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Supplementary Figure S1. Coordinate system defined for our device used in the theoretical
calculation included in the supplementary methods. The red line marks the decaying field

amplitude outside the micro-disk.
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Supplementary Figure S2. Calculated optical force (normalized by the input power at the
control channel) versus the signal waveguide displacement for different normalized static

detuning values, showing strong nonlinearity.
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Supplementary Figure S3. Calculated static optical force F, x, (a) and optical spring

constant k; (b) of our device, normalized to the control channel power, as a function of

normalized static detuning.
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Supplementary Figure S4. Calculated quadratic (a) and cubic (b) nonlinear coefficients («,
and «,) of our device, normalized to the control channel power, as a function of normalized

static detuning.
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Supplementary Figure S5. The measured normalized transmission noise PSD from the signal

channel and the expected displacement noise PSD.
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Supplementary Figure S6. Time-domain traces of the transmitted signal in the signal
waveguide with increasing vibration amplitude. The waveguide eventually hit the micro-disk and
the amplitude is limited by the 120 nm sized gap, as indicated by the flattened bottom in the trace.
The maximal displacement at the tip of the cantilever is determined to be 132 nm as an

additional calibration to the displacement measurement.
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Supplementary Figure S7. FDTD simulation results for the cantilevered signal waveguide
design. For each waveguide width, the maximum transmission was normalized to 1 for
convenient comparison. The green vertical lines indicate the 250 nm and -250 nm displacement
and the shaded areas in the background shows the approximately linear transduction regime for

the 400 nm and 420 nm cases.
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Supplementary Figure S8. Schematic of the measurement setup.



Supplementary Figure S9. Optical microscope image of the device measured in the experiment.
There are four grating couplers (two are shown) integrated with the control (bottom) waveguide

and the signal (top) waveguide.

Supplementary Tables
Supplementary Table S1. Parameters used to calculate the theoretical values

plotted in the figures of the main text.

Symbol Parameter Value Source
w Optical frequency 21x1.94x10" Hz ~ Experiment
wc Optical resonance frequency 2nx1.94x10" Hz ~ Experiment
do Optomechanical coupling coefficient 27x11.3 MHz/nm Experiment
Q Optical quality factor 5x10* Experiment
y Optical damping rate (=w./2Q) 21x1.94x10° Hz Experiment
71 Waveguide coupling rate 21x9.68x10° Hz ~ Experiment

(=y/2 for critical coupling)
o Evanescent field decay constant 1/95 nm™ Simulation
Mett Effective modal mass 1.14 pg Device
(=0.24xcantilever mass) fabrication




Supplementary Table S2. Optomechanical coupling coefficients (g factor), determined by

experimental calibration and numerical simulation, and mode volume of different modes

Mode profile ‘E : f‘z

Mode number Gexp / 2z gtheory/ 27 Vimode
(p, m) (MHzinm) | (MHz/nm) (pm?)
(1,105) 2.30 1.40 395
(2,99) N.A. 1.89 47.7
(3,94) 2.15 2.88 57.0
(4,89) 11.3 14.3 65.4
(5,85) 3.39 1.65 74.5




Supplementary Discussion

Theoretical analysis of nonlinear optical force

First, we define the coordinate system of our device as in Supplementary Figure S1. The optical
force applied by the cavity on the signal waveguide is given in reference [22]:

) X
Fox = 2mn 9% (S1)
o AX) +y

Here, the positive of x-axis is in the direction pointing away from the micro-disk.
A(X) = o —o,(X) is the laser (frequency @) detuning relative to the cavity resonance frequency
@,(X) which is dependent on the position of the signal waveguide, ¥ =y, +y, +, is the total
amplitude damping rate of the intra-cavity field including waveguide coupling rate y (for
control waveguide), », (for signal waveguide) and intrinsic damping rate y,. Light is coupled to

the cavity through the control waveguide, which is not moving. Here we are only concerned with

the optical force on the cantilevered signal waveguide and its induced mechanical motion. One
important parameter is the g(X)=0wm,/0ox factor which is the optomechanical coupling
coefficient between the movable signal waveguide and the micro-disk cavity. Note here both
g(x) and the detuning A(X) = @ —,(X) are dependent on the signal waveguide’s position x. We
note that the coupling rate y, of the signal waveguide is also dependent of position x. However,
in our device y, < y, so the optomechanical effect on the cavity damping is weak and neglected
in the following analysis.

