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Sicgbahn recently presented a new direct Cl method which is applicable to the CAS SCF method. Instead of using con- 

figuration state functions as adopted by Siegbahn, we propose that Slater determinants should be used_ The approach then 
needs no formula tape, the oneelectron coupling coefficients being easily generated as required. The method is totally vec- 
torised, and applies as programmed to the lowest eigenvalue of any spin and space symmetry. The timings for S&b&n’s 
examples are approximately halved using this procedure, and in a full CI calculation involving 107942 configurations, 18 
CRAY-IS CPU seconds were required per iteration. 

1 _ Introduction 

One of the most successful methods for the deter- 
mination of high-accuracy wavefunctions is the com- 
plete active space variant (CAS SCF) of the multi-con- 
figuration self-consistent field (MC SCF) method, fist 
realised by Roos, Siegbahn and co-workers [ I]. In this 

method a set of orbitals are chosen as active, and all 
configurations which may be formed for this set, of 

the correct space and spin symmetry, are used in the 

MC SCF method. In other words a full configuration 
interaction (full CI) calculation is performed to ob- 
tain the CI vector at many stages of the iterative MC 

SCF process. The size of the full CI grows rapidly 
with the number of active orbitals however, and 
whilst useful calculations can be performed with a 
1000 configuration state functions (CSFs), much 
more useful calculations can be performed if it is 
possible to use several tens of thousands of CSFs. It 
might then be thought that the diagonalisation time 
of the CI matrix would become prohibitively expen- 
sive_ 

Siegbahn [2] has recently addressed this problem, 
and has demonstrated the efficiency of a new and in- 
novative method which can make good use of pipeline 
computers and thus make this part of the CAS SCF 
calculation no more expensive than the other parts, 
although there remains a considerable demand on in- 
put/output facilities_ Here we show how this final 

problem can be eliminated through the use of deter- 
minants instead of CSFs. 

If the Davidson [3] algorithm is used as the iterative 
procedure to obtain the required eigenvector, then the 
time consuming step is the evaluation of a, where 

a1= H,,c,, (1) 

where c is any vector, and HIJ = (QIIHI@J> with aI 
being the expansion set, usually CSFs. On introducing 
two-electron coupling coefficients and associated two- 
electron integrals, the two-electron part of eq. (1) 
may be written 

a1 = F r$(ijlkl)CJ, (2) 

where l$& can be written in terms of unitary group 
one-particle generators [4] as 

I$,& = i<ri EiiEkr - ~ik Eir Ir> . (3) 

The second term in (3) can be treated by absorbing 
combinations of two-electron integrals into the one- 
electron integrals, and these are processed in a stan- 
dard way; the time consuming part is the evaluation 
of the first part. On introducing the resolution of the 
identity, we have 

(4) 
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One-particle coupling coefficients are defined through 

(5) 

and thus the time consuming part in the evaluation of 
G[ may be written 

Siegbahn [2j recognised that this way of writing Q 

leads to a ~ol~~put~tionaj~y efficient method for its 
cvaiuation, expressing it as 

u= Tr(y.l-D). 

His scheme is outlined as follows: 
Loop over intermediate states 1 ir;) 

(6) 

C6b) 

Notice that the set ofmtermediate states lit) must 
span the iull spin space (or at least the subspace which 
m~rdcts through the operators Eiij, including CSFs 
of different spdtial synlnietry. even when the CI ex- 
pansIon ~tsclf is not complete. Thus the method has 
most to offer for complete Cl calculations, and may 
bc rather wasteful m other casts. Notice also that for 
J gIveI IA”), all $ must be available together. Stan- 

dard Cl programs. notably those based on the unitary 
group method, arc usually driven by the orbital labels 
i. 1. and so the formulae must be sorred and retained 

111 c\wrnal storage. Ssegbahn has recognised this as 
rile major hmit of his method; in an example given in 

ref. 12) with 30744 CSFs. the one-electron formula 
rdpe occupied 40 megabytes of disc space, and this file 
his to be read in each iteration of the diagonalisation 
process. Me rccognises the desirabitity of a scheme 

which obtains the fl$ directly in the required order, 
m order to reduce the elapsed time and disc overheads 
which on modem computers form a major part of the 
real cost of a calculduon. Ideally, these coupling coef- 
ficirn ts should be generated at a cost which is small 
rclatlve to the central matra r~~ultiplicat~ori in (6b), 
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although some sacrifice of CPU efficiency is acceptable 
if the number of I/O operations can be reduced. 

