
Acoustofluidics 15: streaming with sound waves
interacting with solid particles
S. S. Sadhal

DOI: 10.1039/c2lc40243b

In Part 15 of the tutorial series

‘‘Acoustofluidics—exploiting
ultrasonic standing waves forces and
acoustic streaming in microfluidic
systems for cell and particle
manipulation,’’ we examine the

interaction of acoustic fields with solid

particles. The main focus here is the

interaction of standing waves with

spherical particles leading to

streaming, together with some

discussion on one non-spherical case.

We begin with the classical problem of

a particle at the velocity antinode of a

standing wave, and then treat the

problem of a sphere at the velocity

node, followed by the intermediate

situation of a particle between nodes.

Finally, we discuss the effect of

deviation from sphericity which brings

about interesting fluid mechanics. The

entire Focus article is devoted to the

analysis of the nonlinear fluid

mechanics by singular perturbation

methods, and the study of the

streaming phenomenon that ensues

from the nonlinear interaction. With

the intention of being instructive

material, this tutorial cannot by any

means be considered ‘complete and

comprehensive’ owing to the

complexity of the class of problems

being covered herein.

1 Introduction

When particles interact with high-fre-

quency sound waves, streaming phenom-

enon occurs. As mentioned in tutorials 2

and 13,1,23 the presence of solid surfaces

in an acoustic field brings about a time-

independent mean flow which we refer to

as streaming. This type of interaction is

very common with acoustic levitation

devices. Such systems are used for con-

tainer-less processing, and applications

include non-contact trapping of cells and

particle-based assays in continuous flow

microsystems. For example, an acoustic

standing wave is generated in etched glass

micro-channels by miniature ultrasonic
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transducers, and particles or cells passing

the transducer can be retained and levi-

tated at the center of the channel without

any contact with the channel walls.2 The

potential of ultrasonic standing wave

fields to facilitate viral transduction rate

has been demonstrated by Lee & Peng.10

Under acoustic exposure, suspended cells

move to the pressure nodal planes first

and form cell clusters. Then, viruses

circulated between nodal planes use the

pre-formed cell clusters as the nucleating

sites to attach on to. In the past, several

macroscale applications of acoustic levi-

tation have been demonstrated, including

non-contact thermophysical property

measurement of liquids.12,13 The suspen-

sion of liquid drops will be addressed in

tutorial 16.24

In the absence of solid boundaries,

simple sound waves usually have an

irrotational character. Interaction with

solid boundaries generates vorticity

whereby nonlinearities set in within a

thin layer (called the Stokes layer or the

shear-wave layer) at the boundary. As

discussed in tutorials 2 and 13,1,23 non-

linearities can lead to a steady flow

component that we refer to as streaming.

This steady streaming persists outside the

Stokes layer with vorticity.

This physical phenomenon may be

characterized by considering a body of

typical dimension a that oscillates with

frequency v and velocity U0cos(vt) in a

viscous fluid. If the parameter e = U0/va

% 1, then, although the leading order

solution in powers of e is oscillatory,

higher order terms include not only

higher harmonics but steady contribu-

tions to the velocity. This can be

explained mathematically by existence

of the nonlinear terms which may have

a steady non-zero component. For high

frequency we apply the condition e % 1,

which implies that the amplitude of the

oscillation is small compared with a.

The existence of such steady streaming

was first pointed out by Rayleigh14 in his

work on Kundt’s dust tube and was later

studied in the boundary layer context by

Schlichting25 who considered flows with

the additional constraint |M|2 = va2/v &
1, where v denotes the kinematic viscosity

of the fluid. Here, the parameter |M| is

also known as the Womersley number

with the notation a. For such a flow it is

now well established that the first order

fluctuation vorticity is confined to a

Stokes layer region of thickness O((v/

v)1/2) = O(a/|M|), beyond which steady

velocities O(eU0) persist. At leading order

in e, the bulk of the flow is irrotational

with zero mean over time. To O(e), this

region has a non-zero time-averaged

velocity field. As mentioned earlier, this

steady flow is referred to as streaming

that propagates into the bulk. The

analytical procedure that we follow con-

sists of perturbation expansions in small

e and large |M|. Since e appears in front

of the highest derivative in the momen-

tum equation (see e.g., the review by

Riley22), the expansion procedure needs

to be singular in character. This requires

inner and outer expansions with stretch-

ing of the inner variable. However, it

should be noted that if we were interested

only in the outer-region streaming, the

procedure developed by Nyborg11 could

be employed. With this procedure, the

leading-order nonlinear terms when time-

averaged, appear effectively as a con-

servative force in the next order. This

method has been applied by Lee &

Wang9 for outer streaming associated

with flow between parallel plates, as well

the sphere and the cylinder placed

between velocity node and antinode.

Further extension of Nyborg’s proce-

dure,11 has been recently carried out by

Rednikov & Sadhal,18 with the inclusion

of non-adiabatic effects. Nevertheless, in

order to fully understand streaming

within the Stokes layer, inner and outer

perturbation analysis is necessary.

Microfluidic applications and the rele-

vance of streaming in liquids has been

discussed by Bruus1 in tutorial 2, as well

as in tutorials 1323 and 14.27 For micron-

sized particles, the flow-visualization

work of Hagsäter et al.4 is of importance

in contrasting the streaming-based Stokes

drag with the radiation force. They

observed that at 2.17 MHz on 1 mm

polystyrene beads, the Stokes drag is

higher than the radiation force, while on

5 mm beads, the latter is dominant. It

should be noted here that the Stokes layer

thickness for this frequency is close to

1 mm, i.e., (v/v)1/2 y 1 mm, corresponding

to |M| y 1 in the case of a 1 mm particle.