When the signal waveguide moves from its original position X, to an arbitrary position X,

the corresponding new detuning A(X) can be expressed as:

A(X) = 0—a,(X) = w{wc(xo) + L ‘Zi’f dx’}
(S2)

=0-0,06)- [ 90)dx =4, - [ g(x)dx



Here A, is the static detuning value when the waveguide is not moved. Using the perturbation

treatment employed in reference [20], the optomechanical coupling coefficient, to the first order,

has an exponential dependence on the signal waveguide’s position:

g(x) = g(0)e™™ = g(x;)e***7) = g,e ) (S3)
where « is the field amplitude decay constant outside the rim of the micro-disk and g, = g(x,) is
the static value of the optomechanical coupling coefficient when the waveguide is not moved.

Thus, equation (S2) can be written as:
A(X) = A, - _[Z g,e 2 T dx = A, —3—0[1—e‘2“(x‘x°’] (S4)
o

Then substituting equation (S3) and (S4) into equation (S1), the optical force can be expressed as:

—200% —2a 6%
F(x)=- 2P n 9.6 __2Pin 71 Sof (S5)

O [A-g(l-e™™) 2] 77 O [6,-&0-2")/2a] +1

Here we define normalized static detuning 5, = A,/ and normalized static optomechanical
coupling coefficient & = g,/ , normalized by the half cavity linewidth y. We can see that the
optical force exerted on the waveguide is a nonlinear function of &, and 5x = x—x, which is the
signal waveguide’s displacement. The nonlinear behavior of the optical force can be seen in the
plot of F, versus ox for different values of &, in Supplementary Figure S2, assuming the
independently determined values of the parameters listed in Supplementary Table S1.
We then expand equation (S5) at the waveguide’s static position x = x, to the third order
of the waveguide displacement as:
F.(X) = F.(%,) +k x+k, x> +k, 5x* +O(5x*) (S6)

Thus, the coefficient k; is the force constant corresponding to the optical spring effect, k, and ks
are the quadratic and cubic nonlinear coefficients, respectively. Their expression can be derived
from the Taylor expansion of equation (S5) and written in the form of polynomials of the
normalized static detuning &, :
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In Supplementary Figure S3a and b, we plot the static optical force F, (x,) and the optical spring
constant k; versus normalized static detuning &, for our device using independently determined

parameters listed in Supplementary Table S1.

Theoretical analysis of tunable Duffing nonlinearity

The cantilever waveguide can be modeled as a nonlinear oscillator driven by the optical force
with quadratic and cubic nonlinearities. Its equation of motion is that of a typical Duffing
oscillator:

d*(sx)  d(Sx f(t
d(t2 )+y (dt )+a)§1 5x+a2§x2+a35x3=£ (S10)

Here m is the effective modal mass of the cantilevered signal waveguide; x=w,,/Q, is the
mechanical damping coefficient; f(t) is the harmonic time-varying driving force generated by
the modulated optical power; @} =w?,—k/m, is the modified mechanical resonance
frequency taking into account the optical spring constant k; . «, and «, are the quadratic and

cubic nonlinear coefficients. They are given by:

@, =——2  @y=——2 (S11)

In our system, the nonlinear coefficients «, and «, are dominated by the

optomechanically induced nonlinearity instead of the intrinsic mechanical nonlinearity, because
the vibration amplitude of our device is limited to less than 132 nm, which is much less than the
critical amplitude (~1 pum) of the device’s intrinsic mechanical nonlinearity. The calculated
results of «,and «, of our device are shown in Supplementary Figure S4a and b using equations

(S8), (S9) and (S11) with independently determined parameters as listed in Supplementary Table
-10 -



S1. The same calculated result of «, is plotted with the experimental results in Figure 3c of the
main text.
The nonlinear effect due to the quadratic term induces sub-harmonic and super-harmonic

resonances. But to the primary resonances, the main effect of the quadratic term is a modification

to the effective Duffing coefficient in the oscillator’s frequency response curve as*’:
a=o,-10a; | 0, (S12)
However, in our device and with the conditions used in the measurement, the modification term
10c; 19w,? is orders of magnitude smaller than the value of «,(compare Supplementary Figure
S4a and b), except for at the static detuning value when «, vanishes. The result is a minor shift

of the detuning value for zero nonlinearity, which is below our measurement uncertainty and

thus cannot be discerned in our experiment. Therefore we neglect the effect of quadratic
nonlinear term in our analysis and omit the subscript 3 of «, for conciseness.
Duffing equation of nonlinear oscillators has been analyzed with the method of multiple

scales®. The amplitude-frequency response curve of a Duffing oscillator can be expressed in an

implicit form:

2 2 2
A P ) (513)
4 8w, dm o,
Here o = (v —w,,)/ ®,, is the normalized detuning of the harmonic driving force frequency o
to the modified mechanical resonance frequency «_ . With the increasing driving force, the

resonance amplitude increases but leans towards higher or lower frequency side depending on

the sign of « , as shown in the experimental results shown in Figure 3a and b of the main text.

