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ABSTRACT 

Trns PAYER presents a first-order perturbation analysis of the stress concentration effects caused by slightly 
undulating surfaces. The perturbation approach that we use treats the undulating surfaces as being 
perturbed from a reference state in which the surface is perfectly flat. The magnitude of the perturbation 
is assumed to be sufficiently small compared to other length scales of the bulk material so that a half-plane 
model can be used for simpIifi~t~ol1. first-order-~~urate ~rtur~tion sohrtions have been derived for the 
stress distribution along a sinusoidall~ wavy surface and for the attenuation of the stress concentration 
away from the undulating surface. The interactions among different surface perturbation waves are 
investigated by comparing the result of stress concentration factor at the trough of a single wave per- 
turbation along an otherwise flat surface to that for periodically wavy surface, We also examine some of 
the 3-D effects by using the perturbation algorithm to calculate the stress concentration at undulating 
surfaces of elastic half-spaces. In all cases, it is found that wavy surfaces can !nagnify the bulk stress easily 
by a factor of 2 or 3 when the surface profile does not deviate substantiail~~ from flatness. This stress 
concentration effect is significant especially for already highly stressed heteroepitaxial semiconductor thin 
tilms, suggesting that the surface morphology of the film surfaces can play an important role in nucleating 
dislocations and crack-like surface flaws before the bulk stress reaches a critical level. 

MECHANICAL failures of structures often result from brittle fracture or plastic defor- 
mation nucleated at material surfaces, due to surface defects and inhomogeneities 
inherited from the manufacturing processes as well as damage from environmental 

corrosion and impact loadings. In this paper, we examine, via a first-order per- 
turbation algorithm, the stress concentration effects caused by slightly undulating 
surfaces. The method we use is based on a linear perturbation approach to inclusion 
and void problems formulated recently by the author (GAO, 1990). 

The impetus to undertake the present work also comes from an ongoing effort to 
understand the surface nucleation of dislocation half-loops in semiconductor hetero- 
epitaxial structures. As reviewed by many authors (e.g. PLOOC, 1986; OKAMOTO, 

19871, materials composed of semicondLlctor layers with different lattice parameters 
have found numerous applications in electronic and optical devices. The lattice mis- 
match creates strain which results in formation of dislocations in the structure. The 
dislocation nucleations are also found in thin film structures that comprise integrated 
circuit and magnetic disks. It is of extremely high technological importance to reduce 
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the dislocation densities to manufacture high performance, high yield electronic 
devices. NIX (1989) recently reviewed some of the mechanical properties of thin films 
on substrates and pointed out that very large stresses (e.g. 0.5 GPa), generated by 
strain sources such as thermal mismatch and cpitaxial lattice mismatch, may be 
present to cause plastic deformation and fracture. Under such high stresses, a slight 
magnification of the bulk stress by surface inhomogeneities such as micro-level bumps 
and troughs is likely to play a role in triggering nucleation processes of dislocations 
and cracks. 

With the above motivation, we shall investigate the stress concentration at undu- 
lating surfaces via a first-order perturbation algorithm. The perturbation approach 
employs certain known elastic Green’s functions for perfectly flat surfaces and treats 
an undulating surface as being perturbed from a reference flat surface. We carry out 
the perturbation analysis for sinusoidally wavy surfaces of elastic half-planes. with 
simple solutions given for the stress concentration factors near the surface. It is found 
that the slightly wavy surfaces can easily magnify the bulk stress by a factor of 2 or 
3 according to 

s = I +47r(,L:‘i) (1) 

where S is the stress concentration factor. A the wave amplitude and X the wavelength 
of the surface. At deeper locations away from the surface, the stress is attenuated 
exponentially at a characteristic depth about 0.21.. independent of the wave amplitude 
A. The perturbation analyses suggest that the surface morphology can sometimes play 
an important role in nucleating cracks and dislocations before the bulk stress reaches 
a critical level. 

The stress concentration factor at a single wave trough along an otherwise flat 
surface is also calculated by the linear perturbation approach. The single-wave stress 
result does not differ much from that for a periodically wavy surface. indicating that 
the interaction effects among different surface perturbation waves are not substantial. 
To examine the 3-D effects, we extend the perturbation analysis to slightly undulating 
surfaces of elastic half-spaces subjected to bi-axial bulk strcsscs. The 3-D undulating 
surfaces cause slightly lower. but nevertheless of the same order, stress concentrations 

compared to their 2-D counterparts. 

