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The aim of this paperis to provide thebestcompromisebetweenaccuracyandCPU-time for calculating the generalized
Fermi—Diracintegrals. After a brief review of the existing methods,with emphasison two of them, we presentour method
valid for all valuesof thedegeneracyparameterandof thetemperature,with an accuracyin therange10

5—itr7 anda short
CPU-time.We havetakencareof thecomputerimplementation(including round-offerrors,underflowsor overflows)and we
give theweightsand abcissasof the Gauss—Laguerrequadraturerule neededfor an accuracyof = 10~.

1. Introduction SR) and the temperaturemustbe consideredex-
plicitly as a physical variable. Whereas the

Quantumstatisticaldistributionsare frequently numericalcomputationof the ordinary Fermi in-
used in physics and, in particular, the Fermi—Di- tegrals (involved in the zero temperaturefor-
rac distribution must be used to describemany malism) seemsto be extensively treated in the
astrophysicalsituations such as the equilibrium literature, the generalizedones,which appearin
structure of white dwarfs, the helium flash in the SD-SRcase,are more seldomconsidered.As
moderatelymassivestars(seeref. [1]), the gravita- far as only pressureand energy are considered,a
tional collapseof massivestarsand formation of few approximation formulae are available, but
supernovae, in models describing gamma ray whennon-adiabaticevolutionsor chemicalevolu-
bursts[2] or the tidal pinching of white dwarfsby tions are considered,the degeneracyparameter
a massiveblack hole [3]. (which is related to the entropy and the chemical

For the study of white dwarfsstructurethe gas potential)remainsunknown or is hard to be ob-
of electrons is generally consideredas a (com- tamedwhen necessaryfrom these approximation
pletely) degenerategasat zero temperatureandin formulae.Again, the naturalway to dealwith this
this case, this approximation (which is formally parameteris to consider the generalizedFermi
equivalentto an infinite degeneracy)is a good one integrals.
as long asthe entropyis not considered.But then, Section 2 presentsthese generalizedFermi in-
non-adiabaticevolutioncannotbe described.Such tegralsandthe basicequationsusedto derive the
flaws are naturally removedwhen we use a non- main thermodynamicalquantities such as pres-
zero temperatureformalism, sure, energy or entropy. In section 3, we review

For the otherastrophysicalapplicationsquoted briefly the different existing methods(in an ex-
above, the non-zerotemperatureformalism is the haustiveway asthe authorhopesit) with emphasis
only onewhich is relevantsincein the mediumin on two of them. In section 4, we suggesta new
which thesevarious phenomenaoccur, the elec- method with particularattention to computerim-
tron gasis semi-degeneratesemi-relativistic(SD- plementation.In an appendix,we presentthe case
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of the Bose—Einsteindistribution whosenumerical The entropyperbaryon(in units of k) is equal
calculation is very close to that of Fermi—Dirac to

distribution. = ( ~ + U,~— ~fl. (3d)

where ~e=Pe/t~ekT and Ue ~/~ekT These
2. GeneralizedFermi integralsand relatedquanti- factorsare the incrementsover the relatedquanti-
ties ties for a classical(perfect) gas.

The generalizedFermi integralsare definedby
the following equation, 3. Brief review of different methods

xAyl + ~8x Various authors have already computed the
TA(S), e)=f ~ dx. (1)

~ e ‘ + 1 generalizedFermi integrals. Other ones provide
approximationformulaefor the relatedthermody-

where 0 is a non-negativeparameterand sj a real namical quantities.In the first casewe can quote

parameter.Forphysical applications,the only val- the papersof Divine [51,Diaz-Alonso [6], Bonaz-
ues to be consideredare k = 1/2, 3/2, and 5/2. zola [7], Tooper[8], Bludman and Van Riper [9]
The caseof electronsis a typical applicationand and in the secondcase Service [10] (who treats
in practice 0 is related to the temperatureby only the limit — i~>> 1), BeaudetandTassoul[11],
O = kT/mec2.while s~is the degeneracyparameter Eggleton,Faulknerand Flannery[12]. The main
defined as s~= ~/kT, where m~is the rest mass characteristicsof some of thesemethods(domain
of the electron,k the Boltzmannconstantand ~ of validity, accuracy.possibility to deal with the
is the chemicalpotential (non-including the rest degeneracyparameteror the entropy, speed) are
mass)of the electrons.For 0 0, FA(11, 0) reduce summarized in table 1.
to Most of them present either approximations

