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The aim of this paper is to provide the best compromise between accuracy and CPU-time for calculating the generalized
Fermi-Dirac integrals. After a brief review of the existing methods, with emphasis on two of them, we present our method
valid for all values of the degeneracy parameter and of the temperature, with an accuracy in the range 1075-10~7 and a short
CPU-time. We have taken care of the computer implementation (including round-off errors, underflows or overflows) and we
give the weights and abcissas of the Gauss—Laguerre quadrature rule needed for an accuracy of ¢ =107°.

1. Introduction

Quantum statistical distributions are frequently
used in physics and, in particular, the Fermi—Di-
rac distribution must be used to describe many
astrophysical situations such as the equilibrium
structure of white dwarfs, the helium flash in
moderately massive stars (see ref. [1]), the gravita-
tional collapse of massive stars and formation of
supernovae, in models describing gamma ray
bursts [2] or the tidal pinching of white dwarfs by
a massive black hole [3].

For the study of white dwarfs structure the gas
of electrons is generally considered as a (com-
pletely) degenerate gas at zero temperature and in
this case, this approximation (which is formally
equivalent to an infinite degeneracy) is a good one
as long as the entropy is not considered. But then,
non-adiabatic evolution cannot be described. Such
flaws are naturally removed when we use a non-
zero temperature formalism.

For the other astrophysical applications quoted
above, the non-zero temperature formalism is the
only one which is relevant since in the medium in
which these various phenomena occur, the elec-
tron gas is semi-degenerate semi-relativistic (SD-

SR) and the temperature must be considered ex-
plicitly as a physical variable. Whereas the
numerical computation of the ordinary Fermi in-
tegrals (involved in the zero temperature for-
malism) seems to be extensively treated in the
literature, the generalized ones, which appear in
the SD-SR case, are more seldom considered. As
far as only pressure and energy are considered, a
few approximation formulae are available, but
when non-adiabatic evolutions or chemical evolu-
tions are considered, the degeneracy parameter
(which is related to the entropy and the chemical
potential) remains unknown or is hard to be ob-
tained when necessary from these approximation
formulae. Again, the natural way to deal with this
parameter is to consider the generalized Fermi
integrals.

Section 2 presents these generalized Fermi in-
tegrals and the basic equations used to derive the
main thermodynamical quantities such as pres-
sure, energy or entropy. In section 3, we review
briefly the different existing methods (in an ex-
haustive way as the author hopes it) with emphasis
on two of them. In section 4, we suggest a new
method with particular attention to computer im-
plementation. In an appendix, we present the case
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128 B. Pichon / The generalized Fermi— Dirac integrals

of the Bose—Einstein distribution whose numerical
calculation 1s very close to that of Fermi—Dirac
distribution.

2. Generalized Fermi integrals and related quanti-
ties

The generalized Fermi integrals are defined by
the following equation,

x x*1+ 0x ;
FA(TI~0)—f(} de, (1)
where 6 1s a non-negative parameter and 7 a real
parameter. For physical applications, the only val-
ues to be considered are k=1/2, 3/2, and 5/2.
The case of electrons 1s a typical application and
in practice # is related to the temperature by
6 =kT/m_c?, while 7 is the degeneracy parameter
defined as = p! /kT, where m, is the rest mass
of the electron, k the Boltzmann constant and p!
is the chemical potential (non-including the rest
mass) of the electrons. For § =0, F, (7, &) reduce
to

©  x*dx
FA(n)=f0 Tl (2)

which are the Fermi integrals usually considered
in the zero temperature formalism.

In fact, the number density, the pressure and
the internal energy of the electron gas are given by
[4]:

8m/2

no— 032(F, ,(n, 8) +0F, ,(n. 68)). (3a)
lomy2 m.c
Po=——

X0 (F,,5(n, 8) + 36F ,(n, 8)),  (3b)
mﬂc2 52
U‘:sﬂﬁTB L(F.x/z(n* 0)+0F5/2(n, 0))

L (3¢)

where A = h/m_c is the Compton wavelength of
the electron.

The entropy per baryon (in units of k) is equal
to

se=(p.+ 3@, —n). (3d)

where p.=P./n kT and @,.= U./3n kT. These
factors are the increments over the related quanti-
ties for a classical (perfect) gas.