PERTURBATION APPROACH 

In this section we follow a perturbation algorithm formulated earlier in GAO ( 1990) 
for elastic inclusion and void problems and present a special version within the context 
of surface perturbations. The undulating surface of concern here is assumed to be 
close to a perfectly flat one with perturbation magnitude small compared to other 
length scales of the bulk material. Hence it suffices to treat an elastic half-plane as we 
do in the following. 

Figure 1 shows a flat surface along the Cartesian s-axis. The half-plane is subjected 
to a uniform lateral bulk stress a:, = T, such as the mismatch stresses in semiconductor 

thin films. In addition to T, a concentratd point force P is placed at a position (_u,j.), 
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FE. I. An elastic half-plane subjected to lateral bulk stress T and a concentrated point force P at (.x, JI). 

with P,Gu,(x, y) (subscripts i,,j, k, 1, . . range over x, y) equal to the work done by the 
force at an incremental displacement 6u(x, ~1). 

Imagine that the flat surface is relocated (e.g. by cutting or adding a layer of variable 
thickness of the same material) to a neighbouring undulating position by some variable 
normal distance 6a(x’) at a location .x’ (Fig. 2). Treating &z(x’) as infinitesimal, the 
change in total energy T (strain energy plus potential energy) of the system is 

where w denotes the strain energy density distribution along the surface. The per- 
turbation term in (2) is consistent with a general energy relation discussed by RICE 

and DRUCKER (1967). 

The energy quantity T represents a state variable which can depend only on the 
magnitude of P,, II, and the location of the surface. Therefore the right-hand side of 
(2) is a perfect differential. Applying a Legendre transformation to (2) and using the 
Maxwell reciprocal relation, it follows (for details see GAO, 1990) that the variation 
in the displacement u,(x,y) associated with the surface perturbation &7(x’) under the 
same bulk stress T is 

where the derivative with respect to Pi is evaluated with the surface held fixed in the 
original flat position. 

FIG. 2. A slightly undulating surface of a half-plane, treated as being perturbed from the reference flat 
position along the s-axis by iit0’). 
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For linear elastic solids, the strain energy density function IV is quadratic in terms 
of the stress components, i.e. 

II’ = ;ciic;, = $,,i,Q7~,% (41 

where Siin, is the compliance moduli tensor. Along the traction-free surface the strain 
energy density simplifies to 

where I-I = E for plane stress and N = @(I -I,‘) for plane strain ; E. v are Young’s 
modulus and Poisson ratio respectively. The relation 

then follows when we identify 

(6) 

as the surface stress Green’s function. i.c, the surface stress at .x’ due to a unit point 
force in I)? direction at .Y,J*. 

Equations (3) and (6) must hold no matter what the rn~~gl~itude of P, is and in 
particular. they must hold when P, = 0, corresponding to the original bulk stress 
condition in absence of the point force I-‘,. When P, = 0. c,, = a:‘, = 7Y and (6) yield 

6Ef,,,(S.J’) = - ; 
1 

/ 
2’;: (s’ ; s, ,v)&~(.Y’) dr’ (8) 

v ’ 

to first order in 6u(s’). Here Xl:: (_Y’ : .L J,) is the stress Green’s function for the elastic 
half-plane with perfectly flat surface. The displacement variation (8) can be substituted 
into the constitutive relations to calculate the stress and strain variations due to the 
perturbation iin(_u’). Of particular interest here is the stress variation 

where the kernel functions gji(s’ : s. !a) 
functions C:, by 

p being the shear modulus and bjj the Kronecker delta. Hence, knowledge of Green’s 

functions X’&(.r’; s, 4:) allows us to calculate, to tirst order accuracy, the variation of 
the displacement tield by (8) and the variation of the stress field by (9) when the flat 
surface is perturbed by &(.u’). 