TA ( ) ~ x” dx with poor accuracyor formulae involving a pro-= (2) hibitive computation time for problems where
~ e ~ + + I theseintegrals mustbe evaluatedhundredsthou-

which are the Fermi integrals usually considered
in the zero temperatureformalism. Table I

In fact, the numberdensity, the pressureand Comparisonof thedomain of validity, accuracy,possibility to

the internalenergy of the electrongasare given by deal with the degeneracyparameteror the entropyand speed

[4]: for different methods. In theitem “Domain of validity” “all”
meansall values of ij and 0. The speed is indicated from

8’w~/~ + + + for thefastestmethod to — — for theslowest
93/2(Fl/

2(si, 6)+0F3/2(1l, 0)), (3a)
Method Domain Accuracy Entropy Speed

of
16’rrV~m~c

2 validity

= 3 ~ Divine ~ 0 0.005 yes + +

Tooper all 10~~ 10 yes -— io -1-

X05/2(FS/
2(q, 0) + ~OF5/2(S), 0)), (3b) Bludmanand

Van Riper all 0.001—0.1 yes +

Beaudetand
= ~ m~

2O5/2(F( 0) + 0~/2(S)’0)), Tassoul all 0.001—0.1 yes + +

xc Eggletonci al. all = 7 x iO~ no + +

(3c) Eggletonci al. all = 7X10~ yes — —

Paczynski s~ 0.
0=1 =0.05 no ++±

where X~= h/mac is the Comptonwavelengthof Service —~>>1 5X105 no + +

the electron. __________________________________________________
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sandstimes(asin ref. [3], which describesthe tidal the same behaviouras F(x, y), when x (or y)
compressionof a white dwarf in the relativistic tendsto 0 or + ~ and
gravitationalfield of ablack hole). However, two

M N

of thesemethodsmay be very useful for testsor ~
short runs and thereforewill be discussedin de-

m=O n=O
tails below. LMN[aF](x, y) = , (7)

(1 +x)M(i +y)N

3.1. The methodof Eggleton,FaulknerandFlannery As the authors suggest it, M = N = 4 can be

chosen,whereas
Whenthe degeneracyfactor neednot be known

andonly a relativelypoor accuracyis required,the ~ 0) K(f, g) = -‘-—(g(i + g))SZ”2, (8)
method introduced by Eggleton, Faulkner and 1 + f
Flannery (hereafter EFF, ref. [12]) can be used.
The notationsusedby theseauthors(viz. ~, ~, i~) where
are relatedto oursby the following relations:

/ u—i \
81T S)=2u+ln~ )=2(u_arctanh(1/u)). (9)

n~=-Th (4a) u+1

u=~/i~7and g=Ou. (10)

Thevaluesof the coefficients~ canbe found= mec2(~ (4b) in the quotedpaper.Thesevalueshavebeenfitted,

~ m~c~( ~) by mean squaresadjustments,in the physically
= — ~, (4c) interestingregion of the (p, T)-plane, where p is

the density.
The non-universalityof the EFF methodlies in

and hence,with their notation, the entropy reads thedifficulty of changingthevariables(f, g) ~ (~,
now: 0), more precisely in the correspondencef~-~7),

sincetriviallyill ~+p ), (4d)

0=g/%/f~7. (ii)

The functions F
5/2, F3/2, and are relatedto If the degeneracyfactor does not have to be

~5,~, i~by: known, we can deal directly with f insteadof i~,

l~/2(~1,0) = (V~~07/2)~(2~— 3fl), (5a) as suggestedby the quotedauthors.In this case
this method, in spite of its relatively poor accu-

F3/2(fl, 0) = (V~o
5~2)~(3p— ~), (5b) racy,seemsto be the fastest.

