a(x") that differs
slightly from constancy. Here PV denotes principal value in the Cauchy sense.

For comparison, RIce’s (1985) formula for the variation of stress intensity factor
along a slightly curved crack front described by y = ¢{(x) can be written in our notation
as

c(¥)—elv) dx’], (23)

l P
K(x) = KO[”%PVJ . V=)

where K is the stress intensity factor along a perfectly straight crack front. The
analogy between the surface perturbation and the crack perturbation has been pointed
out earlier by Gao (1990). Using an integration by parts, one can also recast (22)
into a familiar form of Cauchy-type integral equation

ST Ay (24)

o X

Oy (x) ‘_7T 2 PVJ% da(x)/dx’

which establishes an analogy between the present problem for surface perturbations
to various others such as representing cracks by continuous arrays of dislocations,
Hertzian contact mechanics of a rigid punch on a half-plane, elastic—plastic plane
stress Dugdale crack model, ete.

The stress attenuation away from the surface is to be calculated by substituting the
kernel functions of (17) into (9), replacing y by y—a(x) and da(x’) by a(x’) —a(x).
Hence,

21" X = , ,
(X, y) = T{l + - j‘ ) Re [ (’;f—v‘;:w’{i}:?(x)]) 321 [a(x)—a(x)]dx },

pule) =0 f ’ Im[ i }[a(x')-—a(x)]dxc

v L = x—i[y—a(x)])’

0u{x,p) = — 2; f& Re [ y—ax) J[a(x') —a(x)]dx’, (25)

. (x' —x—i[y—a(x)])?

where |y—a(x)| is the vertical distance from the observation point (x, ¥} to the
reference flat surface y = a(x).

As applications two simple cases of undulating surfaces are studied in the following.
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Sinusoidally wavy surface

Consider a sinusoidally wavy surface whose shape is described by the cosine wave
function

a(x) = ay—A cos 2ux/i). (26)

As shown in Fig. 3(a), (26) describes a wavy surface with wave amplitude 4 > 0 and
wavelength A. The constant ¢4 can be arbitrary which is irrelevant to our final
perturbation results. For first-order perturbations the wave amplitude A4 is assumed
to be small so that 4/4 « 1. Using (22), {26), the stress distribution along the wavy
surface of (26) is found to be

o {x) = T +4n(A4/2) cos (CZnx/4)]. (27
The maximum stress concentration factor
S=0,nA)T=1+4n(4/2) (n = integer) 28)

occurs when cos (2rx/4) = 1, corresponding to the most concave surface locations

Nonsmooth surface

TS(d)
- —
@) T T
- —»
Stress concentration factor:
S(d)= 1+ dn(A/R) (1-nd/A) exp(-2rd/A)

< Ll n
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F16. 3. (a) A sinusoidally wavy surface subjected {6 bulk siress 77 with wave amplitude 4 and wavelength
4. The stress concentration at a depth d from the surface for (b) 474 = 0.1 and (¢) Aj4 = 0.2
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{wave troughs) x = nl (n =0, +1,...). At the most convex location (wave peaks)
x = (2n-+1)A/2 the stress has been reduced from the bulk stress level T due to the
shielding effect of the wave troughs.

The remarkable fact is: the magnitude of the stress concentration depends on the
ratio A/4 of the wavy surface with a constant coefficient equal o 4n = 12.566, sug-
gesting that slight perturbations can magnify the bulk stress T easily by a factor of 2
or 3. For example, according to perturbation theory, an undulating surface with
AJA = 0.1 can magnify the bulk stress by 2.25 times.

The stress attenuation away from the surface can be calculated from (25). At a
depth d from the surface, we have y—a(x) = d so that the stress component 6,.(x, d)
is determined by the first of (25) as

241 [* 22(*-3d%») ( 21::) 2nx
O, )T = l+?[£mm3 I—COST dr COST* 29
The integral part within the square bracket in (29) can be written as the real part of
“ P22 —3d?) s

MY 1— 2ined )