1.1 Acoustic levitators

A typical desktop levitator is shown in

Fig. 1. The main physical principle

involved here is that the acoustic field

provides the radiation pressure necessary

to levitate a liquid drop in a gravitational

field. The studies on the effects of

radiation pressure on spheres and disks

goes as far back as the 1930s. Some of the

earliest theoretical studies were carried

out by King.6,7 With the application of

this principle, ultrasound levitators have

been in use for many years in ground-

based experiments (as opposed to space-

based). With the widespread application

of levitation systems in the 1980s and

90s, there has been an interest in under-

standing the fluid-flow fundamentals

associated with these systems. Some of

the earlier work to characterize this flow

include the developments of Trinh &

Robey.26 An example of their work on

streaming flow visualization around a

levitated drop is given in Fig. 2.

Among the items of interest is the

information about the characteristics of

the levitation process. For example, with

Fig. 1 Ultrasound levitation apparatus. The

picture shows a levitated water-alcohol drop,

approximately 3 mm across and 1 mm high.

The bottom plate is an ultrasound transducer

operating at 20 kHz, and the top is a slightly

cupped reflector so that the system produces a

standing wave.

Fig. 2 Visualization of streaming around a

levitated particle. The tested particle is a drop

of water with diameter 1.8–1.85 mm. The

acoustic frequency is 37 kHz, corresponding to

|M| . 110.26
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acoustically-levitated particles there is a

residual flow field including solid-body

rotation for drops. For levitation under

near zero-gravity conditions, the drop

assumes an equilibrium position at the

velocity antinode when the external

medium is a gas (see Fig. 2 in tutorial

1323 for node and antinode definitions).

If the particle phase is a fluid with higher

compressibility than the external phase

(e.g., a gas bubble in a liquid), the

equilibrium position can occur at the

velocity node. While the antinode solu-

tion has been available from Riley’s21

classical work, the node solution is

relatively more recent.

For a levitated spherical particle posi-

tioned at the velocity antinode, Riley’s

solution21 of a vibrating sphere in an

otherwise quiescent fluid can be accom-

modated for a/l = av/c % 1, i.e., when

the particle size is small compared with

the wavelength of the standing wave. In

the next section, we discuss Riley’s

solution.21 However, before we go to

that development, we shall state the

equations of motion for the class of

problems discussed in this tutorial.

1.2 Equations of motion

The equations of continuity and momen-

tum as relevant to acoustics are given in

tutorial 2 and 13.1,23 In particular, refer-

ence is made to eqn (1) and (3) in tutorial

13.23 We apply the dimensionless scaling,

u~
u0

U0

, y~
y0

U0a2
, Q~

Q0

U0a

x~
x0

a
, t~vt0, p~

p0

r0U0va

r~
r0c2

r0U0va
, +~a+0,

(1)

for velocity, axisymmetric stream function,

velocity potential, coordinate variables,

time, pressure, density and the gradient

operator, respectively. Here the typical

system constants are U0, a, v, r0 and p0,

representing velocity, length scale, fre-

quency, background density and back-

ground pressure, respectively. With the

incompressible flow approximation, the

momentum equation can be written as22

Lf

Lt
{e+|(u|f)~

e

R
+2f, (2)

where f = +6u is the dimensionless

vorticity. In addition we have the dimen-

sionless system constants

R~
U0a

n
, M2~

iva2

n
and

R

jMj2
~e~

U0

va
%1,

(3)

where R is the Reynolds number, and M2

is the frequency parameter. For the

characterization of streaming flows, we

also define the streaming Reynolds num-

ber, Rs, which is interconnected with the

above dimensionless constants as follows:

Rs~
U2

0

nv
~eR~e2jMj2: (4)

For the high-frequency cases that we

consider for most ultrasound applica-

tions, we take e as a small parameter that

allows the possibility of various types of

perturbation expansions. For axially

symmetric incompressible flows, the

solution can be written in terms of the

stream function y. In spherical coordi-

nates (r, h, w), we have

u~+|
y

r sin h
êw

� �
, (5)

where êw is a unit vector in the azimuthal

direction. This formulation satisfies the

incompressible continuity equation, +?u

= 0. The momentum eqn (2) takes the

following scalar form in spherical coor-

dinates:

L
Lt

D2y
� �

ze
1

r2

L y,D2y
� �
L(r,�m)

z
2

r2
D2y Ly

� �

~
1

jMj2
D4y,

(6)

where D2 is the Stokes operator,

D2~
L2

Lr2
z

(1{�m2)

r2

L2

L�m2
, (7)

L~
�m

(1{�m2)

L
Lr

z
1

r

L
L�m

, (8)

–m = cosh, and the first term multiplying e

is the Jacobian operator,

L(P,Q)

L(x,y)
~

LP

Lx

LQ

Ly
{

LQ

Lx

LP

Ly
: (9)

This formulation will be applied to various

problems, starting with the case of a sphere

at the velocity antinode. We refer to this

development as Riley’s solution.

2 Solid sphere at the velocity
antinode: Riley’s solution

We discuss Riley’s21 solution since it

forms a basis for various analytical

results for this class of problems. While

Riley21 considered both |M| % 1 and |M|

& 1, the latter case (high frequency) is

the one relevant to ultrasound levitation.