F
1/2(fl, 0) = (~93/2)_1(~ + i~— 3P). (5c) Calculation of the degeneracyfactor

If wewant to determinef from i~,the CPU-time
The principleof the EFF methodconsists,for the increasesand,moreover,we must takecareof the
computationof a function F(x, y) wherex and y accuracyof the result, in view of the round off
are positiverealvalues,in rewriting F(x, y) in the errorsfor instance.
following form, 1~rst,let usremark that when f tends towards

F(x, y) = f(x, y)LMN[aF](x, ~ (6) 0, 7) tendsto minus infinity accordingto

whereF(x, y) is a simplealgebraicfunction with ii in 1±2(1 — ln 2) + ~f—i~f
2+ tP(f3), (12)
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and in the same way. when f (and sj) tends to 3.2. The approximationof Paczvnski

infinity.
B. Paczynski [13] provided an elegant ap-

11 1 — ~f~’+ ~f2 +
1~f proximationformula applicable in the region of

45 —4
— ~j + ~(f-

5). (13) semi-degeneracy.First, the pressureis computedin three cases.
In each one, the electron gas is consideredas

Hence,when 11 tends towards ~, in practice
when~ — 20, we can write forming:

(1) a pure perfect non-degenerategas, the cor-
f~4 exp(ij — 2). (14) respondingpressureis noted ~eid~

(2) a pure entirely degeneratenon-relativistic
when 7) tends towards + ~, in practice when gas, the correspondingpressureis noted ~e.d~r;

7) � 2000, we can write (3) a pure entirely degenerateultra-relativistic
gas, the correspondingpressureis noted ~e.~jr

f~(h), (15) The resultingpressureis then

and in the othercases,let usput x as an auxiliary p (p2
1 + ~ )1 2 = ~ ~02 + 3

variable 25 + l6~2

x=ln(u-1)=ln(If~7-1). (16) (21)
where

Then the equationin f becomes
m~c

2 ~,2

F(x)=2e’+2—ln(1+2e~)=7). (17) ~ed(~.dnr~~e.dr) I 2 _______
LL~ t25+16y2

The dummyvariable x, previously introduced, (22)
allows us to solve easily this new equationby the
Newton method. In fact, the (x ~-*f)-change of can be interpretedas the pressureof a pure corn-
variables removesthe stiff behaviourof f in the pletely degeneratebut semi-relativisticgasof dcc-
interval under consideration.Using the Newton trons. The variable v is related to sj and 0 by
method,let us remark that I +v2 = (I + 0sfl2 and, for physical interpreta-

tion, j’ is (sometimes) called the relativistic

F’(x) = 2(ev + I = 41 + cosh x , (18) parameter,since it satisfiesthe equality

~ ev+2j 1+2e~

andwe canchooseas guessvalueof x, the follow- +Y = (~~ ,2 (23)mec I
ing value x

11
Let us recall the well known expressionfor

/0.5(7) — 3) for 7) � 0, ‘~c.nd’ P~i~and ~e~lr (see ref. [4]).
= ~0.5(2 ln(1 + ~)— 3) for ~� o. (19)

‘~end=

1kT, (24a)
When x is known, f and g can be computed

easily without round off errors, becausex per- m~c2I
forms a good variable scaling in the region of ~e.dnr = ~ (24b)
interest,by

m~c21
(24c)

[f= u2 —1= e’(e’ + 2), ~ 4.
g = Ou = 0(1 + e’). (20) where ~ is the mean molecularweight by dcc-
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trons. Here, the pressures are expressedper We can remark that our expressiongeneralizes
nucleon(i.e. the pressuresare divided by the den- the oneby Tooper[8] who gives only the valuefor
sity of nucleons,which is equal to ~A/’pwhen the c = 10 15, However, for reasonsof calculation
densityp is expressedin g cm3 and .4” is the speed, it is convenient to use this method for
Avogadronumber). values of ~1sufficiently negative, say ~ — 1.

