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Siegbahn recently presented a new direct Cl method which is applicable to the CAS SCF method. Instead of using con-
figuration state functions as adopted by Sicgbahn, we propose that Slater determinants should be used. The approach then
needs no formula tape, the one-electron coupling coefficients being easily generated as required. The method is totally vec-
torised, and applies as programmed to the lowest eigenvalue of any spin and space symmetry. The timings for Siegbahn’s
esamples are approaimately halved using this procedure, and in a full CI calculation involving 107942 configurations, 18

CRAY-1S CPU seconds were required per iteration.

1. Introduction

One of the most successful methods for the deter-
mination of high-accuracy wavefunctions is the com-
plete active space variant (CAS SCF) of the multi-con-
figuration self-consistent field (MC SCF) method, first
realised by Roos, Siegbahn and co-workers [1]. In this
method a set of orbitals are chosen as active, and all
configurations which may be formed for this set, of
the correct space and spin symmetry, are used in the
MC SCF method. In other words a full configuration
interaction (full CI) calculation is performed to ob-
tain the CI vector at many stages of the iterative MC
SCF process. The size of the full CI grows rapidly
with the number of active orbitals however, and
whilst useful calculations can be performed with a
1000 configuration state functions (CSFs), much
more useful calculations can be performed if it is
possible to use several tens of thousands of CSFs. It
might then be thought that the diagonalisation time
of the CI matrix would become prohibitively expen-
sive.

Siegbahn [2] has recently addressed this problem,
and has demonstrated the efficiency of a new and in-
novative method which can make good use of pipeline
computers and thus make this part of the CAS SCF
calculation no more expensive than the other parts,
although there remains a considerable demand on in-
putfoutput facilities. Here we show how this final
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problem can be eliminated through the use of deter-
minants instead of CSFs.

If the Davidson [3] algorithm is used as the iterative
procedure to obtain the required eigenvector, then the
time consuming step is the evaluation of &, where

1¢))

where ¢ is any vector, and H;; = (®/H|®,) with ®,
being the expansion set, usually CSFs. On introducing
two-electron coupling coefficients and associated two-
electron integrals, the two-electron part of eq. (1)
may be written

or=Hpey,

oy = %’1 T ikDey

L @
where F,’l‘fc ; can be written in terms of unitary group
one-particle generators [4] as

J -1 3

The second term in (3) can be treated by absorbing
combinations of two-electron integrals into the one-
electron integrals, and these are processed in a stan-
dard way; the time consuming part is the evaluation
of the first part. On introducing the resolution of the
identity, we have

1 -
ri, = %} T\E| KK E 1)
—3UIEZ W5, . @)
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One-particle coupling coefficients are defined through

Y= UIE, %)

and thus the time consuming part in the evaluation of
oy may be written

o,=—27{;{§3 (qw)Eyu e ©)

Siegbahn {2] recognised that this way of writing &
leads to a computationally efficient method for its
cvaluation, expressing it as

o=Tr{y-1-D),

His scheme is outlined as follows:
Loop over intermediate states | K

DR = ? e, . (63)
5 = Z) jIkDnDY, (6b)
Z;'y”‘{"‘ (6¢)

Notice that the set of intermediate states [K) must
span the full spin space (or at least the subspace which
interacts through the operators £), including CSFs
of different spatial symmetry. even when the Cl ex-
pansion itself is not complete. Thus the method has
most to offer for complete CI calculations, and may
be rather wasteful in other cases. Notice also that for
a given {7, all ’Y{,A must be available together. Stan-
dard CI programs, notably those based on the unitary
group method, are usually driven by the orbital labels
1, 7, and so the formulae must be sorted and retained
in external storage. Siegbahn has recognised this as
the major hmit of his method; in an example given in
ref. [2} with 30744 CSFs, the one-eleciron formula
tape occupicd 40 megabytes of disc space, and this file
has to be read in each iteration of the diagonalisation
process. He recognises the desirability of a scheme
which obtains the v’ directly in the required order,
m order to reduce the elapsed time and disc overheads
which on modern computers form a major part of the
real cost of a calculauon. Ideally, these coupling coef-
ficients should be generated at a cost which is small
relative to the central matrix multiplication in (6b),
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although some sacrifice of CPU efficiency is acceptable
if the number of 1O operations can be reduced.