In any CI expansion consisting of CSFs, a given 
CSF ]K> is related by a given excitation operator Eii 
to a set of states if), each with the same orbital occu- 
pations, but with different spin couplings. It is diffi- 
cuIt to see how, for example, the unitary group ap- 
proach could be adapted to find all these couplings 
for a given i, j. I\’ in an efficient manner. For this rea- 
son we have fallen back on the idea of using an expan- 
sion set consisting of simple Slater determinants. In 
this case, there are at most two interacting states, and 
their contributions can be separated cleanly by writ- 
ing the excitation operators as 

Ev=E;+E;, (7) 

where E$ excites one electron from cy spin c bitaf j to 
fy spin orbital i. 

In deciding to use determinants, rather than spin 
symmetry adapted functions, we have to he aware 
of the possible disadvantages. The most obvious dif- 
ficulty is that there are typically two or three times 
as many Slater determinants as CSFs in a CI expansion 
of given spin symmetry, and so we have to be able to 
store a much Iarge CI vector; in addition the number 
of intermediate states IK) in (6) is increased. We re- 
cognise this as the price which has to be paid in adopt- 
ing our approach. 

It may happen that the lowest state of the required 
spin (Sz and S*) symmetry is not the lowest in a basis 
of determinants_ Thus simply finding the lowest eigen- 
vector of the Hamiltonian matrix in the determinant 
basis is not a satisfactory procedure for finding the 
ground state wavcfunction of a given spin symmetry. 
In our programs, this problem is deaIt with in the fol- 
lowing way_ The initial guess for the eigenvector is 

taken as the single determinant of lowest energy with 
the S,- quantum number equal to the required S. If 
this consists of doubly occupied orhitals and just 28, 
alpha spin occupied orbitals, then it is an-eigenfunction 
of Sz with the correct eigenvalue, and no further ac- 

tion need be taken. Otherwise, it is a mixture of sev- 
eral functions with different S’ eigenvalues. We then 
construct a spin eigenfunction of the correct spin and 
involving this determinant; computationally, the sim- 
plest is the X(N, S, S, 1212...111...) branching dia- 
gram function 151, e.g. 
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u _- 
Having obtained a trial vector co of correct symmetry, 
this symmetry can be maintained *hroughout the 
Davidson iterative process. Because there are no spin 
operators in the Hamiltonian, cr will have the same 

symmetry as co- There will be no numerical round off 
problem because exactly the same integrals contribute 
from each determinantal component of the spin eigen- 
function. In the Davidson process, a new trial vector 
is calculated by 

Lw[ = oIj(E - Hlr> _ (81 

To hlaintain spin symmetry, I;I,, has to be replaced 
by an average diagonal energy of all those determi- 
nants with the same orbitals being singly occupied. 
This should cause no change in the efficiency of the 
ntvidson process_ 

We have used a very simple procedure to calculate 
these average diagonal energies, whichappears to work 
well in the examples we have tried. A formula for the 
exact diagonal energies is 

G%ere f$, f$are occupation numbers and 

~ji = 12 jj - - l c (iklikf . 
zk 

(lot 

To obtain approximate average diagonal energies which 

have the above requirement, we replace ail the exchange 
integrals I;‘ii occurring in the last two terms of (9) by 
the maximum exchange integral occurring in the inte- 
gral list; this ensures that alI the diagonal energies are 
upper bounds to the true values. 

There are obviousfy other ways of achieving the re- 
quirement, but they may take a longer time to evaluate. 

