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Supplementary Figures 

 

Supplementary Figure S1. Coordinate system defined for our device used in the theoretical 

calculation included in the supplementary methods. The red line marks the decaying field 

amplitude outside the micro-disk. 
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Supplementary Figure S2. Calculated optical force (normalized by the input power at the 

control channel) versus the signal waveguide displacement for different normalized static 

detuning values, showing strong nonlinearity. 

 

 

Supplementary Figure S3. Calculated static optical force 
c 0F x  (a) and optical spring 

constant k1 (b) of our device, normalized to the control channel power, as a function of 

normalized static detuning. 
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Supplementary Figure S4. Calculated quadratic (a) and cubic (b) nonlinear coefficients (
2

and 
3
) of our device, normalized to the control channel power, as a function of normalized 

static detuning. 

 

Supplementary Figure S5. The measured normalized transmission noise PSD from the signal 

channel and the expected displacement noise PSD. 
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Supplementary Figure S6. Time-domain traces of the transmitted signal in the signal 

waveguide with increasing vibration amplitude. The waveguide eventually hit the micro-disk and 

the amplitude is limited by the 120 nm sized gap, as indicated by the flattened bottom in the trace. 

The maximal displacement at the tip of the cantilever is determined to be 132 nm as an 

additional calibration to the displacement measurement. 
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Supplementary Figure S7. FDTD simulation results for the cantilevered signal waveguide 

design. For each waveguide width, the maximum transmission was normalized to 1 for 

convenient comparison. The green vertical lines indicate the 250 nm and -250 nm displacement 

and the shaded areas in the background shows the approximately linear transduction regime for 

the 400 nm and 420 nm cases. 

 

 

Supplementary Figure S8. Schematic of the measurement setup.  
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Supplementary Figure S9. Optical microscope image of the device measured in the experiment. 

There are four grating couplers (two are shown) integrated with the control (bottom) waveguide 

and the signal (top) waveguide.  

 

 

Supplementary Tables 

 Supplementary Table S1.  Parameters used to calculate the theoretical values 

plotted in the figures of the main text. 

Symbol Parameter Value Source 

ω Optical frequency 2π×1.94×10
14

 Hz Experiment 

ωc Optical resonance frequency 2π×1.94×10
14

 Hz Experiment 

g0 Optomechanical coupling coefficient 2π×11.3 MHz/nm
 

Experiment 

Q Optical quality factor 5×10
4 

Experiment 

γ Optical damping rate (=ωc/2Q) 2π×1.94×10
9
 Hz Experiment 

γ1 
Waveguide coupling rate  

(=γ/2 for critical coupling) 
2π×9.68×10

8
 Hz Experiment 

α Evanescent field decay constant 1/95 nm
-1 

Simulation 

meff Effective modal mass 

(=0.24×cantilever mass) 
1.14 pg Device 

fabrication 
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Supplementary Table S2. Optomechanical coupling coefficients (g factor), determined by 

experimental calibration and numerical simulation, and mode volume of different modes 

Mode profile 
2

ˆE r  
Mode number 

(p, m)  

exp 2g   

( ) 

  

( ) 

  

( ) 

 

(1,105) 2.30 1.40 39.5 

 

(2,99) N.A. 1.89 47.7 

 

(3,94) 2.15 2.88 57.0 

 

(4,89) 11.3 14.3 65.4 

 

(5,85) 3.39 1.65 74.5 

 

 

  

MHz/nm

theory 2g

MHz/nm

modeV

3μm
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Supplementary Discussion 

Theoretical analysis of nonlinear optical force 

First, we define the coordinate system of our device as in Supplementary Figure S1. The optical 

force applied by the cavity on the signal waveguide is given in reference [22]: 

 in 1
c 2 2

2

( )

g xP
F x

x
 (S1) 

Here, the positive of x-axis is in the direction pointing away from the micro-disk. 

c( ) ( )x x  is the laser (frequency ) detuning relative to the cavity resonance frequency 

c ( )x  which is dependent on the position of the signal waveguide, 1 2 i  is the total 

amplitude damping rate of the intra-cavity field including waveguide coupling rate 
1