This approximationprovides a good descrip- Hence, for an accuracyof e = 10—6 thereare less
tion for the pressure(and the energy) as a func- than 15 termsto sum.
tion of the temperature(0). But theoverall accu- The functions K

0(x) and K1(x) are computed
racy is poor (seetable 1) and hencethis formula by meansof expansionsin terms of Chebyshev
seemsto be usefulonly for numericaltests. polynomials. We have used the NAG routines

S18CCFand S18CDF (seeref. [14]), respectively,
in which the various expansionshavebeentrun-

4. The suggested method
cated. With the goal of reducing, as much as

4.1. Thecaseof a negativedegeneracyfactor possible, the computation-time,only those terms
which are needed to guaranteean accuracy of

Introducing Kr(x) = e
5K~,(x),K~ being the 102 havebeenkept

modified Besselfunctions, the formulae presented
by Cox andGiuli [4] are well applicable.Wehave 4.2. Thecaseofa great degeneracy
then:

For ~ > 0 thereexists, to may knowledge,no
F

1 2(7) 0) = (—iY~~e’~’ui~i(~) exactformula for theseintegrals,but only asymp-
/ ‘ 0 ‘ totic expansionsfor which the rest is in the order

(25a) to e~(see ref. [4], eqs. (24.179), (24.180) and

1 ~ (24.181),p. 826):
F3/2(7), 0) = _____ “ ‘ e~’ F1/2(S), 8)

n 1

x(1~2(~)-I~)), (25b) = (fl/2(y) + (1 +~O)

1~5/2(7)~8) x(C1 + C2 + C3(4y
2+ 7))) + ~(e~),

1 —1)’~’ (27a)

= ~ n=1 ~ e~ ~/2(7)’ 0)

x{2(I~~(~)- 1’2(~)) + ~I~2(~)}. = (f
3~2(y)+ C1(3 + 27)0) - C2

(25c) —C3((47)0+6)7)O+3))+~(e~), (27b)

Only K0(x) and K1(x) mustbeevaluated,which 1
can be done quite easily at any precision by F5/2(q, 0) = ,........... (f5/2(y) + C1(5 + 7)8)
polynomial expansion, since K2(x) = K0(x)+

(2/x)I(~1(x). + C2(((2qO+ 10)7)0+ 15J7)0+ 5)
The series expansions(25a)—(25c)are conver- +C3(3 + 57)0)) + ~)(e~), (27c)

gentfor all positive(non-zero)valuesof 0 andfor h
all negative(evenzero)valuesof ~,but the sum- w crc
mationmust be truncatedat some valueof N(), ‘r

2 82 7 / ~T~9\2

dependingon the desiredaccuracy . We have C
1 = , C2 = ~ C1 ~—~)

found, by severalnumericaltrials, that )‘ (28)

N(�)=int( _2lo~(�)+3) (26)
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and
19th order) owing to cancellationand round off
errors.Then, thesenew expressionswere rewritten

fl/2(y) = ~(y~/I +y

2 — arcsinh(y)), (29a) accordingthe Homer scheme,which is the more

suitablefor computationalpurposes.
f
3~2(v)= ~y

3 —fl/
2(y). (29b)

58773 2 77 5 2
2 2 3 fl/2(y) = (((((((~fli4ll2Y +

f~/2(Y)= ~y(I + ~y2)~/I +y —

63
— ~arcsinh(y). (29c) — 3328,Y + ~8)u2 —

The relativistic parametery hasbeendefinedpre- + ~)~2 — ~)~2 + fl~
3+

viously (see eq. (23)) but, we can remark, that it (32a)
canbe also definedby y = p