Similar per~urbatioll expressions can be derived for the 3-D geometry of an elastic 
half-space subjected to biaxial bulk stresses a:.,. = & = T with surface perturbed 
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from an initially flat position in the x, z plane to a slightly undulating position by a 
variable normal distance &X(X’, 2’). In that case, one can show, similarly to (8), that 

Crn(X’, z’ ; x, .I;, z)Su(x’, z’) dx’ dz’ (11) 

where 

cof(_Y’, 17’ ; x, y, z) = c;&?, z’ ; x, y, 2) + c;J(x’, 2’ ; “X, g, z). (12) 

Here Cf:’ (I’, z’ . , x, y, z), CfJ(.u’, z’ ; I, y, z) are the 3-D stress Green’s functions for 
elastic half-spaces, e.g, C:l(.u’, 2’ . f x, y, z) is the stress component CT,~~~ at surface location 
XZ,Zf due to a unit point force in na direction at x,~, z. Subscripts i, j, k, I range over 
X, y, z in the 3-D regime. The 3-D Green’s functions Y for an elastic half-space may 
he extracted from the point force solutions of MINDLIN (1936). Analogously to (9), 
one can also write the stress variation in three din~ension as 

The 3-D stress kernel functions $,(x’ I _ , x,y, z) are determined from the Green’s 7’. 
functions c’” in a similiar fashion to (10). 