 (for 

control waveguide),
2
 (for signal waveguide) and intrinsic damping rate 

i
. Light is coupled to 

the cavity through the control waveguide, which is not moving. Here we are only concerned with 

the optical force on the cantilevered signal waveguide and its induced mechanical motion. One 

important parameter is the c( ) /g x x  factor which is the optomechanical coupling 

coefficient between the movable signal waveguide and the micro-disk cavity. Note here both 

( )g x  and the detuning c( ) ( )x x  are dependent on the signal waveguide’s position x. We 

note that the coupling rate 
2
 of the signal waveguide is also dependent of position x. However, 

in our device 
2 1

 so the optomechanical effect on the cavity damping is weak and neglected 

in the following analysis. 

When the signal waveguide moves from its original position 0x to an arbitrary position x, 

the corresponding new detuning ( )x  can be expressed as: 

 
0

0 0

c c 0

c 0 0

( ) ( ) ( )

( ) ( ) ( )

x
c

x

x x

x x

x x x dx
x

x g x dx g x dx

  (S2) 
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Here 
0
is the static detuning value when the waveguide is not moved.  Using the perturbation 

treatment employed in reference [20], the optomechanical coupling coefficient, to the first order, 

has an exponential dependence on the signal waveguide’s position: 

 0 02 ( ) 2 ( )2

0 0( ) (0) ( )
x x x xxg x g e g x e g e  (S3) 

where is the field amplitude decay constant outside the rim of the micro-disk and 
0 0( )g g x is 

the static value of the optomechanical coupling coefficient when the waveguide is not moved. 

 Thus, equation (S2) can be written as: 

 0 0

0

2 ( ) 2 ( )0
0 0 0( ) 1

2

x
x x x x

x

g
x g e dx e  (S4) 

Then substituting equation (S3) and (S4) into equation (S1), the optical force can be expressed as: 

 
2 2

0 0in 1 in 1
c 2 2

2 2 2

0 0 0 0

2 2
( )

(1 ) / 2 (1 ) / 2 1

x x

x x

g e eP P
F x

g e e
 (S5) 

Here we define normalized static detuning
0 0

and normalized static optomechanical 

coupling coefficient 
0 0g , normalized by the half cavity linewidth . We can see that the 

optical force exerted on the waveguide is a nonlinear function of 
0
 and 

0x x x  which is the 

signal waveguide’s displacement. The nonlinear behavior of the optical force can be seen in the 

plot of cF  versus x  for different values of 
0

 in Supplementary Figure S2, assuming the 

independently determined values of the parameters listed in Supplementary Table S1. 

We then expand equation (S5) at the waveguide’s static position 
0x x  to the third order 

of the waveguide displacement as: 

 2 3 4

c c 0 1 2 3( ) ( ) ( )F x F x k x k x k x O x  (S6) 

Thus, the coefficient k1 is the force constant corresponding to the optical spring effect, k2 and k3 

are the quadratic and cubic nonlinear coefficients, respectively. Their expression can be derived 

from the Taylor expansion of equation (S5) and written in the form of polynomials of the 

normalized static detuning 
0
: 

 
2

in 1 0 0 0 0
1 2 2

0

4 (1 )

(1 )

P
k  (S7) 
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 2 2 2 2 2 3 2 4in 1 0
2 0 0 0 0 0 0 0 03

2

0

(2 4 ) 12 (6 8 ) 12 4
1

P
k  (S8) 

 

2 3 3 2 2 3 2

0 0 0 0 0 0

in 1 0
3 4

2
3 2 3 2 3 4 2 5 3 6

0
0 0 0 0 0 0 0 0

8 56
8 8 (16 8 )

3 3

112 56 81 8 (24 8 )
3 3 3

P
k  (S9) 

In Supplementary Figure S3a and b, we plot the static optical force 
c 0( )F x  and the optical spring 

constant k1 versus normalized static detuning 
0
 for our device using independently determined 

parameters listed in Supplementary Table S1. 