In any CI expansion consisting of CSFs, a given
CSF |K)is related by a given excitation operator E i
to a set of states /), each with the same orbital occu-
pations, but with different spin couplings. It is diffi-
cult to see how, for example, the unitary group ap-
proach could be adapted to find all these couplings
for a given i, j, K in an efficient manner. For this rea-
son we have fallen back on the idea of using an expan-
sion set consisting of simple Slater detenminants. In
this case, there are at most two interacting states, and
their contributions can be separated cleanly by writ-
ing the excitation operators as

Ej=EZ+ER, )

where £7; % excites one electron from a spin ¢ bital j to
@ spin orbltal i

In deciding to use determinants, rather than spin
symmetry adapted functions, we have to be aware
of the possible disadvantages. The most obvious dif-
ficuity is that there are typically two or three times
as many Slater determinants as CSFs in a CI expansion
of given spin symmetry, and so we have to be able to
store a much large CI vector; in addition the number
of intermediate states | K)in (6) is increased. We re-
cognise this as the price which has to be paid in adopt-
ing our approach.

it may happen that the lowest state of the required
spin (S, and s? )symmetry is not the lowest in a basis
of determinants. Thus simply finding the lowest eigen-
vector of the Hamiltonian matrix in the determinant
basis is not a satisfactory procedure for finding the
ground state wavefunction of a given spin symmetry.
In our programs, this problem is dealt with in the fol-
lowing way. The initial guess for the eigenvector is
taken as the single determinant of lowest energy with
the S, quantum number equal to the required S. If
this consists of doubly occupied orbitals and just 2,
alpha spin occupied orbitals, then it is an“eigenfunction
of $2 with the correct eigenvalue, and no further ac-
tion need be taken. Otherwise, it is a mixture of sev-
eral functions with different S2 eigenvalues. We then
construct a spin eigenfunction of the correct spin and
involving this determinant; computationally, the sim-
plest is the X(WV, S, S, 1212...111...) branching dia-
gram function [5],e.g.
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Having obtained a trial vector ¢ of correct symmaetry,
this symmetry can be maintained throughout the
Davidson iterative process. Because there are no spin
operators in the Hamiltonian, o will have the same
symmetry as €g. There will be no numerical round off
problem because exactly the same integrals contribute
from each determinantal component of the spin eigen-
function. In the Davidson process, a new trial vector
is calculated by

To Maintain spin symmetry, Hy; has to be replaced
by an average diagonal energy of all those determi-
nants with the same orbitals being singly occupied.
This should cause no change in the efficiency of the
Davidson process.

We have used a very simple procedure to calculate
these average diagonal energies, which appears to work
well in the examples we have tried. A formula for the
exact diagonal energies is

1 1S gyl
> Z;n?nf.];j +3 En‘,’fi;}‘Jij t3 2 n?n?.l,}-

Y (n% + 08, 1 Z}K»n‘?(l — n}‘)

i+ it
1 -
+ 5 leiinlg(] _,1}3) 5 (%)

where 1%, n,‘-8 are occupation numbers and

- 1
hi=hy -5

27 (iklik) . (10)
k
To obtain approximate average diagonal energies which
have the above requirement, we replace all the exchange
integrals K; occurring in the last two terms of (9) by
the maximum exchange integral occurring in the inte-
gral list; this ensures that all the diagonal energies are
upper bounds to the true values.

There are obviously other ways of achieving the re-
quirement, but they may take alonger time to evaluate.
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We experienced no problems of spin contamination
in a calculation using this approach on the 3Z* and
I$% states of MnH. With the basis set and geometry
which we used, the 5Z* state is the lowest eigenvec-
tor in a basis of determinants with S, =0, 1 and 2,
yet we were able io obtain all the required 5, =5
eigenvectors as the lowest states in the Davidson
procedure.

2. The determinant Cl algorithm

The advantage of using determinants as the ex-
pansion functions in full CI calculations was first
shown by Handy {6]; the idea has enabled many
benchmark full CI calculations to be performed [7].
In those applications the Cooper—Nesbet [8} diagonal-
isation algorithm was used, because that needs the
storage of only one CI vector, but here the Davidson
cheme must be used, and the problem in mind is the
iterative CAS SCF method. In all of what follows,
non-degenerate point gioup symmetry can be exploited
to the full. Its treatment is straightforward, and we
omit details for the sake of clarity.