ﬁm @ +———————--d2)3 (1 —e*™*)dr
Treating the above as part of the integration along the closed contour enclosing the
upper half of the complex 7 plane, one can evaluate the integral by employing Caunchy’s
residue theorem. In the upper half ¢ plane, the only singularity of the integrand is a
third-order pole at ¢ = di. Evaluating the residue of the integrand at ¢ = di, one can

simplify (29) to closed-form solution. Following similar steps for ¢,,(x,d) and
6,,(x, d), one finally has

(X, d) = Tl:l + i?!— (1 - E;-) e~ 7 o -2-—1;—{],

2
0, o, = AT o oo 27

b

0, (x,d) = gﬁffl (1 - -2-%‘-1-) e > sin 37—;{ . 30)

Thus, in deeper locations away from the surface the siress is attenuated with the
characteristic depth 4/2z, independent of the wave amplitude 4. At the wave trough
locations x = d = 0, (30) recovers the maximum surface stress concentration factor
of (28). For graphical description, the attenuation profile of the stress concentration
S(d) = 6,.(0,d)/T, corresponding to the depth attenuation from the wave trough
locations, is plotted in Fig. 3(b,c) for 4/4 = 0.1,0.2.

The perturbation solutions (30), for sinusoidally wavy surfaces, are consistent with
those derived recently by SroLoviTz (1989) who followed a different approach via
Airy stress functions.

Single wave perturbation on a flat surface

Interpretation of the perturbation results suggests that a thin layer exists beneath
undulating surfaces where the stress concentration is sensitive to the actual surface
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morphology. In real situations the surface profiles will be complicated compared to
the sinusoidal wavy shapes we have discussed. Still, there is one aspect we may examine
by stimple analysis, that is, the interaction effects among different surface bumps and
troughs. For this purpose we consider the case of one single perturbation wave on an
otherwise perfectly flat surface as shown in Fig. 4, in which case there is no interaction
with other perturbation waves.

Figure 4{a) depicts the single wave perturbation on an otherwise perfectly flat
surface. The surface profile can be written as

dg+ A jxi

ag— A cos 2nx/A)

3hH

Substituting (31) into (22}, it can be shown that the surface stress reaches the maximum
at the wave trough x = 0 with the stress concentration factor
S = 1+14.813(4/4). (32)

In the present case without any interaction effects among different surface waves, the

A
§2A

"
f
TS

(a) T T
“"““‘" ......_»
Maximum stress concentration factor
S{0d= 1+ 14813 (A/R)
> fad i) pel
b <
N S{g) ~
_(3 ©
L o
© o
EN Alh= 0.1 .
=1 i~3
B ®
o L
d/a d/r
(b) {c)

F16. 4. {a) A single wave trough on an otherwise flat surface subjected to bulk stress T, with perturbation
magnitude 24 and length 2. The stress concentration at a depth ¢ from the wave trough for (b) 474 = 0.1
and (¢} 4/4 = 0.2
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value 14.813 of stress coeflicient has increased by 20% over the periodically wavy
surface value of 12.566 derived previously (28). This indicates that interactions among
different surface waves relax slightly, but not substantially, the stress concentration.

Figure 4(b, c) contains plots of the depthwise stress attenuation profiles for
AJA = 0.1 and A/A = 0.2. The stress attenuation profiles appear to be completely
similar to the periodical wave cases shown in Fig. 3. Both cases show characteristic
attenuation depth approximately equal to 0.24.

As discussed in the Introduction, for heteroepitaxial semiconductor thin film struc-
tures, it is not uncommon to find bulk stress 7 as high as 0.5 GPa due to thermal or
lattice mismatches. Assume that the surface morphology of the films displays slight
undulations at the microlevel with 4/4 = 0.1. Our perturbation results then suggest
that the surface stress may be magnified to a level around 1 GPa, much higher than
the bulk stress value. Therefore, at least in the highly stressed thin films, the surface
morphology can play an important role in activating formations of dislocations and
cracks. Once formed, these surface flaws can cause significant strength degradation
and malfunction of semiconductor devices, sometimes even leading to ultimate struc-
tural failure before the bulk stress reaches a critical level.

STRESS CONCENTRATION AT 3-D UNDULATING SURFACES

The perturbation analysis has been carried out in 2-D configurations. One also
wonders how large are the effects that more realistic 3-D undulating surfaces may
have on the stress concentrations. To examine some of the 3-D effects, we extend the
perturbation analysis to surfaces of elastic half-spaces shown in Figs 5 and 6.