Theoretical analysis of tunable Duffing nonlinearity 

The cantilever waveguide can be modeled as a nonlinear oscillator driven by the optical force 

with quadratic and cubic nonlinearities. Its equation of motion is that of a typical Duffing 

oscillator: 

 
2

2 2 3

m 2 32

eff

( ) ( ) ( )d x d x f t
x x x

dt dt m
 (S10) 

Here meff is the effective modal mass of the cantilevered signal waveguide; 
m mQ is the 

mechanical damping coefficient; ( )f t  is the harmonic time-varying driving force generated by 

the modulated optical power; 2 2

m m0 1 eff
k m  is the modified mechanical resonance  

frequency taking into account the optical spring constant 
1k . 

2  
and 

3
 are the quadratic and 

cubic nonlinear coefficients. They are given by: 

 32
2 3

eff eff

 , 
kk

m m
 (S11) 

 In our system, the nonlinear coefficients 2  and 3  are dominated by the 

optomechanically induced nonlinearity instead of the intrinsic mechanical nonlinearity, because  

the vibration amplitude of our device is limited to less than 132 nm, which is much less than the 

critical amplitude (~1 μm) of the device’s intrinsic mechanical nonlinearity. The calculated 

results of 
2

and 
3
 of our device are shown in Supplementary Figure S4a and b using equations 

(S8), (S9) and (S11) with independently determined parameters as listed in Supplementary Table 
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S1. The same calculated result of 
3
 is plotted with the experimental results in Figure 3c of the 

main text.  

 The nonlinear effect due to the quadratic term induces sub-harmonic and super-harmonic 

resonances. But to the primary resonances, the main effect of the quadratic term is a modification 

to the effective Duffing coefficient in the oscillator’s frequency response curve as
30

: 

 2 2

3 2 m10 /  (S12) 

However, in our device and with the conditions used in the measurement, the modification term

2 2

2 m10 / 9  is orders of magnitude smaller than the value of 
3
(compare Supplementary Figure 

S4a and b), except for at the static detuning value when 
3
 vanishes. The result is a minor shift 

of the detuning value for zero nonlinearity, which is below our measurement uncertainty and 

thus cannot be discerned in our experiment. Therefore we neglect the effect of quadratic 

nonlinear term in our analysis and omit the subscript 3 of 3  for conciseness.  

 Duffing equation of nonlinear oscillators has been analyzed with the method of multiple 

scales
30

. The amplitude-frequency response curve of a Duffing oscillator can be expressed in an 

implicit form: 

 

2
2 2

2 2

2 2

m m

3

4 8 4

f
a a

m
 (S13) 

Here 
m m( ) /  is the normalized detuning of the harmonic driving force frequency  

to the modified mechanical resonance frequency 
m

. With the increasing driving force, the 

resonance amplitude increases but leans towards higher or lower frequency side depending on 

the sign of , as shown in the experimental results shown in Figure 3a and b of the main text. 

 The peak amplitude and the frequency at which the peak amplitude is reached have a 

simple relation: 

 
2

peak peak

m

3

8
a  (S14) 

This relation between peak  and peaka  is called the “backbone” curve. To experimentally 

determine the cubic nonlinear coefficient and its relation to the laser static detuning, we 
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measure the amplitude-frequency response of the device at each laser static detuning value, with 

increasing modulated control laser power (in at least five steps) to increase the vibration 

amplitude, as shown in Figure 3a and b of the main text. We then find the peak amplitude peaka  

and the corresponding detuning peak , and fit the result with the backbone curve as given by 

equation (S14). The standard error given by the fitting result is used as the uncertainty and 

plotted as error bars in Figure 3c and d. 
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Supplementary Methods 

Method used to calibrate of displacement measurement 

The displacement measurement in this paper consistently refers to the lateral (or in-plane) 

displacement of the free end of the cantilevered signal waveguide. For clarity, in this section, the 

signal channel transmission and its noise power spectral density (PSD) are always normalized to 

the transmission value when the waveguide is not displaced. We define signal channel 

responsivity as the ratio between the change of the normalized transmission and the waveguide’s 

lateral displacement: 

 
0

1 T

T x
 (S15) 

 We calibrate the responsivity with two methods independently and the results agree well. 