Any Slater determinant |K) can be writien as the
product of a “string” &% of occupied alpha orbitals
and a “string” ®F of occupied beta orbitals. Since the
configuration expansion consists of all determinants
with the same S, quantum number, then the sets of
strings consist of all those that can be formed from
the same number of electrons.

The addressing of the CI vector is achieved in the
following way. We define, separately for alpha and
beta strings, an addressing array Z, given by

M-k m

Z(k,I)=m~__ﬁ§_lﬂ[(i\r—k)_(j\fn: ;j 1)}

M—-N+k=212k;k<N),
ZWN, D=1-N WM=I=N), an

where X refers to an electron, / to an orbital, A is the
number of orbitals, and /V the number of electrons.
Any string is identified by a list of occupied orbitals
{¢;i=1, 2, ... N}in strictly ascending order, i.e.

®; >3 >3 ... The address of the string is then given
by
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N
d=1+ El Z@. ) (12)
i

and with the above definition of Z, the addressing is
lexical without gaps. For example, if M =5and N =3,
the ten possible strings occur in the order (123). (124),
{125).(134).(135),(145), (234). (235). (245). (345).

Given the addresses of the alpha and beta strings
&2 _ DB forming a given Slater determinant, the deter-
minant can be addressed simply as the element of a
reactangular array C(b8, $2). in this way, operations
on the alpha string alone can be performed for all
beta strings in a vector loop, and vice versa. Hence
this addressing scheme, which is however applicable
only to a complete Cl, is ideally suited to pipeline
computers.

The one-particle matrix elements 76-"’ involving
the intermediate states must thus be

<(1»“«I>'B|Eg|qmpﬁ> and <q)'a(p6|5;;|«pa(bﬁ>,

(13)

where 'F is a beta string related by a single excitation
10 bB_d'e 15 similarly related to &, We may generate
all the matrix elements by constructing two lists (one
for o, one for B) for each K (i.e. ®*dB) of all single
replacements. Each entry in the list contains three
integers the lexical address of @', the numerical value
of the matrix element which is +1 or —1, and ij. Al-
though construction of these lists is unvectorisable,
cach list is used many times. It may be necessary to
split the lists if it is not possible to hold the full lists
and the associated DX and £X matrices in the avail-
able memory. This 1s achieved by splitting the strings
into blocks, and treating simultaneously only those
strings which lie in the current block.

The scheme for the evaluation of (6a), (6b). (6¢)
on 4 vector computer such as the CRAY is outlined
in appendix 1. 1t will be seen that the procedure is
wholly vectorised in its time consuming parts, and
that there 1s no 1/O required. The storage requirements
are for two CI vectors, the lists of single replacements,
and the matrices D, E for a reasonable number of eand
B strings (63 is optimal) in cach block. In the largest
example quoted below, 400000 words of memory
were used. which is not excessive. A little more store
would have increased the efficiency of the processing
of the 7{7K(but not the matrix multiplication) by per-
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haps 10%. In the CRAY-18 available to us with 1
Mword of memory, it will be possible to consider
CAS SCF calculations with 300000 determinants (or
about 100000 spin-adapted functions). The program
which implements appendix 1 is extremely simple,
and is in total less than 1000 lines of standard
FORTRAN together with just one assembler matrix
multiplication routine for stage (e). As indicated in ref.
[2], it is important that this matrix multiplication
routine evaluates and compares the sparsities and vec-
tor lengths for the two possible ways of performing
the matrix multiplication. In particular, if starting
with a sparse vector ¢, D is very sparse; later in the
calculation, this is not so, and one should take advan-
tage of the greater vector length obtained by varying
@opF rather than j in the inner loop.

We note at this stage that for singlet wavefunctions,
further savings in effort are possible. As pointed out
by Handy [6], one may use, instead of the set of all
determinants ¢ =¥, the expansion set {@FPF;

2- 1/3(<I>19<I)§3 +92PA)}. In this way, the number of
intermediate states could be reduced, with some de-
gradation of the efficiency of stages (c). (d), (), (g)-
In the examples which we quote, this symmetry has
not been exploited, and single determinants have been
used throughout.