0/mc where Po is the
58773 2 77 ~ + 63 \ 2

Fermi momentum(seeref. [4], p. 825). f3/2(y) = ((((((m~Ti~Y —

By severalnumericaltests,we havefound that, 35 ) 2 + ~ — 5fly

2 +
— ~

given an accuracye, these asymptotic formulae
hold (and henceproduce the desiredresult with +&(y19). (32b)
the wantedaccuracy)for

2759i3 2 7
fS/

2(Y) = (((((— ~56~8Y + ~)y
2 —

~J�flII(~)’ —ln(0.2e). (30)
+ 15)~2 — +6)Y + ~)~7 + ~(v19)

In other words, the remainderin e?(e~)of (32c)
theseasymptoticexpansionshasbeenestimatedto
be approximately5e~. With respect to the evaluationof the relative

For values of y greater than 0.1 the above magnitude of each term in the previous power
expressionscan be usedbut it is moreconvenient seriesexpansions,we presentin table 2, for the
for numericalcomputationto rewrite the formula two limiting cases already mentioned, the be-
of f~,(y) in the form of haviourof the different involved terms.

At this point, we can point out some mistakes
fs/

2(.~’)= ~y(((67)O + 2)7)0 — 5)7)0 + 15) in the appendixof the paper of Edwards and

— ~ln(I +y + 7)0). (31) Merilan [15], who presentan algorithm to derive
additional terms for the powerseriesexpansions.

and we have always used, when possible, the The last termsin their eq. (A.38a)—(A.38c)corre-
Homer schemefor the evaluationof polynomials. spondneitherto their previousformulation, or to

When y is small, it is better to compute the the exact formulae,which we can found elsewhere

fALv) with their power seriesexpansions(up to the (e.g.eqs. (27) or ref. [4], p. 826).

Table 2 4.3. Intermediatedegeneracy
Order of magnitudeof the different terms in the asymptotic
expansionsof F6~q,0) for i~>~I For intermediatevalues of ~, i.e. — I � 73

Dominant 1st corr. 2nd corr. 3rd corr. 7)o(~),we mustperform a direct quadratureof the
term term term term integrand (x”Vi + ~0x)/(e~~+ 1) over [0.
i.e. fk(Y) + oc[. In view of the requestedaccuracy,thereare

Relativisticlimit (y >> 1). y = s~O somepossibilities:

6
3~zzF(~0) y2 ~2y2 — We can use a quadraturesubroutinewhich

05’~2F~/
7O~,0) y

3 ~2y3 ~ ,~6y1 warrants the result to the desired accuracy(e.g.
07’2F~/

2(sJ.0) y

4 ~ ~ ~—6 the DO1AMF subroutineof the NAG library [14]).

Non-relativisticlimit (y ‘sz 1), y2 2i~0 Although very CPU-time consuming, this seems
the only possibility for very accuratecomputation

I, I k I k—3 k—SF
5(q,O) 7I_ ~i

(say � 10 iO)
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Table 3 Table3 (continued)
Abscissasand weights for the Gauss—Jacobi—Legendre24

Abscissas Weights
pointsquadratureformulae _____________________________________________________

3) for thecomputationof ‘~/2 (k 5/2)
Abscissas Weights

1 0.092269649010783945322.071063088505366675E-04
1) for thecomputationof F

1 2 (k = 1/2)
2 0.2301330622033462354 1.877822582532298638E-03

1 0.028491819012114256128.708587123952392133E-03 3 0.4234062206866813589 5.865300612172511508E-03
2 0.1140823953415001514 2.588239336080700032E-02 4 0.6730526278462398295 9.802948061231375216E-03
3 0.2571196607654419903 3.544909376759483930E-02 5 0.9801047549043842122 1.034976046218783665E-02
4 0.4581922214392973504 3.136491522445054680E-02 6 1.345826430906904518 7.481224655789864808E-03
5 0.7181429425482090201 1.988436558407921550E-02 7 1.771765191059100042 3.867716232737840024E-03
6 1.038089029843696041 9.434998721307272737E-03 8 2.259797098310934291 1.465702083140081271E-03
7 1.419449804484678023 3.419850049429588749E-03 9 2.812179586536520288 4.125482564509925770E-04
8 1.863983925481609230 9.555329428130830533E-04 10 3.431618732467618560 8.672782534952122686E-05
9 2.373838585576534944 2.062955559902515674E-04 11 4.121357053976206369 1.361516047122477181E-05