We experienced no problems of spin contamination 

in a calcuIation using this approach on the 3X+ and 
lr? states of h4nI-I. With the basis set and geometry 
which we used, the 5X* state is the lowest eigenvec- 
tar in a basis of determinants with Sz = 0,l and 3, 
yet we were able 50 obtain all the required Sz = S 
eigenvectors as the lowest states in the Davidson 
procedure. 

2. The dete~~t CI aIgorithm 

The advantage of using determinants as the ex- 
pansion functions in full Ci calculations was first 
shown by Handy 161; the idea has enabled many 
benchmark fulI CI calculations to be performed [7]. 
In those applications the Cooper-Nesbet [S] diagonal- 
isation ~goritllm was used, because that needs the 
storage of only one CI vector, but here the Davidson 
theme must be used, and the problem in mind is the 
iterative CAS SCF method. In all of what follows, 
non-degenerate point group symmetry can be exploited 
to the full. Its treatment is ~traigl~tfo~~~ard, and we 
omit details for the sake of clarity. 

Any Slater determinant IK) can be written as the 
product of a “string” W of occupied alpha orbitals 
and a “string” @p of occupied beta orbitals. Since the 
configuration expansion consists of all determinants 
with the same S, quantum number, then the sets of 
strings consist of all those that can be formed from 
the same number of electrons_ 

The addressing of the CI vector is achieved in the 
following way. We define, separately for alpha and 
beta strings, an addressing array 2, given by 

(M-N+k >l>k;kk<N), 

Z(N,I)=I--N (M>IS=N), 

where li refers to an electron, I to an orbital, M is the 
number of orbitals, and N the number of electrons. 
Any string is identified by a list of occupied orbitals 
{@ii i= 1,2, . . . IV} in strictly ascending order, i.e. 
#r > I& > #a ___ The address of the string is then given 

by 
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(12) 

and wrtb the above definition of 2, the addressing is 

lexical wthout gaps. For example, ifM= 5 and iv= 3, 

the ten possible strmgs occur in the order (123). (124), 
(115). (134). (135). (145), (134). (235). (245 j_ (345). 

Given the addresses of the alpha and beta strings 
(I+. (IJ@ formmg a given Slater determinant, the deter- 
minant can be addressed simply as the element of a 
re~ct~ngular 3rray C(@. W). in this way, operations 
on the alpha string alone can be performed for all 
beta strmgs in a vector loop, and vice versa. Hence 
this addressing scheme, which is however applicable 
only to a complete Cl, is ideally suited to pipeline 
computers. 

The one-particle matrix elements Tr involving 
the mtermediate states must thus be 

where (f)‘P is a beta string related by a single excitation 
to @_ +‘Q IS simtlarly related to (I,=. We may generate 
all the matrix elements by constructing two lists (one 
for Q, OIIC for /3) for each K (i.e. +O+p) of ail single 
rtpfacements. Ed& entry in the fist contains three 
integers- the lexical address of +I,‘, the numerical value 
of the matrix element which is +I or --I, and ii_ Al- 
though construction of these lists is unvectorisable, 
each list is used many times. It may be necessary to 
split the lists if it is not possible to hold the full lists 
and the associated di and EK matrices in the avail- 
.rblc memory. This IS achieved by splitting the strings 
into blocks, &id treating simultaneously only those 
strmgs which lie in the current block. 

‘ffte scheme for the evaluation of (6a), (bb). (6~) 
WI ,I vector computer such as the CRAY is outlined 
III appendrx 1. It will be seen that the procedure is 

WIKQ vcctoriscd in its tune consuming parts, and 

ht there JS no l/O required. The storage requirements 
Jrc for two CI vectors, the lists of single replacements, 
.md the matrices D, E for a reasonable number of oand 
S strmgs (63 is optimal) in each block. In the largest 
e\dmple quoted below, 400000 words of memory 
were used. which is not cxcessrve. A little more store 
would have incrcascd the efficrency of the processing 
of the -@((but not the matrix multiplication) by per- 

haps 10%. In the CRAY-I S available to us with 1 
Mword of memory, it will be possible to consider 
CAS SCF calculations with 300000 determinants (or 
about 100000 spin-adapted functions). The program 
which implements appendix 1 is extremely simple, 
and is in total less than 1000 lines of standard 
FORTRAN together with just one assembler matrix 
multiplication routine for stage (e). As indicated in ref. 
[2], it is important that this matrix multiplication 
routine evaluates and compares the sparsities and vec- 
tor lengths for the two possible ways of performing 
the matrix multiplication. In particular, if starting 
with a sparse vector c, D is very sparse; later in the 
calculation, this is not so, and one should take advan- 
tage of the greater vector length obtained by varying 
WW rather than G in the inner loop. 