In 1able 1, details are given of the application of
this procedure to a casc of the same size as the largest
considered by Siegbahn, a full CI involving 30744 CSFs
(in our case 105820 determinants). It is seen that the
total time per iteration was less than 10 s. In a typical
CAS SCF calculation, it may be necessary to perform
20 applications of this procedure, indicating that one
can expect to perform CAS SCF calculations of this
size within 5 min of CPU time (assuming that integral
transformation and other operations do not account
for a large fraction of the cost).

When applying this method on a scalar machine,
it is probably best to usc a slightly different algorithm
which uses less store, and forms a list only of beta
single replacement information. The details are in
appendix 2. In table 2, comparisons are made between
the use of the two approaches for a smaller case con-
sisting of 9800 CSFs (again identical in size to one of
Siegbahn’s examples). On the CRAY, we see that the
method of appendix 1 is preferable. On the scalar IBM
3081D (scalar speed about half that of the CRAY),
the matrix multiplication is the rate determining step,
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CRAY-1S CPU times (in s) per iteration for a 30744 CSF full CI calculation on O3 2}

Total CPU a b c

a eb) f

-]

4.7-84 0.16 0.90 0.81

0.61 1147 0.56 0.59

No. of determinants: 106820; No. of intermediate determinants ) K): 213444

a) a, construction of lists of single replacements ®°®; b, construction of lists of single veplacements &'8; ¢, consﬁugﬁon of D aris-
ing from E;-"-; d, construction of D arising from Ezj: ¢, matrix multiplication £ = ID; f, construction of ¢ from £ i 8, construc-

tion of & from Ef.

b) In e, the carlier iterations are faster due to the sparsity of the Cl vector. Active orbitals: 4a 1—11a;, 3ba—5b,: 10 clectrons

and the slight less of efficiency of the method of ap-
pendix 2, therefore, insignificant. We have also per-
formed this calculation using our original determinant
program, as well as with our present MC SCF program
[9], which uses CSFs and constructs a formula tape.
For MC SCF calculations, where a large number of Cl
iterations have to be performed, construction of a
formula tape has been the most efficient approach up
to date. We see that in this example our new scheme
is faster by a factor of 7 in CPU time, without count-
ing the formula generation time, and that since the
formula tape is of length 60 Mbyte, this calculation
virtually represents the limit in size for the conven-
tional approach.

As a final example we have performed a full Cl cal-
culation on the X2 A, state of NO,, including all the
valence orbitals plus an additional orbital of a; sym-
metry. This yielded a CI expansion of 230470 deter-

Table 2

minants, equivalent to 107942 CSFs, and the calcula-
tion required 18 CPU seconds per iteration on the
CRAY. This calculation probably represents the limit
in size of what may be done with our program at pres-
ent (800000 words of storage available). Larger cal-
culations are possible, since the lexical ordering of the
C1 vector means that in the processing of blocks of
alpha and beta strings in appendix 1, one need only
hold in the memory every determinant whose alpha
string lies in the current alpha block, and every deter-
minant whose beta string lies in the current beta block.
In this way, less memory is required, at the expense
of performing 1/O operations. We have not pursued
this option, since it may be rather difficult to incor-
porate it into our MCSCF program.

CPU times per iteration for a 9800 CSF full Cl calculation on O3

Computer/method Total CPU (s)  Breakdown (as table 1)

a b c d e f g
CRAY/App. 1 10-18 0.08 0.16 0.16 010 04-1.2 0.11 0.09
CRAY/App. 2 5.0-5.8 0.07 0.08 0.13 215 04-12 0.06 212
IBM3081D/App. 1 1448 0.1 0.8 1.7 2.5 640 0.9 2.0
IBM/App. 2 1549 0.2 0.1 1.6 3.1 6-40 0.8 3.0

CRAY/formula tape [9] 13.5
1BM/determinants [6] 86
IBM/singlet

determinants [6] 452)

(5 min to generate 60 Mbyte formula tapc)

No. of determinants: 31752; No. of intermediate determinants |X): §3504

a) Using the functions 2‘1’2(¢?‘¢l§ + dx;?‘tb,g) .
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3. Conclusion

The previous section shows that the combination
of Siegbahn’s idea and the use of determinants instead
of SCFs leads to an extremely efficient full CI code.