Based on (8) and (9), a first-order perturbation approach to undulatitlg surfaces is 
formulated as follows. Assume the magnitude of the surface undulation is sufficiently 
small. Then the given surface profile may be viewed as being perturbed from a 
~~~f~r~n~~~ fiat surface by a small perturbation tSa(x’). The displaceI~ents and stresses 
for the undulating surface are then written as 

Uj(S,y) = UE’(-t.,y) +621i(X,y), iJi,(X,y) = @E(X*J) + 60<j(X*y), (14) 

where u?(x,_v), CJ,~~(_X,_V) are the displacements and stresses in the reference state, i.e. 
the half-plane with a perfectly Rat surface under lateral bulk stress T, and Su,(.x,y), 
15t7,i(s, _v) are those given in (X), (9). The 3-D perturbation formulae (1 I). (13) provide 
an extension to surfaces undulating in both x and z dimensions. 

STRESS CONCENTRATION AT UNDULATING SURFACES: 2-D CAKES 

The crucial quantities in carrying out the perturbation analysis are the stress Green’s 
functions 2=?; which may be extracted from the following point force solutions for a 
half-plane quoted from GREEN and ZERNA (1968). When a point force P acts at a 
position z = x+ iy (Fig. l), the surface stress can be written as 

a,,(~‘; X, .Y) = 4 Re [CC+‘, z)] 

where the complex potential Q(s’ ; z) is given by 

(1.5) 

R(x’ ; z) = - 
Q(Z-2) k-e ,;t?.. + “- ._.... _ _ ~_ P,, i- iP, 

__&._ 

? (x’-zy d-2 p = 2n(ti+l)’ (161 

Here K = 3 -41~ for plane strain and K = (3 - \I)/( I + 12) for plane stress. The stress 
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Green’s functions Cl:\ are extracted from the above elasticity solutions by alternating 
(P,-, P,) = (I, O), (0, l)_ which in turn leads to the derivation of the stress kernel 
functions $,. Without presenting the lengthy but straightforward algebraic manipu- 
lations we find 

f,&‘; _v,y) = _ ? Re _-’ --.’ [’ I * 
TI (_Y’--_)7 ’ 

(17) 

These stress kernel functions. when substituted into (9), give the stress variations due 
to arbitrary surf&e perturbation &(I’). Along the surface plane .Y = 0, 

so that the stress g,, has been increased from the bulk stress level T to 

D,,(X) = T I+ 
2 -< 

i i’ cicx(x’) 

7c ,_ (x’ - .u) Z d-u’ I 
(19) 

Within first-order accuracy, the tangential stress component at the undulating surface 
is equal to o,, as given in (19), although the tangent has been perturbed slightly from 
the .Y direction. 

Curiously, (I 9) is similar in form to a formula given by RICE (19X.5) for the variation 
of stress intensity f%ctor at a half-plane crack front when the front is perturbed to a 
neighbouring position. As RICE (198.5) pointed out in his work within the context of 
crack perturbation, the kind of singular integral expressed in (19) has a principal 
value in the Cauchy sense only when the perturbation &r(s’) sa:isfies 

&r(x) = 0 (20) 

at the observation point .Y since otherwise the stress kernel function has an inad- 
missible singularity at x’ = s. Fortunately, one has the freedom to relocate the 
reference flat surface so that the condition (20) can always be met, because the 
reference state is merely a virtual concept in the perturbation scheme. Under the bulk 
stress T the Green’s function solutions Et!, for the reference flat surface are inde- 
pendent of the vertical location of the reference surface with respect to the wavy 
surface. This indicates that one may freely relocate the reference surface plane without 
affecting the form of stress kernel functions L$, expressed in (17), (18) if the variables 
.u-_v’,J’ are understood in the relative sense as the horizontal and vertical distances 
from the observation point (x, J,) to the perturbation point (s’) along the reference 
surface. 

A simple treatment of the inadmissible singularity in (19) is given as follows. 
Assume that the given undulating surface can be described by the function N(.Y’) which 
measures the distance from the -u-axis to the surface at a position s’. At the chosen 
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observation point x, we shall relocate the reference surface along a straight line at a 

distance Q(X) to the s-axis so that 

6a(x’) = n(Y) - u(x) (21) 

vanishes at x = x. Therefore by (19, 21) we may write the rigorously valid per- 
turbation formula as 

(22) 

accurate to first order in a(,~‘)-a(x) for arbitrary surface profile a(.~‘) that differs 
slightly from constancy. Here PVdenotes principal value in the Cauchy sense. 

For comparison, RICE’S (1985) formula for the variation of stress intensity factor 
along a slightly curved crack front described by 3’ = C(X) can be written in our notation 
as 

(23) 

where IV’ is the stress intensity factor along a perfectly straight crack front. The 
analogy between the surface perturbation and the crack perturbation has been pointed 
out earlier by GAO (1990). Using an integration by parts, one can also recast (22) 
into a familiar form of Cauchy-type integral equation 

a,,($ - T 2 

T 
=-- PV 

x da(x’)!‘dx’ 

71 J ‘% 
--2TxF d_v’ (24) 

which establishes an analogy between the present problem for surface perturbations 
to various others such as representing cracks by continuous arrays of dislocations, 