3. Brief review of different methods

Various authors have already computed the
generalized Fermi integrals. Other ones provide
approximation formulae for the related thermody-
namical quantities. In the first case we can quote
the papers of Divine [5], Diaz-Alonso [6], Bonaz-
zola [7]), Tooper [8], Bludman and Van Riper [9]
and in the second case Service [10] (who treats
only the limit —7 > 1), Beaudet and Tassoul [11],
Eggleton, Faulkner and Flannery {12]. The main
characteristics of some of these methods (domain
of validity, accuracy. possibility to deal with the
degeneracy parameter or the entropy, speed) are
summarized in table 1.

Most of them present either approximations
with poor accuracy or formulae involving a pro-
hibitive computation time for problems where
these integrals must be evaluated hundreds thou-

Table 1

Comparison of the domain of validity, accuracy, possibility to
deal with the degeneracy parameter or the entropy and speed
for different methods. In the item “Domain of validity” *“all”
means all values of n and 8. The speed is indicated from

+ + + for the fastest method to — — for the slowest
Method Domain Accuracy Entropy Speed
of
validity
Divine 70 = 0.005 ves + +
Tooper all 1071721077 yes - to +
Bludman and
Van Riper  all 0.001-0.1 yes +
Beaudet and
Tassoul all 0.001-0.1 ves + +
Eggleton et al. all =7x1074 no + +

Eggleton et al.  all =7x10* yes - -
Paczynski n=0,
=1 = 0.05 no + + +

Service —p>1 =5%107° no + +
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sands times (as in ref. [3], which describes the tidal
compression of a white dwarf in the relativistic
gravitational field of a black hole). However, two
of these methods may be very useful for tests or
short runs and therefore will be discussed in de-
tails below.

3.1. The method of Eggleton, Faulkner and Flannery

When the degeneracy factor need not be known
and only a relatively poor accuracy is required, the
method introduced by Eggleton, Faulkner and
Flannery (hereafter EFF, ref. [12]) can be used.
The notations used by these authors (viz. p, p, &)
are related to ours by the following relations:

8w
"=, (42)
8w .
Pe=mec2(}\—3)p, (4b)
U= mecz(%)a, (4c)

now:

1(1a+p )
= —|=== —9q]. 4d
Se ue(ff p K (4d)

The functions F; ,, F;,,, and F, , are related to
p, b, i by:

F,(n, 8) = (V267%)7'(22 - 3p), (52)
F(m, 8)=(V26°2)7'(3p — &), (5b)
Fi(n, 0)=(/26"%)""(p+a-3p). (5¢)

The principle of the EFF method consists, for the
computation of a function F(x, y) where x and y
are positive real values, in rewriting F(x, y) in the
following form,

F(x, y)=F(x, y)Ly nloel(x, »), (6)

where F(x, y) is a simple algebraic function with

the same behaviour as F(x, y), when x (or y)
tends to 0 or + oo and

M N
X X o,,x"y"

_ m=0nr=0
Ly wlogl(x. ) (l+x)M(1+y)N' (7)

As the authors suggest it, M =N =4 can be
chosen, whereas

F(n. 0)=K(f. §) = Ti= (1) (®

where

u—1
n=2u+ ln( T ) =2(u — arctanh(1/u)), (9)
u=y1+f and g=0u. (10)

The values of the coefficients o,, , can be found
in the quoted paper. These values have been fitted,
by mean squares adjustments, in the physically
interesting region of the (p, T )-plane, where p is
the density.

The non-universality of the EFF method lies in
the difficulty of changing the variables (f, g) < (1,
#), more precisely in the correspondence f< 7,
since trivially

0=g/y1+f. (11)

If the degeneracy factor does not have to be
known, we can deal directly with f instead of 7,
as suggested by the quoted authors. In this case
this method, in spite of its relatively poor accu-
racy, seems to be the fastest.

Calculation of the degeneracy factor

If we want to determine f from 7, the CPU-time
increases and, moreover, we must take care of the
accuracy of the result, in view of the round off
errors for instance.