For a standing wave with velocity (in

dimensional variables),

u9
z= U0 cos(kz9)eivt9 , (10)

the local velocity in the neighbourhood

of the antinode (z9 = 0) is

u
0

z~U0 1{
1

2
k2z02z � � �

� �
eivt0 : (11)

Here k is the wavenumber given by k =

2p/l and i~
ffiffiffiffiffiffiffiffi
{1
p

. With a small particle at

the antinode, the surrounding field may just

be taken as the first term u9
z = U0e

ivt9,

whereby Riley’s21 solution is applicable. We

scale the dimensional variables according to

eqn (1) as well as (3). Writing eqn (5) in

component form, we have

ur~{
1

r2

Ly

L�m
and

uh~{
(1{�m2){

1
2

r

Ly

Lr
:

(12)

The boundary conditions are

y~
Ly

Lr
~0 on r~1, (13)

and

y*
1

2
r2(1{�m2)eit as r??: (14)

Here and throughout, we have chosen

M
ffiffiffi
2
p

=jMj~(1zi) and e is defined in

eqn (3). The special case Rs = eR % 1 is

considered here and Riley’s21 development

is summarized next.

2.1 Solution

For |M| & 1, the vorticity generated at

the surface of the sphere is confined to a

thin shear-wave layer of dimensional

thickness O(a|M|21). We start out with

a perturbation expansion,

y = y0 + ey1 + e2y2 + … , (15)

and substitute it into the momentum eqn

(6). For the leading order, we have for
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y0,

jMj2 L(D2y0)

Lt
~D4y0: (16)

The solution for this is expressed by

the irrotational field

y0*
1

2
r2{

1

r

� �
(1{�m2)eit, (17)

where it should be noted that both sides of

(16) vanish independently since D2y0 = 0.

This does not satisfy the no-slip condition,

and its validity therefore remains outside

the Stokes layer. Within the Stokes layer,

an inner layer expansion of the type

Y = Y0 + eY1 + O(e2) (18)

is applied, together with

g~
1

2
(r{1)jMj

ffiffiffi
2
p

~
(r{1)(2Rs)

1=2

2e
(19)

and

Y~
1

2
jMjy

ffiffiffi
2
p

~
(2Rs)

1
2y

2e
: (20)

The variable g represents the radial

coordinate stretched in the Stokes-layer

region. The leading-order solution is

Y0*
3

2
g{

1

2
(1{i) 1{e{(1zi)g

	 
� �

|(1{�m2)eit:

(21)

The order e term may be decomposed

into steady and unsteady components in

the form

Y1~
9

2
f20(g)zf22(g)e2it
	 


�m(1{�m2), (22)

where f20 and f22 have been found to be

f20~
1

16
e{2gz

5

4
e{g cos gz

3

4
e{g sin g

{
1

2
ge{g sin g{

21

16
z

5

8
g,

(23)

f22~
9

32
(2

1
2{1)(1zi)

{
9

32

� �
2

1
2(1zi)e{(1zi)g

ffiffi
2
p

z
1

4
(1zi)e{(1zi)gz

1

32
(1zi)e{2(1zi)g

{
1

2
ie{(1zi)g:

(24)

At the edge of the Stokes-layer region (gA‘),

Y*
3

2
g cos t{

1

2

� � ffiffiffi
2
p

cos t{
1

4
p

� �� �
(1{�m2)

z
9

32
e ({21z10g)z

9

2
2{

ffiffiffi
2
p
 ��

| cos 2tz
1

4
p

� ��
�m(1{�m2)zO(e2):

(25)

For the outer region where (r 2 1) =

O(1), using the stream function expansion

(15) to O(e), the expression for y1 is found

to be21

y1~{
3

2R
1
2
sr

 !
(1{�m2)

| cos t{
1

4
p

� �
zy

(s)
1 ,

(26)

where

y(s)
1 ~

45

32
{

1

r2
z1

� �
�m(1{�m2) (27)

represents the steady part of the flow field.

2.2 Discussion

The steady outer solution given by eqn

(27) exhibits a typical steady streaming

flow field as shown in Fig. 3. The

important aspect of this flow is that it is

a steady component arising from its

nonlinear character. In view of the

thinness of the Stokes layer, including

the recirculating region, the outer region

streaming behaves as if there was a slip

velocity at the surface of the sphere. It is

useful to quantify this slip velocity since

it can be effectively used to calculate the

outer streaming flow field with the

application of such a velocity. Using the

second part of eqn (12) and applying it to

the steady stream function (27), the slip

velocity may be expressed as

u
(slip)
h ~{e

(1{�m2){
1
2

r

Ly
(s)
1

Lr

�����
r~1

~{e
45

16
�m(1{�m2)1=2:

(28)

This development has been extended

to the case of a fluid sphere by Zhao

et al.,28 and some interesting observa-

tions have been made. This is discussed

in detail in tutorial 16.24 In the next

section, we deal with a particle placed at

the velocity node of the standing wave.

3 Solid sphere at the velocity
node

In the discussion here, the problem of

interest concerns the analysis of a solid

sphere being placed at the velocity node

of the wave. This subsequently leads to

an important result for calculating the

streaming when the sphere is placed

between the velocity node and the anti-

node of the wave. We choose axially

symmetric spherical polar coordinates (r,

h) fixed in the body of the sphere such

that the radial distance r is measured

from the center of the sphere and h = 0

coincides with the axis of oscillation. In

this case the equation governing the

steady flow in the outer region is

Stokes’ equation.