We note at this stage that for singlet wavefunctions, 
further savings in effort are possible_ As pointed out 
by Handy [6], one may use, instead of the set of all 
determinants ?la@, the expansion set {a:@$ 
2- l/z(+I?G~ + 4y(t$)}. In this way, the number of 
intermediate states could be reduced, with some de- 
gradation of the efficiency of stages (c). (d), (f), (g)- 
In the examples which we quote, this symmetry has 
not been exploited, and single detemrinants have been 
used throughout. 

In table 1, details are given of the application of 
this procedure to a case of the same size as the largest 
considered by Siegbahn, a full Cl involving 30744 CSFs 
(in our case 106320 determinants)_ It is seen that the 
total time per iteration was less than 10 s. In a typical 
CAS SCF calculation, it may be necessary to perform 
20 applications of this procedure, indicating that one 
can expect to perform CAS SCF calculations of this 
size within 5 min of CPU time (assuming that integral 
transformation and other operations do not account 
for a large fraction of the cost). 

When applying this method on a scalar machine, 
it is probably best to use a slightly different algorithm 
which uses less store, and forms a list only of beta 
single replacement information_ The details are in 
appendix 2. In table 2, comparisons are made between 
the use of the two approaches for a smaller case con- 
sisting of 9800 CSFs (again identical in size to one of 
Siegbabn’s examples). On the CRAY, we see that the 
method of appendix 1 is preferable. On the scalar IBM 
3081 D (scalar speed about half that of the CRAY), 
the matrix multiplication is the rate determining step, 
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Table 1 

CRAY-1 S CPU times (in s) per iteration for a 30744 CSP full CX calculation on 03 a) 

Total CPU a b C d e b) f g 

4.7-8.4 0.16 0.90 0.81 0.61 l-1-4.7 0.56 0.59 

No. of determinants: 106820: No. of intermediate determinants 10 213444 

a) a, construction of lists of single replacements rp’ o: b. construction of lists of sir~gle replacements a’& c. construction of D aris- 
ing from E$; d, construction of D arising from E$; e, matix multiplication E = ID; f. construction of a from I$; g. consuuc- 
rion of afrom Eg_ 

b, In e, the earlier $erations are faster due to tbc spxsitp of t!ic Cl vector. Active orbitals: 4al-1 la,, 3b2-Sbz: 10 electrons 

and the slight less of efficiency of the method of ap- 
pendix 2, therefore, insignificant_ We have also per- 
formed this calculation using our original determinant 
program, as well as with our present MC SCF program 
[9], which uses CSFs and constructs a formula tape. 
For MC SCF calculations, where a large number of CI 
iterations have to be performed, construction of a 
formula tape has been the most efficient approach up 
to date. We see that in this example our new scheme 
is faster by a factor of 7 in CPU time, without count- 
ing the formula generation time, and that since the 
formula tape is of length 60 Mbyte, this calcul&on 
virtually represents the limit in size for the conven- 
tional approach. 

As a final example we have performed a full Cl cal- 
culation on the X 2A1 state of NOZ, including all the 
valence orbit& plus an additional orbital of a1 sym- 
metry_ This yielded a CI expansion of 230470 deter- 

minants, equivalent to 107942 CSFs, and the calcula- 
tion required 18 CPU seconds per iteration on the 
CRAY. This calculation probably represents the limit 
in size of what may be done with our program at pres- 
ent (800000 words of storage available)_ Larger cal- 
culations are possible, since the lexical ordering of the 
Ci vector means that in the processing of blocks of 
alpha and beta strings in appendix 1, one need only 
hold in the memory every determinant whose alpha 
string ties in the current alpha block, and every deter- 
minant whose beta string lies in the current beta block. 
In this way, less memory is required, at the expense 
of performing l/O operations. We have not pursued 
this option, since it may be rather difficult to incor- 
porate it into our MCSCF program. 