Flrst, let us remark that when f tends towards
0, n tends to minus infinity according to

n=In f+2(1-n2)+if- &2+ 0(f°), (12)
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and in the same way, when f (and 7) tends to
infinity.

of = =T T

S Ho(f77). (13)

Hence, when 7 tends towards — o0, in practice
when n < —20, we can write

f=4exp(n—2). (14)

when 7 tends towards + oo, in practice when
7 = 2000, we can write

/= (n). (15)

and in the other cases, let us put x as an auxiliary
variable

x=In(u—1)=In(y/1+f —1). (16)

Then the equation in f becomes
F(x)=2e'+2—-In(1+2¢ *)=n. (17)

The dummy variable x, previously introduced,
allows us to solve easily this new equation by the
Newton method. In fact, the (x « f)-change of
variables removes the stiff behaviour of f in the
interval under consideration. Using the Newton
method, let us remark that

1 1+ cosh x
F(x)=2le"+ ——| =4 18
(x)=2(e"+ 5| (18)

r———
and we can choose as guess value of x, the follow-
ing value x,,

fO.S(n~3) for n <0,

Xy = 19
*105(21In(1+9)—-3) forn=>0. (19)
When x is known, f and g can be computed

easily without round off errors, because x per-

forms a good variable scaling in the region of
interest, by

ffzuzAlze"(e"+2),

\g=0u=0(1+e"). (20)

3.2, The approximation of Paczynski

B. Paczynski [13] provided an elegant ap-
proximation formula applicable in the region of
semi-degeneracy.

First, the pressure is computed in three cases.
In each one, the electron gas is considered as
forming;:

(1) a pure perfect non-degenerate gas, the cor-
responding pressure is noted P, ;:

(2) a pure entirely degenerate non-relativistic
gas, the corresponding pressure is noted P, ;

(3) a pure entirely degenerate ultra-relativistic
gas, the corresponding pressure is noted P, ..

The resulting pressure is then

s , 2 omet 5 y?
Pcz(})c_d_{»})c_ml) - - 6+ = a0
‘ ‘ o 25+ 162

(21)

where

2 2
2 m.c y

Po=(P g +P2) = S
Bey25+16)°
(22)

ednr edr

can be interpreted as the pressure of a pure com-
pletely degenerate but semi-relativistic gas of elec-
trons. The variable y 1s related to 5 and 6§ by
1+y*=(1+6n)* and. for physical interpreta-
tion, y is (sometimes) called the relativistic
parameter, since it satisfies the equality

(23)

nc-

Let us recall the well known expression for

Pc.nd’ Pc.dnr and P&dr (SCC ref' [4])
1

Pc nd = WkT‘ (24d)
™

P (24b
ednr W 3 Yo )

Py = ] 24
edr the 4}'* ( C)

where g, 1s the mean molecular weight by elec-
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trons. Here, the pressures are expressed per
nucleon (i.e. the pressures are divided by the den-
sity of nucleons, which is equal to A4"p when the
density p is expressed in g cm™* and A" is the
Avogadro number).

This approximation provides a good descrip-
tion for the pressure (and the energy) as a func-
tion of the temperature (). But the overall accu-
racy is poor (see table 1) and hence this formula
seems to be useful only for numerical tests.

4. The suggested method
4.1. The case of a negative degeneracy factor

Introducing K,(x)=¢*K,(x), K, being the
modified Bessel functions, the formulae presented
by Cox and Giuli [4] are well applicable. We have
then:

1 2 (=D"" . >(n
Fl/Z(n’ 0)= ‘/2—0 Z (_n_enKl(E)’
n=1
(25a)
L2 (-n',
F3/2(71,0)= YD P n !
n=1
. (n ~(n
*(&(5) - &(5)) (250)
F;/Z(n’ 0)

(25¢)

Only Ifo (x) and K 1(x) must be evaluated, which
can be done quite easily at any precision by
polynoznial expansion, since Ifz(x) =I€0(x) +
2/x)K(x).

The series expansions (25a)—(25c) are conver-
gent for all positive (non-zero) values of § and for
all negative (even zero) values of 7, but the sum-
mation must be truncated at some value of N(e),
depending on the desired accuracy e. We have
found, by several numerical trials, that

. [ —2log(e) +3
N(e)—mt(—————lnI ) (26)

We can remark that our expression generalizes
the one by Tooper [8] who gives only the value for
e=10"1. However, for reasons of calculation
speed, it is convenient to use this method for
values of m sufficiently negative, say n< —1.
Hence, for an accuracy of € = 107° there are less
than 15 terms to sum.