3.1 Equations of motion

For the standing wave described in eqn

(10), if the origin is shifted to the node,

the undisturbed flow (in dimensional

form) is

uz9 = 2U0sin(kz9)eivt9 , (29)

and the velocity near the node (z9 = 0) is

u0z~{U0 kz0{
1

6
k3z03z � � �

� �
eivt0 : (30)

For a small sphere at the node, the first

term in the expansion should suffice.

Fig. 3 The streaming flow pattern associated

with the steady flow in the case of |M|2 & 1,

and Rs % 1. The closed loop is a feature of the

Stokes layer. Reproduced from ref. 21.
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Thus the velocity description for the ‘far

field’ is uz9 = 2U0kz9eivt9.

At the surface of the sphere (r9 = a),

the no-slip boundary conditions given by

eqn (13) have to be satisfied. In terms of

a velocity potential, the far-field condi-

tions take the form, again in dimensional

variables,

Q0?~
U0

k
1{

1

2
k2r02(1{�m2)z� � �

� �
eivt0 : (31)

We consider here the Navier–Stokes

equation in its compressible form given

by eqn (3) in tutorial 13.23 With the

scaling, and the dimensionless para-

meters being the same as in eqn (1) and

(3), the flow description is:

Continuity:

�k2 Lr

Lt
z+:uze�k2+:ru~0, (32)

Momentum:

1zre�k2
	 
 Lu

Lt
ze 1zre�k2
	 


u:+u

~{+pz
1

jMj2
+2u,

(33)

where k̄ = ka is the dimensionless

wavenumber. The boundary conditions

are no-slip on the surface

u = 0 at r = 1, (34)

and in the far-field,

uz = 2k̄zeit, (35)

or equivalently, in the form of a non-

dimensional velocity potential,

Q?~
1
�k

1{
1

3
�k2r2P2(�m){

1

6
�k2r2

� �
eit, (36)

where P2( –m) represents the Legendre

polynomial,

P2(�m)~
1

2
3�m2{1
� �

: (37)

3.2 Solution

Once again, we apply the perturbation

procedure,

u~u0zeu1zO(e2) (38)

p~�p0zep1zO(e2) (39)

r~�r0zer1zO(e2) (40)

on eqn (32) and (33), and construct solutions

to O(1) and O(e). Here the overbars on p̄0

and r̄0 are used to avoid confusion with the

background pressure and density.

3.2.1 The leading-order solution.
Using the above perturbation expansion

in the momentum eqn (33), we obtain

Lu0

Lt
~{+�p0, (41)

which, according to our development in

tutorial 13,23 corresponds to irrotational

flow, and may be expressed as a velocity

potential

u0 = +Q0, (42)

and it is not difficult to see that

�p0~{
LQ0

Lt
: (43)

This is applicable to the far-field so that

with the use of (36),

p?~r?~{
LQ?

Lt

~{
i
�k

1{
1

3
�k2r2P2(�m){

1

6
�k2r2

� �
eit:

(44)

From the continuity eqn (32), the lead-

ing-order solution u0 satisfies

�k2 L�r0

Lt
z+:u0~0: (45)

Maintaining order in k̄, it is not difficult

to see that only the term (2i/k̄)eit in r̄0 is

needed here. Therefore,

k̄eit + +?u0 = 0 (46)

which may be written in the form of a

potential function,

+2w0 + k̄ = 0, (47)

where Q0 and w0 are related by

Q0 = w0(r, h) eit. (48)

Now, applying zero normal velocity on

the surface of the sphere, i.e.,

ur0~
LQ0

Lr
~0 at r~1, (49)

together with the far-field condition (36),

we obtain

Q0~
1
�k

{
1

3
�k

1

2
r2z

1

r

� ��

{
1

3
�k r2z

2

3r3

� �
P2(�m)

�
eit,

(50)

and

�p0~�r0~{i
1
�k

{
1

3
�k

1

2
r2z

1

r

� ��

{
1

3
�k r2z

2

3r3

� �
P2(�m)

�
eit:

(51)

Being potential flow, the no-slip condi-

tion cannot be satisfied, and detailed

development in the Stokes layer is

needed. In this boundary layer, we write

the velocity field in terms of normal

(radial) and tangential components,

ub = ub
r êr + ub

hêh. (52)

As usual, with |M|2 & 1, the vorticity

generated at the surface of the sphere is

confined to a thin Stokes layer of

dimensional thickness O(a|M|21). We

scale the inner variables within the

Stokes layer as

g~(r{1)
jMjffiffiffi

2
p , and ub

g~
jMjffiffiffi

2
p ub

r : (53)

Again, perturbing in powers in e,

ub = ub
0 + eub

1 + O(e2), (54)

pb = pb
0 + epb

1 + O(e2), (55)

rb = rb
0 + erb

1 + O(e2), (56)

and using these expansions (54)–(56) in the

momentum eqn (33), we have for the leading-

order normal and tangential velocities,

Lub
r0

Lt
~{

Lpb
0

Lr
~{

jMjffiffiffi
2
p Lpb

0

Lg
(57)

and

Lub
h0

Lt
~{

Lpb
0

Lh
z

1

2

L2ub
h0

Lg2
, (58)

respectively. The frequency parameter |M|&
1, and therefore from eqn (57), we may

deduce that the leading-order acoustic pres-

sure pb
0 in the boundary layer is a function of

h and t only. Therefore, hpb
0/hg = 0, and using

this information in eqn (51), we find
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pb
0~rb

0~�p0jr~1~

{
i
�k

1{
1

2
�k2{

5

9
�k2P2(�m)