Hertzian contact mechanics of a rigid punch on a half-plane, elastic-plastic plane 
stress Dugdale crack model, etc. 

The stress attenuation away from the surface is to be calculated by substituting the 
kernel functions of (I 7) into (9), replacing 4’ by y--a(x) and aa by a(Y) -u(x). 
Hence, 

where ly-u(x)1 is the vertical distance from the observation point (x,1:) to the 
reference flat surface y = u(x), 

As applications two simple cases of undulating surfaces are studied in the following. 



Consider a sinLIso~da]ly wavy surface whose shape is described by the cosine wave 
function 

a(.u) I‘- (10 -A cos (27LY/jL). (26) 

As shown in Fig. 3(a), (26) describes a wavy surface with wave amplitude A > 0 and 
w~~velen~th 5. The constant uO can be arbitrary which is irrelevant to our final 
perturbation results. For first-order perturbations the wave amplitude sl is assumed 
to be small so that ,4/n CC 1. Using (22), (26), the stress distribution along the wavy 
surface of (26) is found to bc 

G,,,\ (x) = T[ i + iCn(/lji) cos (27cx/n)]. (27) 

The rnaxirnLln~ stress colic~iltration factor 

S = rr,,(&)/7’= I+-47r(A/i.) (n = integer) (28) 

occurs when cos (27c.~/i) = I, corresponding to the most concave surface locations 

Nonsmooth surrace 

Stress concenWation facior: 

S(d)= I +4n(A/h) ( I -nd/h) exp(-2nd/b) 

d/h 

/ S(d) 
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(wave troughs) x = na {n = 0, rtr: 1,. . .). At the most convex location (wave peaks) 
x = On+ I)42 the stress has been reduced from the bulk stress level T due to the 
shielding effect of the wave troughs. 

The remarkable fact is : the magnitude of the stress concentration depends on the 
ratio A/i of the wavy surface with a constant coefficient equal to 4rc = 12,566, sug- 
gesting that slight perturbations can magnify the bulk stress T easily by a factor of 2 
or 3. For example, according to perturbation theory, an undulating surface with 
A/J = 0.1 can magnify the bulk stress by 2.25 times. 

The stress attenuation away from the surface can be calculated from (25). At a 
depth d from the surface, we have y-a(x) = d so that the stress component a,..(~, d) 
is determined by the first of (25) as 

id&, 4/T = 1+ y (29) 

The integral part within the square bracket in (29) can be written as the real part of 

Treating the above as part of the integration along the closed contour enclosing the 
upper half of the complex t plane, one can evaluate the integral by employing Cauchy’s 
residue theorem. In the upper half t plane, the only singularity of the integrand is a 
third-order pole at t = di. Evaluating the residue of the integrand at t = di, one can 
simplify (29) to closed-form solution. Following similar steps for o,,Jx, d) and 
6&b), one finally has 

a.rx(x,d) = T[l+~(l-~)e-2n~~~os~], 

?a b, dl 
4x’dA T 2nx I= __,- e- 2ndlil ms ___ , 

J2 ri 

27rA T 
%.“(&d) = ---j--- I 

Thus, in deeper locations away from the surface the stress is attenuated with the 
characteristic depth 42n, independent of the wave amplitude A. At the wave trough 
locations x = d = 0, (30) recovers the maximum surface stress concentration factor 
of (28). For graphical description, the attenuation profile of the stress concentration 
S(d) = o,,(O, d)/T, corresponding to the depth attenuation from the wave trough 
locations, is plotted in Fig. 3(b,c) for A/n = 0.1,0.2. 

The perturbation solutions (30), for sinusoidally wavy surfaces, are consistent with 
those derived recently by SROLOYITZ (1989) who followed a different approach via 
Airy stress functions. 

Single wave perturbutim on a flat surface 

Interpretation of the perturbation results suggests that a thin layer exists beneath 
undulating surfaces where the stress concentration is sensitive to the actual surface 
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morphology. In real situations the surface prafiles will be complicated compared to 
the sinusoidal wavy shapes we have discussed. Still, there is one aspect we may examine 
by simple analysis, that is, the inreraction efTects among different surface bumps and 
tro~glls. For this purpose we consider the case of one single perturbation wave on an 
otherwise perfectly Bat surface as shown in Fig. 4, in which c&se there is no interaction 
with other perturbation waves. 

Figure 4(a) depicts the single wave ~ertul-bati~ll on an otherwise perfectly f&t 
surface. The surface profile can be written as 

~L~bstitllting (3 I ) into (ID), it can be shovvn that the surface stress reaches the Inaxinlum 
at the wave trough x = 0 with the stress concentration factor 

s = I ~.14.~13(~~~). (32) 

In the present case without any interaction effects among different surface waves, the 

(a) T 
Al-S(d) 

S(O)- i + 14.813 (A/M 

d/h d/h 

(bl (Cl 

FIN;. 4. (a) A single wave trough on an othcrwisc Atit surfxe subjected to bulk stress T, with ~crturb~~tio1~ 
~~l~~nitudc 2A and length j.. The stress c~nccnt~tj~il at a depth (t from the wave trough i’or (bl A!ii = 0. I 

and (cf .4!A = 0.2. 
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value 14.813 of stress coefficient has increased by 20% over the periodically wavy 