The functions Ifo(x) and K 1(x) are computed
by means of expansions in terms of Chebyshev
polynomials. We have used the NAG routines
S18CCF and S18CDF (see ref. [14]), respectively,
in which the various expansions have been trun-
cated. With the goal of reducing, as much as
possible, the computation-time, only those terms
which are needed to guarantee an accuracy of
10~ % have been kept

4.2. The case of a great degeneracy

For 7> 0 there exists, to may knowledge, no
exact formula for these integrals, but only asymp-
totic expansions for which the rest is in the order
to e " (see ref. [4], egs. (24.179), (24.180) and
(24.181), p. 826):

F /2("7, 0)
i
= (fl/2()’)+(1+710)
V263
X(C+ G+ G(4y2+7))) + 0(e™),
(27a)

FE!/Z(U’ 0)

(L) +C(B+28) - G,

V26°

—G((4n0+6)n0+3)) + O(e™™),  (27b)

1
F,(n, 6)= —‘/ﬁ(fs/z(y) + Cy(5+70)
+C,(((210 + 10)n8 + 1516 + 5)
+C(3+508)) +0(e™ "), (27¢)
where
a? g2 7 e 2
C, ?—;—, Cz—%cl(y—),
31 0\* 28
T
&= 5|32
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and

fip () =431 47 —arcsinh(y)),  (29)
Fi(y)y=139"=fi 2 (¥). (29b)
For(y) =1+ 21 +y7 = 3

— sarcsinh{ y). (29¢)

The relativistic parameter y has been defined pre-
viously (see eq. (23)) but, we can remark, that it
can be also defined by y = p,/mc where p, is the
Fermi momentum (see ref. [4], p. 825).

By several numerical tests, we have found that,
given an accuracy e, these asymptotic formulae
hold (and hence produce the desired result with
the wanted accuracy) for

n=mn,(€) = —In(0.2¢). (30)

In other words, the remainder in @(e™") of
these asymptotic expansions has been estimated to
be approximately 5¢™".

For values of y greater than 0.1 the above
expressions can be used but it is more convenient
for numerical computation to rewrite the formula
of fs ,,(y) in the form of

f5,20) = 3y(((6m0 + 2)n8 — 5) 16 + 15)
—In(1 +y+n6), (31)

and we have always used, when possible, the
Horner scheme for the evaluation of polynomials.

When y is small, it is better to compute the
£ () with their power series expansions (up to the

Table 2
Order of magnitude of the different terms in the asymptotic
expansions of F, (7, 8) for g > 1

Dominant 1stcorr. 2nd corr. 3rd corr.

term term term term
e f(y)
Relativistic limit (y > 1), y = 76
0> F (0, 0) y? n’zyi 7! n 62
0°2F, 2(n, ) »° 73t gd 770!
07F (0. 0) y* n"2yt ot g
Non-relativistic limit (y < 1), y2 = 296
Fi(n, ) AN 7* ! n* 3 n* s

19™ order) owing to cancellation and round off
errors. Then, these new expressions were rewritten
according the Horner scheme, which is the more
suitable for computational purposes.

Fi2 00 = (((((((~ 273507 + 335) 52
— 5% ) v+ )i k)t
)2 b))+ o(»).

(32a)

i) = (33557 = ) 77 + 58 ) »°
— i)y )y %)y )y
+0(y"). (32b)

S2(r) = (((((— E&y? + 512) »* = ot ) »?

F) - R+ )T 0(7).
(32¢)

With respect to the evaluation of the relative
magnitude of each term in the previous power
series expansions, we present in table 2, for the
two limiting cases already mentioned, the be-
haviour of the different involved terms.

At this point, we can point out some mistakes
in the appendix of the paper of Edwards and
Merilan [15], who present an algorithm to derive
additional terms for the power series expansions.
The last terms in their eq. (A.38a)—(A.38¢c) corre-
spond neither to their previous formulation, or to
the exact formulae, which we can found elsewhere
(e.g. eqgs. (27) or ref. [4], p. 826).