Adopting determinants has meant an increase in
the number of intermediate states, and therefore an
increase in the cost of the matrix multiplication (6b);
however, the treatment of the coupling coefficients is
considerably simplified and may be performed with-
out any use of disc storage. This is extremely impor-
tant when using modern hardware, where CPU proces-
sing is much cheaper than disc access. This full CI code
is at present being incorporated into our current
MC SCF program. In the context of direct quadratical-
ly convergent MC SCF {10], as well as constructing
He our current MC SCF program requires the construc—
tion of a transition density matrix of the form €q l"c
simultaneously with a product of the form Hye,

+ Hyep. It is straightforward to adapt our scheme to
do this efficiently. We then expect to report CAS SCF
calculations with more than 100000 CSFs in the near
future.
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Appendix 1. The determinant full CI algorithm, for a
vector machine, for the evaluation of s, eq. (6)

Sphit « strings and f3 strings into blocks

Loop over blocks of @ strings
(a) Loop over a strings $% in block
Form list of single replacements ¢ = £, ¢

Loop over blocks of g strings
{b) Loop over @ strings in block
Form list of single replacements ¢ = £ ,-]-tPB
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(c) Loop over @< in block
Loop over &'
Loop over ®F in block; K} = |®%®F)_ |J) = [d"*DP)
D(@*, ¥8, ij) = D(d%, P, jj) = C(&'*, BP);
vectorised

(d) Loop over & in block
Loop over &
Loop over ®%; [KY= |$%®F), |J)=|DH*P'B)
D(D%, P, ij) = D(@%, BP, ij) £ C(D*, BP);
vectorised

©) E(D™, ®F, ij) = Zp (i |kD) = D(P 2, B, kI); matrix
multiply vectorised

(f) Loop over &% in block
Loop over &'®
Loop over ®F in block; |KY= {®%®F) | |1} = |d'*dF)
(@', dF) = o(@", BF) = E(@%, BB, i) ;

vectorised

(g) Loop over ®° in block
Loop over &F
Loop over &% ; [ KD
o(®*, 9') = o(d",

= |&%*®Ey | =|9%'F)
&Py £ E(®*, ®P, if); vectorised

Appendix 2. The determinant full CI algorithm, for
a scalar machine, for the evaluation of o, eq. (6)

Split B strings into blocks

Loop over blocks of beta strings
(b) Loop over beta strings ®* in block
Form list of single replacements @'f = E;®F

Loop over ali alpha strings
(a) Form single replacements ¢'@

(c) Loop over ™
Loop over ¢° in block
D(®°, 9F, if) = D(*, 9P, §j) + (@', 9F)

(d) Loop over d)ﬂ in block
Loop over ®'F = Ey P
D(®*, ¥F, i) = D((I)‘” @P, §) x C(@%, &)
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(¢) Muiltiply E(%, 9°, if) = Zp (i 1kD)+D(2°, 9, kD)

(f) Loop over ®'*
Loop over ®F in block
o(@", dF) = o(@", 3F) = (3%, 3F, 1)

() Loop over ®* in block
Loop over &% = £;:5°
o(@*, B'F) = (@, @F) £ (%, ¥°, §))

References

[1] PEM. Siegbahn, I. Almisf, A. Heiberg and B.O. Roos,
J. Chem. Phys. 74 (1981) 2384;
B.O. Roos, P.R. Taylor and P.E.M. Siegbahn, Chem.
Phys. 48 (1980) 157.

CHEMICAL PHYSICS LETTERS

9 November 1984

{2] P.E.M. Siegbahn, Chem. Phys. Letters 109 (1984) 417.

[31 E.R. Davidson, J. Comput. Phys. 17 (1973) 84.

{41 3. Paldus, J. Chem. Phys. 61 (1974) 5321.

{51 R. Pauncg, Spin eigenfunctions (Plenum, New York,
1979).

[6]1 N.C. Handy, Chem. Phys. Letters 74 (1980) 280.

{71 R.J. Harrison and N.C. Handy, Chem. Phys. Letters
95 (1983) 386;
P. Saxe, H.F. Schaefer Il and N.C. Handy, Chem. Phys.
Letters 79 (1981) 202.

{8] R.K. Nesbet, J. Chem. Phys. 43 (1965) 311.

{91 P.1. Knowles, G.J. Sexton and N.C. Handy, Chem.
Phys. 72 (1982) 337.

[10] B.H. Lengsfield 111, J. Chem. 77 (1982) 4073.

321