To proceed we need to calculate the Green’s functions for an elastic half-space. The
elasticity problem of a haif-space subjected to a concentrated point force has been
solved over half a century ago by MINDLIN (1936). When a unit point force is placed
at position (0, 0, ¢), the elastic displacements can be determined through Papkovitch—
Neuber potential representation (PAPKOVITCH, 1932)

1 ,
u= B"Z(T—_v) V(x-B+pf), (33

where B; (i = x, y,z) and f are the 3-D potential functions. If the point force is normal
to the surface y = 0, MinDLIN (1936) showed that B, = B, = 0 and

1[1 3—dy 26(y+c)]
+ + ,

v = m 7{7 R, R3
i 1 ¢ c(3—4v)
ﬁ_m[4(l—v)(l—-2v)10g(R2—+-y+C)—R—l—T]a (34

where

R =X +(—0+7%, Ry=/x+(+0)+z. 35

If the point force is parallel to the surface in the x-direction, then we have B, = 0 and
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3D Surface of a half-space:

2A

153D

Stress Concentration Factor
s - 1+8.89 (1+v) A/L

FI1G. 5. A 3-D sinusoidally wavy surface of an elastic half-space subjected to bi-axial bulk stress 7°; the
wave amplitude 4 and wavelength 2.

1 1 1 1 (1-2v)x X
B = + -], B = B
Anu \R, R, T 2au| Ry(Ry+v+c¢)  R3

- 2apu Ry+y+c¢ ( V)X R, | (3

By symmetry the corresponding solutions for a point force in the z-direction are
exactly those of (36) if x is replaced by z.

The stress Green’s functions £” and the kernel functions £, can be constructed
from the Mindlin solutions given above. To simplify the algebraic manipulations, we
only derive the stress kernel functions for surface locations y = 0 where the maximum
stress concentration effect occurs. After lengthy algebra we find 7 = flw, =0,

soo U +L)(§:,f) g +‘!)({k:).
- r-
where
= )

and
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3D surface of a haif-space:

Stress Concentration Factor:

30
S =1+1455 A/

F16. 6. A single wave trough on an otherwise flat surface of an elastic half-space subjected to bi-axial bulk
stress 7°; the perturbation magnitude 2.4 and length 2.

— 2= =)+ (1 -20)(7'~2)°

ixx(x/s z s X, [-Z) = 5 ,
kits
3 — (2= =)+ (1 =29)(x" —x)°

Along an undulating surface whose shape is described by y = a(x’, z'), the surface
stress concentration is given by

Tow I+ o (2“")(X'“x)2—(1“2}’)(1’"2)2
T I ar’

[a{x’, 2"y —a{x, z)]dx" dz’,

(39)

where we have chosen a reference flat surface, similar to the 2-D cases discussed
before, at a distance a(x, z) to the x, z plane so that the singular integral of (39) can
be defined rigorously in the principal value sense. If a{x, z) is independent of z, one
may verify that (39) reduces to the corresponding 2-D formula (22). The stress
component o..(x, z) can be written in a similar form.

We apply the perturbation formula (39) to a sinusoidally wavy surface and a flat
surface with a single wave perturbation shown in Figs 5 and 6.
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Sinusoidally wavy surface
We consider the sinusoidally wavy surface
a(x,z) = ay— A cos (2nx/1) cos (2nz/A) (40)
as shown in Fig. 5, where 4, 1 are the wave amplitude and wavelength of the surface.
The maximum stress concentration occurs at the most concave locations, i.e. the wave

troughs such as x = z = 0 where we find the maximum stress concentration factor
S*P =6 .(0,0)/T equal to

A k4 el 2_7;2; ]—2’22 2 V 2 z
s 147 J ( L)’: f(v—sqi)* [l —cos (Tm> cos (n)] dxdz
b N (x? 42777 ~ ~

14221+ v)n(A4/2). An

ll

Comparing S to the corresponding 2-D value § expressed in (28), one observes that
the stress concentration can be slightly relaxed, for Poisson ratio 0 < v < \/2— 1, by
allowing perturbations along the z-direction. This is not unexpected since we have
seen that the interaction among perturbation waves results in relaxation of stress
concentration. The 2-D configurations have restricted the surface undulation to along
the x-direction, hence may cause higher stress than the more realistic 3-D configur-
ation. For most of the materials, the Poisson ratio v ranges from 0.25 to 0.35, which
corresponds to 3-D relaxation by 5% to 12%. Interestingly enough, near the
incompressible limit when \/ 2—1 < v < 0.5, the 3-D undulation actually increases
the stress concentration by up to 6%.