4.3. Intermediate degeneracy

For intermediate values of 7, ie. —1<n<
1,(€), we must perform a direct quadrature of the
integrand (x*J1 + 18x)/(e "~ + 1) over [0,
+ oo[. In view of the requested accuracy, there are
some possibilities:

- We can use a quadrature subroutine which
warrants the result to the desired accuracy (e.g.
the DO1AMF subroutine of the NAG library [14]).
Although very CPU-time consuming, this seems
the only possibility for very accurate computation
(say e <107,



Table 3

Abscissas and weights for the Gauss-Jacobi—Legendre 24

points quadrature formulae
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Abscissas

Weights

1) for the computation of F, ,, (k=1/2)

0.02849181901211425612 8.708587123952392133E-03

0.1140823953415001514
0.2571196607654419903
0.4581922214392973504
0.7181429425482090201
1.038089029843696041
1.419449804484678023
1.863983925481609230
2.373838585576534944
2.951614313169913921
3.600450651741771930
4.324140488959726354
5.127284742831941503
6.015505513813138140
6.995746620354544013
8.076709482470633067
9.269507611292598112
10.58869241385666403
12.05395014429822367
13.69311182128868830
15.54801556261556146
17.68754663804027985
20.24330437352278005
23.55302923725045460

2.588239336080700032E-02
3.544909376759483930E-02
3.136491522445054680E-02
1.988436558407921550E-02
9.434998721307272737E-03
3.419850049429588749E-03
9.555329428130830533E-04
2.062955559902515674E-04
3.433654074066855722E-05
4.379600444913362890E-06
4.240385407038400264E-07
3.076018284902174265E-08
1.643383533457525834E-09
6.325185875970369282E-11
1.704842486377056832E-12
3.101817790525326374E-14
3.629077676477144465E-16
2.556163240566112559E-18
9.873226804757046188E-21
1.817864820219574227E-23
1.268090348112044032E-26
2.169210449373242921E-30
3.039858528529206592E-35

2) for the computation of F; ,, (k =3/2)

0~ NV R W N =

0.05715903814507704487  9.391039109364949266E-04

0.1691691337466636962
0.3376961274854422335
0.5634281922970708672
0.8472862423305308693
1.190457155906641785
1.594424264068745150
2.061005946067815622
2.592405877884360298
3.191278791656152039
3.860817110306774041
4.604866300433345506
5.428080731300453654
6.336138259586000403
7.336042625742008587
8.436561900678225587
9.648886714786056247
10.98766185128874102
12.47269276188876817
14.13197255778337397
16.00757798316519261
18.16878543402941250
20.74794941948531924
24.08479843708068601

5.395060892756637293E-03
1.185604647175828626E-02
1.498727911832798787E-02
1.259200700140959199E-02
7.517817834723649452E-03
3.301889289393359145E-03
1.086597705172058257E-03
2.702708661455162480E-04
5.092566771087720233E-05
7.249687936498855808 E-06
7.743310993978272513E-07
6.136643895030836018E-08
3.552722706759996572E-09
1.471575290929083610E-10
4.243638727023408471E-12
8.219691994616413877E-14
1.019514801600291550E-15
7.586099982823628041E-18
3.086650576946254470E-20
5.973965114759314238E-23
4.375012580807258086E-26
7.857961729842841089E-30
1.160069244427643163E-34

Table 3 (continued)
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Abscissas

Weights

3) for the computation of F; ,, (k=5/2)

1 0.09226964901078394532 2.071063088505366675E-04
2 0.2301330622033462354  1.877822582532298638E-03
3 0.4234062206866813589  5.865300612172511508E-03
4 0.6730526278462398295  9.802948061231375216E-03
5 0.9801047549043842122  1.034976046218783665E-02
6 1.345826430906904518 7.481224655789864808E-03
7 1.771765191059100042 3.867716232737840024E-03
8  2.259797098310934291 1.465702083140081271E-03
9 2.812179586536520288 4.125482564509925770E-04
10 3.431618732467618560 8.672782534952122686E-05
11 4.121357053976206369 1.361516047122477181E-05
12 4.885289958806278508 1.588151474110357971E-06
13 5.728122789858624402 1.363348855352401851E-07
14 6.655586828308871788 8.490582412567194274E-09
15 7.674743520887705036 3.760904155849678447E-10
16 8.794425447353131225 1.153952714999818400E-11
17 10.02589823157352428 2.367942527175377107E-13
18 11.38389784186368062 3.100161110168569149E-15
19 12.88834654509108268 2.427473024103134183E-17
20 14.56739675567256287 1.036799160103740114E-19
21  16.46336023193037544 2.102542345866995361E-22
22 18.64589912658745909 1.611719304087483749E-25
23 21.24811339403773192 3.030805921094216037E-29
24 24.61169463440596677 4.699997859827737074E-34