The peak amplitude and the frequency at which the peak amplitude is reached have a

simple relation:

3o 22
peak — peak
8w,

o (S14)

This relation between o, and a

peal

. 1s called the “backbone” curve. To experimentally

peal

determine the cubic nonlinear coefficient « and its relation to the laser static detuning, we
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measure the amplitude-frequency response of the device at each laser static detuning value, with
increasing modulated control laser power (in at least five steps) to increase the vibration

amplitude, as shown in Figure 3a and b of the main text. We then find the peak amplitude a,,

and the corresponding detuning o and fit the result with the backbone curve as given by

peak !
equation (S14). The standard error given by the fitting result is used as the uncertainty and

plotted as error bars in Figure 3c and d.
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Supplementary Methods

Method used to calibrate of displacement measurement

The displacement measurement in this paper consistently refers to the lateral (or in-plane)
displacement of the free end of the cantilevered signal waveguide. For clarity, in this section, the
signal channel transmission and its noise power spectral density (PSD) are always normalized to
the transmission value when the waveguide is not displaced. We define signal channel
responsivity as the ratio between the change of the normalized transmission and the waveguide’s
lateral displacement:
_1at
T, ox

R

(S15)

We calibrate the responsivity with two methods independently and the results agree well.
The first method was the widely employed thermomechanical noise measurement. With no laser
sent into the control channel, the signal laser at constant power level and arbitrary off-resonance
wavelength was sent into the signal channel. The noise PSD of the transmitted signal laser was
measured with a photodetector and a spectrum analyzer. Supplementary Figure S5 shows the
normalized noise PSD near the resonance frequency of the cantilever, with a signal laser
wavelength of 1555.75 nm. On resonance, the displacement noise PSD of the cantilever is

expected to be S, = (4k;TQ,,)/(ka,,,) , Where k is the Boltzmann constant, T = 300K is the
absolute temperature in the lab, Q_=1.6x10* is the mechanical quality factor,

0, =27rx@1.242MHz) is the angular mechanical resonance  frequency and

k=6.94x10N-m™ is the point load spring constant. Q,, and w_, are obtained by fitting the

noise PSD shown in Supplementary Figure S5 with a Lorentzian peak, while k is calculated
using the standard equation of a cantilever. The expected peak displacement noise PSD

S, =4.92x107% m*-.Hz™* corresponds to the measured peak normalized transmission noise PSD
Pr™ =1.15x10°° Hz™* obtained from Supplementary Figure S5. Therefore the responsivity is
calibrated to be R = (P™™ /S )*® =4.83 um™,

The maximal displacement that the signal waveguide can reach is limited by the 120 nm
sized gap between the waveguide and the micro-disk. This provides the second method to
-13-



independently calibrate the displacement measurement at the large amplitude regime.
Determined from the geometry of the device and the mode profile of the cantilever resonance,
the maximal displacement of the tip of the cantilevered waveguide is 132 nm, as is illustrated in
Supplementary Figure S6. The strong optical force applied by the micro-disk cavity on the signal
waveguide is sufficient to drive the signal waveguide to reach this maximal amplitude and be
stopped by the micro-disk. Supplementary Figure S6 shows the time-domain signal measured
with increasing vibration amplitude. At high amplitude, the sinusoidal waveform shows a
flattened bottom, indicating that the waveguide is hitting the side wall of the micro-disk. Thus,
the transmission value at the flattened amplitude is 0.474, corresponding to a displacement of

132 nm at the tip of the cantilevered waveguide. Hence the responsivity is evaluated to be
R =(1-0.474)/(132nm) =3.98 um™ . The discrepancy with the value calibrated with

thermomechanical noise measurement method is due to the nonlinear response of the waveguide
transmission at high amplitude, as explained in the Supplementary Discussion. It is interesting to
note that there is no pull-in effect like that in electrostatic-ly actuated MEMS devices because
optical force decreases when the waveguide touches the micro-disk, due to the reduction of the
optical Q and strong coupling. The mechanical spring of the waveguide is also large enough so
that it will not stick to the micro-disk due to surface forces.