10 2.951614313169913921 3.433654074066855722E-05 12 4.885289958806278508 1.588151474110357971E-06
11 3.600450651741771930 4.379600444913362890E-06 13 5.728122789858624402 1.363348855352401851E-07
12 4.324140488959726354 4.240385407038400264E-07 14 6.655586828308871788 8.490582412567194274E-09
13 5.127284742831941503 3.076018284902174265E-08 15 7.674743520887705036 3.760904155849678447E-l0
14 6.015505513813138140 1.643383533457525834E-09 16 8.794425447353131225 1.153952714999818400E-11
15 6.995746620354544013 6.325185875970369282E-11 17 10.02589823157352428 2.367942527175377107E-13
16 8.076709482470633067 1.704842486377056832E-12 18 11.38389784186368062 3.100161110168569149E-15
17 9.269507611292598112 3.101817790525326374E-14 19 12.88834654509108268 2.427473024103134183E-17
18 10.58869241385666403 3.629077676477144465E-16 20 14.56739675567256287 1.036799160103740114E-19
19 12.05395014429822367 2.556163240566112559E-18 21 16.46336023193037544 2.102542345866995361E-22
20 13.69311182128868830 9.873226804757046188E-21 22 18.64589912658745909 1.611719304087483749E-25
21 15.54801556261556146 1.817864820219574227E-23 23 21.24811339403773192 3.030805921094216037E-29
22 17.68754663804027985 I.268090348112044032E-26 24 24.61169463440596677 4.699997859827737074E-34
23 20.24330437352278005 2.169210449373242921E-30
24 23.55302923725045460 3.039858528529206592E-35

2) for thecomputationof ~/2 (k = 3/2) — An otherpossibility lies in the useof various
Gaussianquadratures,for example the Gauss—

1 0.057159038145077044879.391039109364949266E-04
2 0.1691691337466636962 5.395060892756637293E-03 Laguerrequadratureformula viz. [16],
3 0.3376961274854422335 1.185604647175828626E-02 n
4 0.5634281922970708672 1.498727911832798787E-02 f xk e~~xg(x)dx~ ~ w.(k, a)g(x1), (33)
5 0.8472862423305308693 1.259200700140959199E-02 0
6 1.190457155906641785 7.517817834723649452E-03
7 1.594424264068745150 3.301889289393359145E-03 wherew, andx, are, respectively,the weights and
8 2.061005946067815622 1.086597705172058257E-03 the abscissasof the (Gaussian)quadraturefor-
9 2.592405877884360298 2.702708661455162480E-04 mula. Here,we have

10 3.191278791656152039 5.092566771087720233E-05
11 3.860817110306774041 7.249687936498855808E-06 + ‘Ox
12 4.604866300433345506 7.743310993978272513E07 g(x) = 2