surface value of 12.566 derived previously (28). This indicates that interactions among 
different surface waves relax slightly, but not substantially, the stress concentration. 

Figure 4(b, c) contains plots of the depthwise stress attenuation profiles for 
A/?, = 0.1 and A/2 = 0.2. The stress attenuation profiles appear to be completely 
similar to the periodical wave cases shown in Fig. 3. Both cases show characteristic 
attenuation depth approximately equal to 0.21”. 

As discussed in the Introduction, for heteroepitaxial semiconductor thin film struc- 
tures, it is not uncommon to find bulk stress T as high as 0.5 GPa due to thermal or 
lattice mismatches. Assume that the surface mo~hology of the films displays slight 
undulations at the microlevel with A/L = 0.1. Our perturbation results then suggest 
that the surface stress may be magnified to a level around 1 GPa, much higher than 
the bulk stress value. Therefore, at least in the highly stressed thin films, the surface 
morphology can play an important role in activating formations of dislocations and 
cracks. Once formed, these surface flaws can cause significant strength degradation 
and malfunction of semiconductor devices, sometimes even leading to ultimate struc- 
tural failure before the bulk stress reaches a critical level. 

STRESS CONCENTRATION AT 3-D UNDULATING SURFACES 

The perturbation analysis has been carried out in 2-D configurations. One also 
wonders how large are the effects that more realistic 3-D undulating surfaces may 
have on the stress concentrations. To examine some of the 3-D effects, we extend the 
perturbation analysis to surfaces of elastic half-spaces shown in Figs 5 and 6. 

To proceed we need to calculate the Green’s functions for an elastic half-space. The 
elasticity problem of a half-space subjected to a concentrated point force has been 
solved over half a century ago by MINDLIN (1936). When a unit point force is placed 
at position (0, 0, c), the elastic displacements can be determined through Papkovitch- 
Neuber potential representation (PAPKOVITCH, 1932) 

(33) 

where Bi (i = x,~, z) and /? are the 3-D potential functions. If the point force is normal 
to the surface y = 0, MINDLIN (1936) showed that B, = B, = 0 and 

P=~[4(1_il)(l--Zv)io%(R2+~.+~)-;:-c(3Rqv) , 
I 

(34) 
I 2 

where 

R, = ~~T+(y--c)2+zz, Rz = jx2+(y+c)*+z2. (35) 

If the point force is parallel to the surface in the x-direction, then we have & = 0 and 
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3D Surface of a half-space 

Stress Concentration Factor 

S3’ = I+8 89 (l+v) A/i 

FIG. 5. A 3-D sinusoidally wavy surface of an elastic half-space subjected to bi-axial bulk stress 7‘; the 
wave amplitude A and wavelength i. 

B, = B, = 

By symmetry the corresponding solutions for a point force in the z-direction are 

exactly those of (36) if x is replaced by :. 
The stress Green’s functions C”’ and the kernel functions &, can be constructed 

from the Mindlin solutions given above. To simplify the algebraic manipulations. we 
only derive the stress kernel functions for surface locations y = 0 where the maximum 
stress concentration effect occurs. After lengthy algebra we find C’ = e,, = 0, 

where 

and 

(37) 
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Stress Concentratton Factor 

S3’= I * 14.55 A/h 

FIG. 6. A single wave trough on an otherwise flat surface of an elastic half-space subjected to bi-axial bulk 
stress 7’; the perturbation magnitude 2.4 and length i. 

2,, (x’, z’ ; x. 2) = 
-(2-v)(x’-x)*+(l-2v)(z’-2)’ 

--- 
7cny5 

- 
YL(.u’. 1” ; 

2-r)(z’-z)‘+(I -2v)(x’-4’ 
y - , z ) -_ ~~~ ( 

7Er5 (38) 

Along an undulating surface whose shape is described by _Y = a(.~‘, z’), the surface 
stress concentration is given by 

(39) 

where we have chosen a reference flat surface, similar to the 2-D cases discussed 
before, at a distance u(.t, z) to the x, z plane so that the singular integral of (39) can 
be defined rigorously in the principal value sense. If cr(x,z) is independent of z, one 
may verify that (39) reduces to the corresponding 2-D formula (22). The stress 
component o,,(x, z) can be written in a similar form. 

We apply the perturbation formula (39) to a sinusoidally wavy surface and a flat 
surface with a single wave perturbation shown in Figs 5 and 6. 
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Sinusoidull~~ wu2.y su+ce 

We consider the sinusoidally wavy surface 

a(s, -_) = U,] -A cos (271X/A) cos (27EjA) (40) 

as shown in Fig. 5, where A, 1 are the wave amplitude and wavelength of the surface. 
The maximum stress concentration occurs at the most concave locations, i.e. the wave 
troughs such as .Y = z = 0 where we find the maximum stress concentration factor 
S3” = a,.(O,O)/Tequal to 

ZZ 1+2J2(1 +v)n(A/l,). (41) 

Comparing S 3L’ to the corresponding 2-D value S expressed in (2X), one observes that 
the stress concentration can be slightly relaxed, for Poisson ratio 0 < v < J2- I. by 
allowing perturbations along the z-direction. This is not unexpected since we have 
seen that the interaction among perturbation waves results in relaxation of stress 