Cantilevered signal waveguide design

The signal waveguide is designed with a gap between the free end of the cantilevered section and
the receiving end of the fixed section. In addition, to detect the cantilever waveguide’s lateral (or
in-plane) motion, a lateral offset between the waveguide ends is also needed. The transmission
through the cantilevered signal waveguide has been numerically analyzed with Finite Difference
Time Domain (FDTD) simulations, which is a rigorous treatment that takes into account the
mode evolution during the propagation through the gap, the coupling from the gap back to the
receiving waveguide and all the reflections that occur in this process. We studied three different
cases: 400 nm, 420 nm and 500 nm wide waveguides. The simulation results are shown in
Supplementary Figure S7, suggesting that 500 nm wide waveguide has the steepest slope on both
sides of the curve and 400 nm wide the least steep. 420 nm wide waveguide was eventually
chosen based on various considerations, especially the trade-off between a softer cantilever and
more sensitive transduction. In order to achieve the most linear transduction in a large
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displacement range, we designed the initial lateral offset to be 250 nm, which is almost in the
center of the linear part of the transmission curves (shaded areas in Supplementary Figure S7). In
the actual device, the displacement was limited by the fixed gap between the cantilever and the
disk resonator hence never exceeded 132 nm towards the disk and 140 nm away from the disk
(see Supplementary Figure S6), so the cantilevered signal waveguide remains in the
approximately linear transduction regime even when being driven to the highest amplitude.
Nevertheless, the imperfection in the linearity still leads to the discrepancy between the values of
responsivity calibrated by the two methods described in Section 3. The receiving waveguide is
designed to be farther away from the disk than the cantilever, so the transmission increases

(decreases) when the cantilever moves away from (towards) the disk.

Experimental calibration of g factor

The optomechanical coupling coefficient or the g factor is one of the most important parameters
of cavity optomechanical systems. We experimentally determine the g factor by measuring the
thermomechanical noise of the device using the “slope detection” method. In the experiment, a
probing laser at constant power is sent into the control channel and tuned on the slope of the
resonance dip in the transmission spectrum (see Figure 1c in the main text). The
thermomechanical vibration of the cantilever dispersively perturbs the disk resonance
introducing amplitude noise in the transmitted probing laser power, which was measured by a

photodetector and a spectrum analyzer. The g factor can be determined experimentally using the

ZLZﬂCj
’1éiob

where S, is the measured voltage noise power spectral density (PSD), S, is the expected

following equation:

ar
dA

S,/S
ProsG

. (S16)

| |:‘8a)c
OX

]‘P rob ro

cantilever displacement noise PSD which is described in Section 3, P, is the probing laser

rob
power, G (in V/W) is the transduction gain factor of the photodetector, c is the light velocity in

vacuum, A, . is the probing laser wavelength, T(4) is the measured transmission spectrum of the

Prob
resonance through the control channel, including the input and output grating couplers, its

derivative with respect to 4 (dT/dA) is estimated by linear curve fitting near the probing laser
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wavelength. The experimentally determined values of the g factor are listed in Supplementary

Table S2 for the modes labeled in Figure 1c of the main text.

Theoretical calculation of g factor

In order to theoretically calculate the optomechanical coupling coefficient, or the g factor, we
first used Finite-Element-Method (FEM) to calculate the Whispering Gallery Mode (WGM)

profiles E(F) of the disk resonator without control or signal waveguide, so that we could take

advantage of the axisymmetry of the disk resonator to simplify the large scale 3D problem into a
2D problem?®*. Subsequently we employed a perturbation treatment derived from energy
considerations™ to take into account the resonance frequency shift induced by the existence of

the nearby waveguide and its motion:

Aw](5X) :_1 .U.[/mwx) &(r-1 ‘E(F)‘Z d°r
, 2l g(r)\é(r)\z d%F

where £(r) is the dielectric constant, o, is the resonance frequency without waveguides nearby,

(S17)

Awl(5x) is the resonance frequency shift with respect to ». when the cantilever displacement is
X, Vg, (0x) Is the volume of the cantilever when the cantilever displacement is dx and V is

the entire space. The g factor when the cantilever is at its original position can be derived as:

_d(Aa)

~d(5x) (518)

5x=0
In equation (S17), . was solved in the FEM simulation and the integrals on the right

hand side were calculated numerically from the simulation results. The derivative in equation
(S18) was also calculated numerically by five point method. The calculation results agree

reasonably well with the experimentally calibrated g factors, as listed in Supplementary Table S2.

Mode volume is another important characteristic of resonance modes. It is defined as®*
— =/ 2 3
([ @E®| o
mode = - 2
max[g(r)\E(r)\ }

(S19)
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where max[---] denotes the maximum value of its functional argument. The numerically

calculated mode volumes are also included in Supplementary Table S2. We note that the TE
mode (4,89), which our experiment focuses on, has a particularly high g factor because of the
good phase-matching with the waveguide mode.
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