13 5.428080731300453654 6.136643895030836018E-08 e~’~’~+ e~r
14 6.336138259586000403 3.552722706759996572E-09
15 7.336042625742008587 1.471575290929083610E-10 The parametera (not necessaryequal to 1.) is
16 8.436561900678225587 4.243638727023408471E-12 adjusted to obtain the best result. In fact, the
17 9.648886714786056247 8.219691994616413877E-14 exponentialswhich lie in the denominatorof g(x)
18 10.98766185128874102 1.019514801600291550E-15 mustbe computedwithout underfiow or overflow.
19 12.47269276188876817 7.586099982823628041E-18
20 14.13197255778337397 3.086650576946254470E-20 Let us denoteby Xi~m the greatestrealvaluefor
21 16.00757798316519261 5.973965114759314238E-23 which the computationof dXP(~Xiim) is permitted
22 18.16878543402941250 4.375012580807258086E-26 by thecomputerarchitectureanddiffers from zero
23 20.74794941948531924 7.857961729842841089E-30 (for a VAX computer Xijm is aboutequal to 88.7).
24 24.08479843708068601 1.160069244427643163&34 Let usdenotealsoby x0 the greatestabscissaused
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in the Gaussianquadratureformula for a = 1. 4.4. The problems of discontinuities

Thislater valuedependsonly upon the valueof n.

the number of points (abscissas) involved in the For the most part of the presentedmethods,
summation.When we changethe value of a. the there are alwaysdiscontinuitiesin the mannerto
abscissasx, becomex,/a, the weights w, become computethe integrals.Therefore,at a discontinu-
w,/ak+l, but the productsax

1 remainconstant. ity point, noted i

1~~there is no reason that the two
For all the values of a, the following two methods involved (the first for ij <~)~and the

conditionsare to be satisfied: second for ij > i~) give exactly the sameresults
(but, for the desiredaccuracy,the two resultsmust

+ (a — I)~ � x
11~, (34) be the same).This small discontinuitymay induce

a some troubles (for example,when used in a pro-
(34b) gram which solves a differential equation).This

(I rn technical point has been already pointed out by
The second condition is not fulfilled if the Tooper [8] in the framework of hydrodynamical

number of points in the quadratureformula is calculations.
greaterthan n = 24. In view of the dependanceof In order to eliminate this trouble, it is prefer-
the final accuracy upon the number of points able to interpolate in the neighbourhøodof the
used,the accuracye is greaterthan e = 106 when discontinuity ~ Let us the notation
the number of points n is less than n = 24. Then, / ,, f
only the first condition must be satisfied: it is or ~1 11~. (36)
equivalentto ~f~(~) for ~> ~

X0 for ~ in the range 7) — 7j~ �
2ci~. For example,

a ~ + (x — x ) (35) we can choose ~ = 1. The simplest approachis
0 urn

linear interpolation,
Numerical trials haveshown that for = 10~ ~(~)=f~(7))h

1(x)+f (7))(1 —h1(x)), (37)
(s~= 15) the optimal value for a is a = 3.5 for
n = 24 or a = 3 for n = 30. where

In table 3, we presentthe abscissasand the 11 —

weight of a 24 pointsGauss—Laguerrequadrature x =

formula with a value of a equal to 3.5 for the
threecasesunderconsiderationhere,namely k = and (38)
1/2, 3/2 and 5/2. These weights and abscissas 0 for x � — 1.
have been computed with the routine DO1BCFof h (x) = ‘(1 + v) for I <1
the NAG library [14]. But, with the intention of 2

obtaininghighest accuracy,the different involved or X �

subroutineshavebeenadaptedto quadruplepreci- In spiteof the possibility of building interpola-
sion (H floating of the Vax Fortranwith about33 tion functions of all CA classes, it seems that
significant decimal digits). This adaptation has linear interpolation is sufficient to avoid the trou-
been realizedstraightforwardlyandquickly since, ble of discontinuitiesin the applicationsdescribed
in our case,only the values at 1/2, 3/2 and 5/2 in this article. Moreover, it is the simplest and
of the Gammafunction (computedby the NAG- consequentlythe fastest.
routine S14AAF) are involved and hence their
values are exactly known, which allows us to
bypass the extension of the polynomial expansions 5. Conclusions
involved in this subroutine. Therefore, table 3
presentstheseresults with only 19 decimal digits We think that the methodpresentedhererepre-
which thencan be seenas all significant. sents the best compromisebetweenaccuracyand
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computational speed for the evaluation of the his valuable commentsand for bringing to my
equationof stateof a semi-degeneratesemi-rela- attention,amongother things,the reference[16].
tivistic gas at non-zerotemperaturefor an accu-
racy in the range c iO~ to iO~and in a
CPU-timeless than 2 ms (in the worst case)on a Appendix.Application to a gasof bosons
VAX 8600 (for which a standardFortranfunction
such as DSQRTrequires106 ~s and DEXP 71.5 By analogywith the precedingcaseof Fermi—
p.s. the CPU-speedbeing 0.79 Mflps in double Dirac distributions, it is easyto treat the caseof
precision). Bose—Einsteindistributions at any temperature.