— An other possibility lies in the use of various
Gaussian quadratures, for example the Gauss-—
Laguerre quadrature formula viz. [16],

/(‘)ka efaxg(x) dx = Zwl,(k, a)g(x,.), (33)

i=1

where w, and x; are, respectively, the weights and
the abscissas of the (Gaussian) quadrature for-
mula. Here, we have

g(x)=
€

Y1+ 36x

—n—(a—Dx + e ax °

The parameter a (not necessary equal to 1.) is
adjusted to obtain the best result. In fact, the
exponentials which lie in the denominator of g(x)
must be computed without underflow or overflow.

Let us denote by x,,,, the greatest real value for
which the computation of exp(— x;,,) is permitted
by the computer architecture and differs from zero
(for a VAX computer x,,, is about equal to 88.7).
Let us denote also by x,, the greatest abscissa used
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in the Gaussian quadrature formula for a=1.
This later value depends only upon the value of n.
the number of points (abscissas) involved in the
summation. When we change the value of «, the
abscissas x; become x,/a, the weights w, become
w,/a**! but the products ax; remain constant.

For all the values of «, the following two
conditions are to be satisfied:

X
1’)(,(6)+(a—1)70SX“m. (341)
Xy < Xy (34b)

The second condition is not fulfilled if the
number of points in the quadrature formula is
greater than n = 24. In view of the dependance of
the final accuracy upon the number of points
used, the accuracy e is greater than e = 10~ ¢ when
the number of points n is less than n = 24. Then,
only the first condition must be satisfied; it is
equivalent to

b
a< —2 (35)
Mo+ (Xg = Xjim)

Numerical trials have shown that for e=10"°
(n, =15) the optimal value for a is a=3.5 for
n =24 or a=3 for n=30.

In table 3, we present the abscissas and the
weight of a 24 points Gauss-Laguerre quadrature
formula with a value of a equal to 3.5 for the
three cases under consideration here, namely k =
1/2, 3/2 and 5/2. These weights and abscissas
have been computed with the routine DO1BCF of
the NAG library [14]. But, with the intention of
obtaining highest accuracy, the different involved
subroutines have been adapted to quadruple preci-
sion (H floating of the Vax Fortran with about 33
significant decimal digits). This adaptation has
been realized straightforwardly and quickly since,
in our case, only the values at 1/2, 3/2 and 5/2
of the Gamma function (computed by the NAG-
routine S14AAF) are involved and hence their
values are exactly known, which allows us to
bypass the extension of the polynomial expansions
involved in this subroutine. Therefore, table 3
presents these results with only 19 decimal digits
which then can be seen as all significant.

4.4. The problems of discontinuities

For the most part of the presented methods,
there are always discontinuities in the manner to
compute the integrals. Therefore, at a discontinu-
ity point, noted 7, there is no reason that the two
methods involved (the first for 5 <n, and the
second for > m,.) give exactly the same results
(but, for the desired accuracy, the two results must
be the same). This small discontinuity may induce
some troubles (for example, when used in a pro-
gram which solves a differential equation). This
technical point has been already pointed out by
Tooper [8] in the framework of hydrodynamical
calculations.

In order to eliminate this trouble, it is prefer-
able to interpolate in the neighbourheod of the
discontinuity n.. Let us the notation

[f-(n)
|/ (n)

for m. in the range |n —17.| < An. For example,
we can choose An = 1. The simplest approach is
linear interpolation,

fn)=f.(n)h(x)+f (q)(1—h(x)). (37)

where

for 1 <m,. (36)
for > 7.

Nl ¥
An
and (38)
0 forx< —1,
h(x)={(1(+x) forjx| <1,
1 forx>1.

In spite of the possibility of building interpola-
tion functions of all C* classes, it seems that
linear interpolation 1s sufficient to avoid the trou-
ble of discontinuities in the applications described
in this article. Moreover, it is the simplest and
consequently the fastest.

5. Conclusions

We think that the method presented here repre-
sents the best compromise between accuracy and
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computational speed for the evaluation of the
equation of state of a semi-degenerate semi-rela-
tivistic gas at non-zero temperature for an accu-
racy in the range ¢=~10"° to ¢e=10"7 and in a
CPU-time less than 2 ms (in the worst case) on a
VAX 8600 (for which a standard Fortran function
such as DSQRT requires 106 ps and DEXP 71.5
ps, the CPU-speed being 0.79 Mflps in double
precision).