� �
eit:

(59)

With use of eqn (59) and the boundary

condition
ub

h0 = 0 as g = 0 (60)

in eqn (58), we obtain the differential

equation for ub
h0 which, when solved,

yields

ub
h0~

5

3
�k sin h cos h 1{e{(1zi)g

� �
eit: (61)

Then, from the continuity eqn (32), we

obtain the equation for the leading-order

normal velocity in the boundary layer ub
g0

as

�k2 Lrb
0

Lt
z

Lub
g0

Lg
z

1

sin h

L
Lh

ub
h0 sin h

� �
~0: (62)

Next, the boundary condition

ub
g0 = 0 at g = 0 (63)

leads to the solution of ub
g0 as

ub
g0~ {�kgz

10

3
�k {gz

1

2
(1{i)

��

| 1{e{(1zi)g
� �


P2(�m)
�

eit:

(64)

Here, it should be noted that the first

term 2k̄geit represents the compressibil-

ity in the boundary layer.

3.2.2 The first-order solution [O(e)]. As

with most problems in this class, the first-

order solution is much more complex than

the leading order. Our interest, however,

lies in understanding the steady streaming

outside the sphere, and we consider only

the steady-state solutions here. In this

section, therefore, all the first order

variables are time-independent, and we

shall dispense with the superscript (s) for

the steady part. Also, noting the fact that

first order is indeed O(e), the leading-

order of the steady part is O(e).

It is not difficult to show that the first-

order velocity field is incompressible,29

i.e., +?ub
1 = 0. Making use of eqn (54)–

(56) in the momentum eqn (33), equating

both sides in the order of e, and taking

the time average, we have

Srb
0
�k2

Lub
g0

Lt
TzSub

g0

Lub
g0

Lg
TzSub

h0

Lub
g0

Lh
T

~{
jMj2

2

Lpb
1

Lg
z

L2ub
g1

Lg2
,

(65)

and

Srb
0
�k2 Lub

h0

Lt
TzSub

g0

Lub
h0

Lg
TzSub

h0

Lub
h0

Lh
T

~{
Lpb

1

Lh
z

1

2

L2ub
h1

Lg2
,

(66)

for the first-order normal and tangential

velocities, respectively, in the boundary

layer. Recognizing once again that |M|2

& 1, whereby in eqn (65) the pressure

derivative term is dominant, we end up with

Lpb
1

Lg
~0, (67)

which means the first order time-indepen-

dent pressure in the boundary layer is a

function of h only. Since the steady flow in

the boundary layer is incompressible, the

velocity field can be written in terms of the

stream function yb
1 so that

ub
r1~

1

r2 sin h

Lyb
1

Lh

 !
, (68)

and

ub
h1~{

1

r sin h

Lyb
1

Lr

 !
: (69)

Using this stream-function form (eqn (69))

in eqn (66), with the limit yb
1 = o(g2) as

gA‘, together with the boundary condi-

tions,

yb
1~0 and

Lyb
1

Lg
~0 at g~0,

we obtain the solution for yb
1 as

yb
1~

{

ffiffiffi
2
p

jMj
�k2 25

72
e{2gz

10

3
e{g cos gz

35

18
e{g sin g

��

z
5

9
ge{g sin gz

25

12
g{

265

72

�
�m(1{�m2)

z {
25

36
e{2g{

100

9
e{g cos g

�

{
125

18
e{g sin g{

25

6
ge{g sin g

{
50

9
gz

425

36

�
�m3(1{�m2)

�
:

(70)

Fig. 4 Streaming in the outer region for a sphere placed at the velocity node. The detail in the

Stokes layer is shown in Fig. 4. Reproduced from ref. 29.
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The perturbation solution (70) represents

an inner solution, corresponding to the

Stokes layer. For the outer region where

(r 2 1) = O(1), we need to construct

another asymptotic solution. Again, it is

not difficult to demonstrate incompressibil-

ity29 so that +?u1 = 0. Therefore, once more,

we introduce the stream function y1, for the

outer region this time, such that

ur1~
1

r2 sin h

Ly1

Lh

� �
and

uh1~{
1

r sin h

Ly1

Lr

� �
:

(71)

Equating coefficients of powers of e in the

momentum eqn (33), and using the above

stream function relationship, we obtain the

Stokes flow equation

D4y1 = 0, (72)

where D2 is the standard Stokes operator

given by eqn (7). After asymptotic matching,

we obtain the following expression for y1:

y1~
�k2 25

168
{r{2z1
� �

�m(1{�m2)

�

z
25

63
{r{4zr{2
� �

(7�m3{3�m)(1{�m2)

�
,

(73)

again demonstrating the persistence of

streaming outside the Stokes layer. As in

Section 2.2, we can obtain the slip velocity

u
(slip)
h ~{e

(1{�m2){
1
2

r

Ly1

Lr

�����
r~1

~{e�k2 25

84
�m(1{�m2)1=2

�

z
50

63
(7�m3{3�m)(1{�m2)1=2

�
:

(74)

3.3 Discussion

The streaming flow field in the outer

region is depicted in Fig. 4. Here, unlike

the sphere at the velocity antinode, the

outer region has a pair of toroidal

vortices (only one is shown) symmetrical

about the equatorial plane. The recircu-

lating part of the Stokes layer does not

cover the entire sphere but just the

equatorial belt. Over the remaining

region in the Stokes layer, the outer flow

continues into the Stokes layer. The

detail in the Stokes-layer region is not

clear in this figure, and is shown on a

stretched radial scale in Fig. 5.