Moreover,the correction due to the non-zero In this paragraph,all the quantitiespresentedare
temperatureformalism in the equationof state is related to non-condensedparticles. This is re-
far from being a negligible correction,in compari- called, in the notations, by the use of “primes”
son to other possible corrections, such as the (for instance,the densityn’ is equal to (1 —

Coulombor the Thomas—Fermielectrostaticcor- where~ is the fraction of condensedparticlesand
rections.For instance,evenin the caseof the sun’s n is the total numberdensity[17].
interior, the pressuredue to the electroniccontri- Wehave
bution is slightly modified whencalculatedwith a
semi-degeneratenon-zero temperatureelectronic n’ = CO3/2 ( G~/2(7)’ 0) + 0G7/2~ 8)), (40a)
gas. In fact, in the case(8 ~s 1 and —n>> 1), we
havethe relation p’ = ~Cmc

2OS/2(G
3/2(q,8) + ~0G5/2(q, 0)),

(40b)

P IP) /\P)r*o \P r=o’i~ i+ to). (39) u’=Cmc
205/2(G

3/2(7), 0)+0G5/2(7), 0)),

In the center of the sun, 8 is nearly equal to (40c)
3 x iO~andtherefore,for the samepressure,the

where
temperaturewill be 2 x 10 ~ lower.

~ A =-~--, O=-~-~-, (41)
Note: During the numerical testsof the different x

3 c mc mc2
methodspresentedhere,we havediscoveredsome
misprints in the tabulationsof the generalized and
Fermi-integralspresentedin theannexof thebook _______

of Cox andGiuli [4]. Theseare: x~/1+ ~Ox
for ~ = 15 and for log $ = —6.0 we must read Gk(n, 0) = e+x — 1 dx. (42)
F

1/2 = 3.8943(+1),
for i~= 15 and for log $ = —4.0 we must read Here, g is the degeneracyfactor(g = } for scalar

= 3.5822(+1), bosons)and m is the massof the bosons.
for ~ = 40 and for log /3 = —0.5 we must read Theevaluationof theseintegralsis simplerthat
F1/2= 3.6348(+ 2), in the fermion casebecause,for bosons,we have
for 77 = 50 and for log /3 = — 1.0 we must read always 73 � 0 [17]. With this restriction, we can
F1/2 = 3.6953(+2). write in the sameway as in eqs.(25a)—(25c):

G1/2(7), 0) = ___~_~~~ -~_e’”v~1(~), (43a)
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1 ~2 relatedto Fk(Fk(x) F~(x,0 0)) and GA by the
G5/2(7), 8) = ~

n=1 ~ — 1C2~) following relations:

38 - ffl\

+ ~ ~K2~)). (43c) fk(x) = ~ (-1)’~’x” = ‘ F~(x),
n=1 F(k+1)

These expansionsare always convergent for (50)
any values of ~ (i~� 0) and the different integrals
can be evaluated,at any accuracy,with the same .~“ i
algorithmas the Fermi integrals. g~(x) =

= F(k + 1~Gk(x). (51)Moreover, in the bosonic case, thereis a very I

importantand interestinglimiting caseif the bo-
son masstends towardszero. The relevantphysi-
cal applications are, for example, gluons and,
especially,photons(with a zero chemicalpoten- References
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