concentration. The 2-D configurations have restricted the surface undulation to along 
the x-direction, hence may cause higher stress than the more realistic 3-D configur- 
ation. For most of the materials, the Poisson ratio v ranges from 0.25 to 0.35, which 
corresponds to 3-D relaxation by 5% to 12%. Interestingly enough, near the 
incompressible limit when J2- 1 < v < 0.5, the 3-D undulation actually increases 

the stress concentration by up to 6%. 

Single wave perturbation 

Parallel to the 2-D analyses, we also consider a single wave perturbation on an 
otherwise flat surface as shown in Fig. 6. For simplicity consider the symmetric surface 
profile 

a,+A r > j-12 
a(r) = 

a, -A cos (2nr/;l) r < A/2, (42) 

where r = Jm ’ ~~- x +z2. The surface stress attains the maximum at the trough location 
r = 0. Substituting (42) into (39), we find that, for v = 0.25, 

S3D = 1+ 14.5451(A/A). (43) 

The stress coefficient value 14.5451 is close to the corresponding 2-D value 14.813 
with approximately 2% difference, showing that the 3-D effects are negligible in the 
case of a single perturbation wave. 
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We have presented in this paper a first-order perturbation analysis of the stress 
concentrations along undulating surfaces. The perturbation algorithm follows a recent 
development of a perturbation approach to elastic inclusion and void problems by 
GAO (1990). The undulating surfaces are viewed as being perturbed from a reference 
state in which the surface is perfectly flat. Perturbation solutions are given for the 
stress concentrations along sinusoidally wavy surfaces and surfaces with a single wave 
trough. It is found that even slightly undulating surfaces can magnify the bulk stress 
easily by a factor of 2 or 3. Away from the surface the stress concentration effect is 
attenuated exponentially at a characteristic depth about one-fifth of the undulating 

wavelength. Mechanical properties of structures with high bulk stresses such as 
semiconductor films are likely to be sensitive to surface morphology. With the stress 
concentration near the surface, damaging surface cracks and dislocations may be 
nucleated before the bulk stress reaches a critical level. The 3-D elects of undulating 
surfaces are studied by examining the perturbations of elastic half-spaces using 
Mindlin’s Green function solutions. The largest stress concentration is found for 
the case of a single surface trough on an otherwise flat surface. This effect drops at 
increasing interactions among different surface bumps and troughs. The smallest 
stress concentration effect occurs for surfaces with maxinlum numbers of perturba- 
tion waves. 

One may question the range of validity of the first-order perturbation analysis, i.e. 
whether it is proper at all for the present surfrzce perturbation problem. Of course, 
the present perturbation analysis could be subjected to veri~catio~ by exact cal- 
culations such as the numerical analyses by finite elements or boundary elements. 
Nevertheless, we can gain some confidence from a number of previous works cited in 
the following. First, the linear perturbation analysis for surface perturbations follows 
the perturbation algorithm formulated by GAO (1990) for general inclusion and void 
problems. GAU (1990) has examined the range of validity of the perturbation algorithm 
by using it to compute the stress concentration at an elliptical hole. It was found that 
thc,fjcrl-ctu~~~r-a~~~~~~e perturbatiol~ results are within 5O/b of the exact solution when 
the aspect ratio of the ellipse is as large as 1.6 and within 10% when the aspect ratio 
is as large as 2. Hence at least in that case, the perturbation analysis can be applied 
to substantially large magnitude of perturbations. Second. the perturbation analysis 
for inclusion, void and surface perturbation problems has close analogy to the first- 
order crack pert~irbation theory which was formulated by RICE (1985) and further 
developed by GAO and RICE (1987, 1989). The previous experiences with crack 
perturbation analyses indicate that the linear perturbation results are valid for a broad 
range of perturbation magnitude. For example, GAO and RICE (1987) have applied 
the crack perturbation analysis to calculate the stress intensity factor along an elliptical 
crack front and found that the perturbation results match the corresponding exact 
solution fror aspect ratios as large as 2, similar to the validity range for the perturbation 
analysis of an elliptical hole (Gno, 1990). Also: GAO and RICF. (1989) compared the 
linear perturbation results for a half-plane crack to the numerical results of FARES 
(1989) obtained through boundary element (BEM) computations and found that the 
perturbation results are within 7% of the BEM results when the ratio .A/,? (wave 
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amplitude over wavelength) is as large as 0.1. All these suggest that the prcscnt 

surface perturbation results are valid at least for /i/2 of order 0.1. 
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