Moreover, the correction due to the non-zero
temperature formalism in the equation of state is
far from being a negligible correction, in compari-
son to other possible corrections, such as the
Coulomb or the Thomas—Fermi electrostatic cor-
rections. For instance, even in the case of the sun’s
interior, the pressure due to the electronic contri-
bution is slightly modified when calculated with a
semi-degenerate non-zero temperature electronic
gas. In fact, in the case (§ <1 and —7 > 1), we
have the relation

ST BV A

In the center of the sun, § is nearly equal to
3 x 10~ and therefore, for the same pressure, the
temperature will be 2 X 1072 lower.

Note: During the numerical tests of the different
methods presented here, we have discovered some
misprints in the tabulations of the generalized
Fermi-integrals presented in the annex of the book
of Cox and Giuli [4]. These are:

for =15 and for log 8= —6.0 we must read
Fy , =3.8943(+1),

for =15 and for log 8= —4.0 we must read
F; , =3.5822(+1),

for n=40 and for log 8= —0.5 we must read
F ,, = 3.6348(+2),

for =50 and for log 8= —1.0 we must read
F| ,, = 3.6953(+2).
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Appendix. Application to a gas of bosons

By analogy with the preceding case of Fermi-
Dirac distributions, it is easy to treat the case of
Bose—-FEinstein distributions at any temperature.
In this paragraph, all the quantities presented are
related to non-condensed particles. This is re-
called, in the notations, by the use of “primes”
(for instance, the density n’ is equal to (1 —¢{)n
where { is the fraction of condensed particles and
n is the total number density [17].

We have

n' =C0¥*(G, ,,(n, 8) +8G, ,,(n, 8)), (40a)
p = %Cmc205/2(63/2(n, 0) + 310G ,,(m, 0)),

(40b)
u’' = Cmc*0°/*(G, ,(n, 8) + 0G; ,5(n, 8)),
(40¢)
where
C=4L“/.Z, }\C=L’ gzﬂ, (41)
A3C mce CZ
and
oo&knl + —30;
G (n, 0)—]; e dx (42)

Here, g is the degeneracy factor (g = ¥ for scalar
bosons) and m is the mass of the bosons.

The evaluation of these integrals is simpler that
in the fermion case because, for bosons, we have
always 7 <0 [17]. With this restriction, we can
write in the same way as in eqs. (25a)-(25c):

Gua(n 0)= 7= T ye ik (5). @)
Gs/z(na 9)= ‘/Zlo? ni::l %e’”’(Kz(%) _Iel(%)),
(43b)
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£ 2l (3] 03
Kz(%)) (43¢)

These expansions are always convergent for
any values of 7 (n < 0) and the different integrals
can be evaluated, at any accuracy, with the same
algorithm as the Fermi integrals.

Moreover, in the bosonic case, there is a very
important and interesting limiting case if the bo-
son mass tends towards zero. The relevant physi-
cal applications are, for example, gluons and,
especially, photons (with a zero chemical poten-
tial). Therefore, we can write

6
For 6 — + o0, G (n,0)— V3 Grir2(m),

(44)
where
o0 x7
Gn(n)_j(; de, (45)
and for 7 =0 (e.g. for photons),
G, (0)=T(n+1)¢(n+1), (46)
2
G,(0) = % = 1.64493406684822643647 ...,
G,(0) = 2.40411380631918857080.. ., (47)
4
G,(0) = % = 6.49393940226682914909. .. .
In this case, we have
n’ = CT>G, (1), (48a)
p’ = CkT*Gy(n), (48b)
u' =3p’, (48¢)
where
- k3
C—4'n'g(h—c) : (49)

Thus, we recover the black body radiation for-
mulae.

Let us point out that in the quoted textbooks
{17] we find the functions f, and g,, which are

related to Fi(F,(x)= F,(x, §=0)) and G, by the
following relations:

3 0 (_1)nflx,, B 1
fulx) = "gl K = F(k+1)Fk(X)’
(50)
X x" 1
gk(x)=ngly=f(k—+l)‘Gk(X)- (51)
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