The first method was the widely employed thermomechanical noise measurement. With no laser 

sent into the control channel, the signal laser at constant power level and arbitrary off-resonance 

wavelength was sent into the signal channel. The noise PSD of the transmitted signal laser was 

measured with a photodetector and a spectrum analyzer. Supplementary Figure S5 shows the 

normalized noise PSD near the resonance frequency of the cantilever, with a signal laser 

wavelength of 1555.75 nm. On resonance, the displacement noise PSD of the cantilever is 

expected to be z B m m0(4 ) ( )S k TQ k  , where 
Bk  is the Boltzmann constant, K300T  is the 

absolute temperature in the lab, 4

m 1.6 10Q  is the mechanical quality factor, 

m0 2 (1.242MHz)  is the angular mechanical resonance frequency and 

12 mN1094.6k  is the point load spring constant. mQ  and 
m0

are obtained by fitting the 

noise PSD shown in Supplementary Figure S5 with a Lorentzian peak, while k  is calculated 

using the standard equation of a cantilever. The expected peak displacement noise PSD 

22 2 1

z 4.92 10  m HzS  corresponds to the measured peak normalized transmission noise PSD 

norm 8 1

max 1.15 10  HzP  obtained from Supplementary Figure S5. Therefore the responsivity is 

calibrated to be 
norm 0.5 1

max( ) 4.83 mzP S . 

The maximal displacement that the signal waveguide can reach is limited by the 120 nm 

sized gap between the waveguide and the micro-disk. This provides the second method to 
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independently calibrate the displacement measurement at the large amplitude regime. 

Determined from the geometry of the device and the mode profile of the cantilever resonance, 

the maximal displacement of the tip of the cantilevered waveguide is 132 nm, as is illustrated in 

Supplementary Figure S6. The strong optical force applied by the micro-disk cavity on the signal 

waveguide is sufficient to drive the signal waveguide to reach this maximal amplitude and be 

stopped by the micro-disk. Supplementary Figure S6 shows the time-domain signal measured 

with increasing vibration amplitude. At high amplitude, the sinusoidal waveform shows a 

flattened bottom, indicating that the waveguide is hitting the side wall of the micro-disk. Thus, 

the transmission value at the flattened amplitude is 0.474, corresponding to a displacement of 

132 nm at the tip of the cantilevered waveguide. Hence the responsivity is evaluated to be 

1(1 0.474) (132nm) 3.98 m . The discrepancy with the value calibrated with 

thermomechanical noise measurement method is due to the nonlinear response of the waveguide 

transmission at high amplitude, as explained in the Supplementary Discussion. It is interesting to 

note that there is no pull-in effect like that in electrostatic-ly actuated MEMS devices because 

optical force decreases when the waveguide touches the micro-disk, due to the reduction of the 

optical Q and strong coupling. The mechanical spring of the waveguide is also large enough so 

that it will not stick to the micro-disk due to surface forces.  

Cantilevered signal waveguide design 

The signal waveguide is designed with a gap between the free end of the cantilevered section and 

the receiving end of the fixed section. In addition, to detect the cantilever waveguide’s lateral (or 

in-plane) motion, a lateral offset between the waveguide ends is also needed. The transmission 

through the cantilevered signal waveguide has been numerically analyzed with Finite Difference 

Time Domain (FDTD) simulations, which is a rigorous treatment that takes into account the 

mode evolution during the propagation through the gap, the coupling from the gap back to the 

receiving waveguide and all the reflections that occur in this process. We studied three different 

cases: 400 nm, 420 nm and 500 nm wide waveguides. The simulation results are shown in 

Supplementary Figure S7, suggesting that 500 nm wide waveguide has the steepest slope on both 

sides of the curve and 400 nm wide the least steep. 420 nm wide waveguide was eventually 

chosen based on various considerations, especially the trade-off between a softer cantilever and 

more sensitive transduction. In order to achieve the most linear transduction in a large 
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displacement range, we designed the initial lateral offset to be 250 nm, which is almost in the 

center of the linear part of the transmission curves (shaded areas in Supplementary Figure S7). In 

the actual device, the displacement was limited by the fixed gap between the cantilever and the 

disk resonator hence never exceeded 132 nm towards the disk and 140 nm away from the disk 

(see Supplementary Figure S6), so the cantilevered signal waveguide remains in the 

approximately linear transduction regime even when being driven to the highest amplitude. 