Fig. 5 Detailed flow field in the Stokes layer on the surface with a stretched radial scale.

Reproduced from ref. 29.

Fig. 6 Streaming about a solid sphere displaced between velocity node and antinode for k̄z0 =

p/8, k̄ = 0.3, and |M| = 800. With small displacement from the antinode, the flow is nearly

symmetric about the equator. Reproduced from ref. 19.
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4 Streaming around a sphere
placed between nodes

A particle levitated in a gravity field

would position itself between the velocity

node and the antinode. The analysis of a

solid sphere levitated between nodes has

been carried out. In this development,

use is made of the antinode solution of

Riley21 and the node solution (see pre-

vious two sections) through a nonlinear

combination. Full calculations within the

Stokes layer have been carried out.19

However, the details of these calculation

will not be presented since these can be

easily derived from the liquid-drop cases

(discussed in tutorial 1624) when the

infinite-viscosity limit is taken. The basis

of the analysis is the expansion of the

standing wave for which we express the

dimensional velocity uz9 such that19

uz9 = U0cos(kz9)eivt9 = U0cos(k̄z)eit

= U0 [cos(k̄z0) 2 k̄(z 2 z0)sin(k̄z0)

+ O(k̄2(z 2 z0)2)eit, (75)

where we use the previous definition of the

dimensionless wavenumber k̄ = ka. This

right-hand side represents the local velocity

in the neighbourhood of the sphere centered

at z = z0, the dimensionless displacement of

the center of the sphere from the velocity

antinode. The expansion splits the far-field

velocity into solutions about the velocity

node and the antinode. While the leading-

order irrotational parts combine linearly,

the streaming part is nonlinear and there

are terms in addition to the node and the

antinode solution. This procedure is

detailed in tutorial 1624 for the liquid drop.

However, the solid-sphere results are rele-

vant here, and some of them are presented.

We have found that the results are

consistent with the outer solution of Lee

& Wang.9 In Fig. 6–8, we can see the

streamlines for a solid sphere with k̄ =

0.3. It is apparent that the asymmetry

about the equator in the streaming

pattern when the sphere is away from

the velocity antinode is because of the

asymmetric distribution of the undis-

turbed flow. There is stronger streaming

on the velocity antinode side where the

fluid velocity tends to be higher. Away

from the surface of the sphere, the flow

pattern does not depend on |M| of

course, but on the displacement k̄z0. It

is noted that there is a transition value

k̄z0 = K0 (with 5p/16 , K0 , 3p/8) in the

flow pattern. When k̄z0 , K0, there exists

a thin recirculating region, limited to the

Stokes layer adjacent to the surface, quite

similar to that for a solid particle at the

velocity antinode. Since this region is

quite thin, it is not clearly visible in

Fig. 6–7. However, when k̄z0 . K0, larger

vortices appear around the north-pole

region, as shown in Fig. 8.

5 Oblate spheroid at the velocity
antinode

For non-spherical particles, the analysis

increases in complexity, and the set of

available analytical results is quite limited.

One analytical invesitgation by Rednikov

& Sadhal17 provides a detailed set of

results with changes in the aspect ratio

for an oblate spheroid. The full analysis is

quite elaborate for the scope of this

tutorial, and only a limited aspect up to

the point of steady streaming in the Stokes

layer is being presented. The formal setup

of the problem is an oblate spheroid

vibrating parallel to the polar axis, much

like Riley’s21 problem for a sphere.

5.1 Formulation and results

The scaling of the variables and system

constants given by eqn (1) and (3) apply

once again. To accommodate the spher-

oidal geometry, an appropriate spheroidal

coordinate system was used. The relation-

ship between cylindrical (c9,z9,Q) and the

oblate spheroidal system (l, m̄, Q) is

z0~cl�m , %0~c (1zl2)1=2 (1{�m2)1=2,(76)

with 0 ¡ l , ‘, 21 ¡ m̄ ¡ 1, 0 ¡ w , 2p.

The parameter c is the focal radius, and the

equatorial and polar radii are

a = c(1 + l2
0)1/2, b = cl0 (77)

respectively, with l = l0 defining the

surface of the spheroid (see Fig. 9). With

the flow being axially symmetric, eqn (5)

can be used (thus satisfying the continuity

equation) whereby the velocity compo-

nents may be expressed nondimensionally

Fig. 7 Streaming about a solid sphere displaced between velocity node and antinode for k̄z0 =

5p/16, k̄ = 0.3, and |M| = 800. With increasing k̄z0, the equatorial symmetry is broken.

Reproduced from ref. 19.
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as5

u�m~
a2

c2(1{�m2)1=2(l2z�m2)1=2

Ly

Ll
,

ul~{
a2

c2(1zl2)1=2(l2z�m2)1=2

Ly

L�m
:

(78)

For the purpose of nondimensionalization,

we are using the major radius a as a length

scale. For this case of incompressible axisym-

metric flow, eqn (6) for the conservation of

momentum is applicable. We shall not give

the details which are available in ref. 17.