Table 2 

CPU times per iteration for a 9800 CSF full Cl calculation on Oj 

Computer/method Total CPU (s) Breakdown (as table 1) 

a b c d e f s 

CRAY/App. 1 1.0-1.8 0.08 0.16 0.16 0.10 o-4-1.2 

CRAY/App. 2 

0.11 0.09 

5.0-5.8 0.07 0.08 0.13 2.15 0.4-1.2 0.06 
IBM3081 D/App. 1 

2.12 
14-48 0.1 0.8 1.7 2.5 6-40 

IBM/App. 2 

0.9 2.0 

15-49 0.2 0.1 1.6 3.1 6-40 0.8 
GRAY/formula tape 191 

3.0 
13.5 

IBM/determinants [6] 86 
(5 min to generate 60 Mbyte formula tape) 

IBM/singlet 
determinants 16) 45 a) 

NO. of determinants: 31752; No. of intermediate determinants \K): 63504 

a) Using the functions 2- ‘%l+P~ i- 0g4$) _ 
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3. Conclusion (c) Loop over Q” in block 
Loop over cP’& 

The previous section shows that the combination Loop over @@ in block; IK!= I@Q@a>~ In= I@‘*@) 
of Sicgbahn’s idea and the use of determinants instead D(GJff, G, 6) = O(@“, &, $) f C(@Q, G); 

of SCFs leads to an extremely efficient full CI code. vectorised 
Adopting determinants has meant an increase in 

the number of intemlediate states, and therefore an 
increase in the cost of the matrix multiplication (6b); 
however, the treatment of the coupling coefficients is 
considerably simplified and may be performed with- 
out any USC of disc storage. This is extremely impor- 
rant when using modern hardware, where CPU proces- 
sing is much cheaper than disc access. This full CI code 
is at present being incorporated into our current 
MC SCF program. In the context of direct quadratical- 
ly convergent IMC SCF [IO], as well as constructing 
Hc our current MC SCF program requires the construc- 
tion of a transition density matrix of the form c$c, 
simultaneously with a product of the form Hoe, 
+ HlcO_ It is straightforward to adapt our scheme to 
do this efficiently. We then expect to report CAS SCF 
calculations with more than 100000 CSFs in the near 
future. 

(d) Loop over G@ in block 
Loop over @ 
Loop over V; IA”) = IV@), IJ>= I@“@> 
D(V, ctip, Q) = D(Qa, @, 0) rt: C(V, (P’fl); 

vectorised 

(e) E(aa, @, ii) = Z&(ijjkZ) *D(@“, G, kl); matrix 
multiply vectorised 

(f) Loop over @* in block 
Loop over 3itLy 

(g) Loop over cPp in block 
Loop over G@ 
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Appendix 1. The determinant full CJ algorithm, for a 
vector machine, for the evaluation of@, eq. (6) 

Sphr a strings and fl strings into blocks 

Loop over blocks of a: strings 
(a] Loop over a strings V in block 

Form list of single replacements 9‘” = .E~Qn 

Loop over blocks of p strings 
(b) Loop over fi strings in block 

Form list of single replacements Q’p = E$@ 

Appendix 2. The determinant full CI afgorithm, for 
a scalar machine, for the evaluation ofa, eq. (6) 

Split j3 strings into blocks 

Loop over blocks of beta strings 
(b) Loop over beta strings Qp in block 

Form list of single replacements 4@ = Eii@ 

Loop over all alpha strings 
(a) Form single replacements *so 

(d) Loop over ckp in block 
Loop over @‘p = Z?@fl 
D(PQ, ,ftfl, 9) = B(G”, @@, @) s C&J”, 0) 
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(g) Loop over czip in block 
Loop over ip’@ = E$@ 
a(P, @‘fl) = o(W, @) + E(V, ibl, ii) 
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