Single wave perturbation

Paralle] to the 2-D analyses, we also consider a single wave perturbation on an
otherwise flat surface as shown in Fig. 6. For simplicity consider the symmetric surface
profile

ag+A4 Fz A2
atr) = {ao —AcosQurld) r< i, (42)

where r = \/ x? 422, The surface stress attains the maximum at the trough location
r = 0. Substituting (42) into (39), we find that, for v = 0.25,

S = 1414.5451(A4/4). (43)
The stress coefficient value 14.5451 is close to the corresponding 2-D value 14.813

with approximately 2% difference, showing that the 3-D effects are negligible in the
case of a single perturbation wave.
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DiscussioN

We have presented in this paper a first-order perturbation analysis of the stress
concentrations along undulating surfaces. The perturbation algorithm follows a recent
development of a perturbation approach to elastic inclusion and void problems by
Gao (1990). The undulating surfaces are viewed as being perturbed from a reference
state in which the surface is perfectly flat. Perturbation solutions are given for the
stress concentrations along sinusoidally wavy surfaces and surfaces with a single wave
trough. It is found that even slightly undulating surfaces can magnify the bulk stress
easily by a factor of 2 or 3. Away from the surface the stress concentration effect is
attenuated exponentially at a characteristic depth about one-fifth of the undulating
wavelength. Mechanical properties of structures with high bulk stresses such as
semiconductor films are likely to be sensitive to surface morphology. With the stress
concentration near the surface, damaging surface cracks and dislocations may be
nucleated before the bulk stress reaches a critical level. The 3-D effects of undulating
surfaces are studied by examining the perturbations of elastic half-spaces using
Mindlin’s Green function solutions. The largest stress concentration is found for
the case of a single surface trough on an otherwise flat surface. This effect drops at
increasing interactions among different surface bumps and troughs. The smallest
stress concentration effect occurs for surfaces with maximum numbers of perturba-
tion waves.

One may question the range of validity of the first-order perturbation analysis, i.e.
whether it is proper at all for the present surface perturbation problem. Of course,
the present perturbation analysis could be subjected to verification by exact cal-
culations such as the numerical analyses by finite elements or boundary clements.
Nevertheless, we can gain some confidence from a number of previous works cited in
the following. First, the linear perturbation analysis for surface perturbations follows
the perturbation algorithm formulated by Gao (1990) for general inclusion and void
problems. Gao (1990) has examined the range of validity of the perturbation algorithm
by using it to compute the stress concentration at an elliptical hole. It was found that
the first-order-accuraie perturbation results are within 5% of the exact solution when
the aspect ratio of the ellipse is as large as 1.6 and within 10% when the aspect ratio
is as large as 2. Hence at least in that case, the perturbation analysis can be applied
to substantially large magnitude of perturbations. Second, the perturbation analysis
for inclusion, void and surface perturbation problems has close analogy to the first-
order crack perturbation theory which was formulated by Ricg (1985) and further
developed by Gao and Rice (1987, 1989). The previous experiences with crack
perturbation analyses indicate that the linear perturbation results are valid for a broad
range of perturbation magnitude. For example, Gao and RICE (1987) have applied
the crack perturbation analysis to calculate the stress intensity factor along an elliptical
crack front and found that the perturbation results match the corresponding exact
solution fror aspect ratios as large as 2, similar to the validity range for the perturbation
analysis of an elliptical hole (Gao, 1990). Also, Gao and Rice (1989) compared the
linear perturbation results for a half-plane crack to the numerical results of FARES
(1989) obtained through boundary element (BEM) computations and found that the
perturbation results are within 7% of the BEM results when the ratio 4/ (wave
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amplitude over wavelength) is as large as 0.1. All these suggest that the present
surface perturbation results are valid at least for A/4 of order 0.1.
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