The boundary conditions consist of

oscillatory flow parallel to the polar axis

at infinity, and the usual no-slip and non-

penetration at the solid surface of the

spheroidal particle. Thus, in the far-field,

y = K (c/a)2eit, and with the transforma-

tion (76) we obtain

l?? :y?
1

2
(c=a)2(1zl2)(1{�m2)eit: (79)

At the surface of the oblate spheroid, we

have

l~l0 : y~
Ly

Ll
~0: (80)

As for most streaming flow analyses

involving solid boundaries, the problem

here is singular and requires the detail in

the Stokes layer. Within this layer, we use

the inner variables which entail stretch-

ing of the coordinate in the direction

normal to the solid surface. With the

dimensional layer thickness being O(a/

|M|), we write

Y~
(c=a)(l2

0z�m2)1=2

(1zl2
0)1=2

jMj(l{l0) (81)

and
Y = |M|y. (82)

Leading order oscillatory flow.
Sparing all the detail, the solution for

the outer irrotational flow is found to

be17

y(u)~
(c=a)2

2
1zl2{(1zl2

0)
	

|
(1zl2) arccot(l){l

(1zl2
0) arccot(l0){l0

#
(1{�m2)eit,

(83)

and for the Stokes layer,

Y(u)~
A (1zl2

0)1=2

(l2
0z�m2)1=2

| Y{
1ffiffi

i
p 1{e{

ffi
i
p

Y
h i� �

(1{�m2)eit

(84)

where
ffiffi
i
p

~(1zi)=
ffiffiffi
2
p

and

A~
(c=a)

(1zl2
0) arccot(l0){l0

: (85)

The superscript (u) refers to the unsteady

flow. Next, we consider the steady part of

the flow in the Stokes layer.

Fig. 8 Streaming about a solid sphere displaced between velocity node and antinode for k̄ = 0.3,

and |M| = 800. Close to the node (k̄z0 = p/2), vortices develop on the north-pole side. Reproduced

from ref. 19.
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Steady streaming in the Stokes layer.
Again, leaving out all the details, the O(e)

result in the Stokes layer, keeping only

the steady part denoted by the super-

script (s), is

Y(s)~A2 (1zl2
0)1=2 �m(1{�m2)ffiffiffi

2
p

(c=a)2 (l2
0z�m2)3=2

| f1
Yffiffiffi

2
p
� �

1{�m2

l2
0z�m2

zf2
Yffiffiffi

2
p
� �" # (86)

with

f1(z)~ze{z sin zz3e{z cos zz2e{z sin z

z
1

4
e{2zz

3

2
z{

13

4
,

(87)

f2(z)~2ze{z sin zz5e{z cos zz3e{z sin z

z
1

4
e{2zz

5

2
z{

21

4
,

(88)

and A is given by eqn (85). It should be

noted here that the ordering for the

steady and unsteady flows corresponds

to Y = Y(u) + eY(s). We now examine the

edge of the Stokes layer by letting YA‘.

Upon examining hY(s)/hY as YA‘, we

see that there is a nonzero velocity in the

direction which is tangential to the solid

surface. Detailed calculations17 show

that the effective slip velocity is

u(slip):u
(s)
�m jY??

~
A2

4(c=a)3
3

�m(1{�m2)3=2

(l2
0z�m2)5=2

z5
�m(1{�m2)1=2

(l2
0z�m2)3=2

" #
:
(89)

The sign of the slip velocity in eqn (89) is

such that the flow takes place from the

equator towards the poles. The distribu-

tion (89) is shown in Fig. 10 for various

aspect ratios of the oblate spheroid.

In place of the coordinate , the scaled

distance s along the surface is used with

21 ¡ s ¡ 1 and s = 0 defined to be at

the equator of the spheroid, while s = ¡

1 correspond to the poles. In view of the

symmetry with respect to the equatorial

plane, the distribution over only one

hemisphere is shown in Fig. 10. For any

given aspect ratio b/a, the parameter l0 is

determined from (77) for a given value of

b/a while c = a/(1 + l2
0)1/2.

5.2 Discussion

The streamlines for the steady flow in the

Stokes layer are represented in Fig. 11

corresponding to eqn (86). Here the

vertical scale is highly exaggerated, and

again the scaled relative distance along

the surface is used in the plot.

The results depicted in Fig. 10 and 11

show that the streaming intensity sharply

increases with decreasing the ratio b/a of

the oblate spheroid, the other constraints

being the same. Besides, as the intensity

increases, the center of the streaming

(location of the maximum intensity)

becomes strongly displaced towards the

sharp edge (equatorial plane, s = 0) of the

particle. Another effect of the aspect

ratio change is that the streamlines

become much denser around the sharp-

edged equator than they are in other

parts of the region when b/a gets smaller.

The zone of recirculation covers the

entire spheroid in a manner quite similar

to that of a sphere (Fig. 11). However, in

contrast from the sphere, the thickness of

this zone becomes slightly nonuniform.

Among the major purposes of this

study was to see how changes in the

aspect ratio and the deviation from

sphericity play into the streaming beha-

vior of the flow field. It is therefore of

interest to discuss the asymptotic beha-

vior of the streaming characteristics as

the ratio of the minor to the major axes,

b/a, tends to zero as for the circular disk

limit (i.e., l0A0). For this illustration, l0

is chosen as the smallness parameter, and

the scalings for the variables u
ðsÞ
m̄ , s and m̄

are established in the zone of the most

intense streaming. These are obtained by

following the maximum of the effective

slip velocity (89). From eqn (77), the

geometric parameters can be examined

for small l0. Simple expansions yield

b/a = l0 + O(l0
3),

a/c = 1 + O(l0
2), as l0A0. (90)

From (89), and following the detailed

calculations of Rednikov & Sadhal,17 we

obtain

u
ðsÞ
m̄ = O(l{4

0 ),

s = O(l0
2), m̄ = O(l0) as l0A0 (91)

from which we can see that u
ðsÞ
m̄ y1/s2, a

characteristic observed in Fig. 10 for

small l0.