Nevertheless, the imperfection in the linearity still leads to the discrepancy between the values of 

responsivity calibrated by the two methods described in Section 3. The receiving waveguide is 

designed to be farther away from the disk than the cantilever, so the transmission increases 

(decreases) when the cantilever moves away from (towards) the disk. 

Experimental calibration of g factor 

The optomechanical coupling coefficient or the g factor is one of the most important parameters 

of cavity optomechanical systems. We experimentally determine the g factor by measuring the 

thermomechanical noise of the device using the “slope detection” method. In the experiment, a 

probing laser at constant power is sent into the control channel and tuned on the slope of the 

resonance dip in the transmission spectrum (see Figure 1c in the main text). The 

thermomechanical vibration of the cantilever dispersively perturbs the disk resonance 

introducing amplitude noise in the transmitted probing laser power, which was measured by a 

photodetector and a spectrum analyzer. The g factor can be determined experimentally using the 

following equation: 

 

Prob

1

v zc

2

Prob Prob

2 S Sc dT
g

x d P G
 (S16) 

where 
vS  is the measured voltage noise power spectral density (PSD), 

zS  is the expected 

cantilever displacement noise PSD which is described in Section 3, 
ProbP  is the probing laser 

power, G (in V/W) is the transduction gain factor of the photodetector, c  is the light velocity in 

vacuum, 
Prob

 is the probing laser wavelength, T(λ) is the measured transmission spectrum of the 

resonance through the control channel, including the input and output grating couplers, its 

derivative with respect to  ( dT d ) is estimated by linear curve fitting near the probing laser 
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wavelength. The experimentally determined values of the g factor are listed in Supplementary 

Table S2 for the modes labeled in Figure 1c of the main text. 

Theoretical calculation of g factor 

In order to theoretically calculate the optomechanical coupling coefficient, or the g factor, we 

first used Finite-Element-Method (FEM) to calculate the Whispering Gallery Mode (WGM) 

profiles ( )E r of the disk resonator without control or signal waveguide, so that we could take 

advantage of the axisymmetry of the disk resonator to simplify the large scale 3D problem into a 

2D problem
24

. Subsequently we employed a perturbation treatment derived from energy 

considerations
44

 to take into account the resonance frequency shift induced by the existence of 

the nearby waveguide and its motion: 

 Cant

2
3

( )c

2
3

c

( ) 1 ( )( ) 1

2 ( ) ( )

V x

V

r E r d rx

r E r d r
 (S17) 

where ( )r  is the dielectric constant, 
c

 is the resonance frequency without waveguides nearby,

c ( )x  is the resonance frequency shift with respect to 
c

 when the cantilever displacement is 

x , 
Cant ( )V x  is the volume of the cantilever when the cantilever displacement is x  and V  is 

the entire space. The g factor when the cantilever is at its original position can be derived as: 

c

0

( )

( )
x

d
g

d x
     (S18) 

 In equation (S17), 
c

 was solved in the FEM simulation and the integrals on the right 

hand side were calculated numerically from the simulation results. The derivative in equation 

(S18) was also calculated numerically by five point method. The calculation results agree 

reasonably well with the experimentally calibrated g factors, as listed in Supplementary Table S2. 

 Mode volume is another important characteristic of resonance modes. It is defined as
24

 

2
3

mode 2

( ) ( )

max ( ) ( )

V
r E r d r

V

r E r
     (S19) 
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where max[ ]  denotes the maximum value of its functional argument. The numerically 

calculated mode volumes are also included in Supplementary Table S2. We note that the TE 

mode (4,89), which our experiment focuses on, has a particularly high g factor because of the 

good phase-matching with the waveguide mode. 

Supplementary Reference 
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