It is also noteworthy that the radius of

curvature Rc taken at the sharp-edged

equator of the oblate spheroid is

Rc/a = O(l2
0) as l0A0. (92)

Considering that syRc/a as l0A0, we

can interpret that the most intense

streaming occurs on the scale of the

equatorial radius of curvature which

turns out to be a significant parameter

for streaming intensity. With detailed

scaling arguments,17 it is shown that to

maintain validity of the results close to

the disk limit (l0A0), the flow para-

meters e and |M| need to be more

restrictive than e % 1 and |M|2 & 1.

The radius of curvature becomes a

relevant length scale for this purpose,

and for the Stokes layer to remain thin,

~e*
e

l3
0

%1, j ~Mj2*jMj2 l4
0&1: (93)

There has been considerably more

work done on this problem,17 particularly

Fig. 9 Schematic of the oblate spheroidal

coordinate system. Reproduced from ref. 17.

Fig. 10 Slip velocity distribution as a function

of scaled distance from the equator for various

values of b/a. Reproduced from ref. 17.
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in relation to streaming outside the

Stokes layer. It turns out that for Rs %
1, to the leading order (O(e) in this case),

the outer streaming is described by the

fourth-order Stokes equation for the

stream function, and the use of the non-

penetration boundary condition together

with the slip velocity (89) gives the flow

field. While the outer streaming flow field

is quite interesting, and changing the

aspect ratio leads to substantial deviation

from the sphere case, the discussion is

outside the scope of this tutorial which is

kept limited to the Stokes layer for this

problem.

6 Conclusions

In this tutorial, we have provided tech-

niques for tackling streaming-flow pro-

blems that arise when solid particles

interact with sound waves. The cases of

a sphere at the velocity antinode (pres-

sure node) and the velocity node (pres-

sure antinode) of a standing wave have

been presented, and dealt with analyti-

cally by the singular perturbation

method. With all cases considered, a

typical small dimensionless parameter

e = (U0/va) % 1, coupled with the

frequency parameter |M|2 = va2/v & 1,

facilitate the analysis. Considerable

depth of understanding is achieved with

limiting cases of the streaming Reynolds

number Rs = U2
0/vv = e2|M|2 being small.

This is the Reynolds number associated

with the mean time-independent flow

that arises as a result of the nonlinear

interaction of the sound wave with a

solid surface. It has been established that

for the flow parameters under considera-

tion, the leading-order streaming flow is

typically an order higher than the pri-

mary oscillatory flow.

Also presented was the situation cor-

responding to a spherical particle

between nodes, followed by an oblate

spheroid at the velocity antinode. The

first case of a particle at the velocity

antinode is mathematically equivalent to

a sphere vibrating in an otherwise

quiescent fluid, provided the wavelength

is large compared with the particle size.

The analysis can be carried out with the

incompressible flow approximation. The

interesting aspect of the streaming flow

field is the existence of a thin recirculat-

ing zone at the surface of the sphere.

Such a zone is also present in the case of

a sphere placed at the velocity node.

However, the recirculating region does

not envelope the entire sphere but rather

just an equatorial belt with coverage

depending on the flow parameters. The

calculations for this flow field demand

the compressible flow analysis which

does not lend itself so easily to the usual

stream function formulation that works

for axisymmetric flow.

The flow field for the case of the

sphere between nodes is a nonlinear

combination of the node and antinode

solutions. The results are more interest-

ing with the presence of vortices corre-

sponding to the streaming in the Stokes

layer as well as the bulk region. In

particular, there are full toroidal vortices

present near the polar region of the

oncoming streaming flow, qualitatively

resembling the visualization exhibited in

Fig. 2. However, it is possible to attribute

such vortices to the presence of chamber

walls of a levitation system.15

The analysis of an oblate spheroid at

the velocity antinode, while a complex

problem, is interesting from the stand-

point of changing aspect ratio and edge

curvature. The results presented here

were limited to the steady streaming in

the Stokes layer. With increasing major

to minor axis ratio, the streaming vor-

tices in the Stokes layer shift towards the

equator. Also seen is an increase in the

streaming intensity with this aspect ratio

increase. The radius of curvature about

the equator is an important determinant

for this streaming intensity which varies

inversely with the radius. Not surpris-

ingly therefore, the slip velocity near the

equatorial region is in inverse proportion

to the square of the radius of curvature.

In this tutorial we have presented a

limited set of results concerned with

acoustic streaming that takes place when

ultrasound waves interact with solid

particles. In particular, for e % 1 and

|M| & 1, there is intense streaming in the

thin Stokes layer near the boundary. The

streaming propagates into the bulk of the

fluid with intensities an order higher in e

than the leading-order flow. It should be

noted that the bulk streaming (i.e., out-

side the Stokes layer) can be analyzed by

considering an effective slip velocity on

the boundary.8,11,18 As far as the stream-

ing phenomenon is concerned, there are

several other interesting results such as

the effect of two orthogonal ultrasound

beams interacting with a particle.8,16

With the beams being coherent but out

of phase by p/2, there is a net torque on

the particle which, if free to move,

rotates. This mechanism has been used

with levitation work when it is desired to

spin a levitated particle.20 Streaming

phenomenon is also seen when a particle

experiences rotational oscillations in an

otherwise quiescent fluid.3 However, it is

not immediately obvious if an ultrasound

wave would produce an equivalent flow

field.
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