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In Part 15 of the tutorial series
““Acoustofluidics—exploiting
ultrasonic standing waves forces and
acoustic streaming in microfluidic
systems for cell and particle
manipulation,” we examine the
interaction of acoustic fields with solid
particles. The main focus here is the

interaction of standing waves with
spherical particles leading to
streaming, together with some
discussion on one non-spherical case.
We begin with the classical problem of
a particle at the velocity antinode of a
standing wave, and then treat the
problem of a sphere at the velocity

node, followed by the intermediate

Department of Aerospace and Mechanical
Engineering, University of Southern California,
Los Angeles, CA, 90089-1453, USA

situation of a particle between nodes.
Finally, we discuss the effect of
deviation from sphericity which brings
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about interesting fluid mechanics. The
entire Focus article is devoted to the
analysis of the nonlinear fluid
mechanics by singular perturbation
methods, and the study of the
streaming phenomenon that ensues
from the nonlinear interaction. With
the intention of being instructive
material, this tutorial cannot by any
means be considered ‘complete and
comprehensive’ owing to the
complexity of the class of problems
being covered herein.

1 Introduction

When particles interact with high-fre-
quency sound waves, streaming phenom-
enon occurs. As mentioned in tutorials 2
and 13,%?3 the presence of solid surfaces
in an acoustic field brings about a time-
independent mean flow which we refer to
as streaming. This type of interaction is
very common with acoustic levitation
devices. Such systems are used for con-
tainer-less processing, and applications
include non-contact trapping of cells and
particle-based assays in continuous flow
microsystems. For example, an acoustic
standing wave is generated in etched glass
micro-channels by miniature ultrasonic
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transducers, and particles or cells passing
the transducer can be retained and levi-
tated at the center of the channel without
any contact with the channel walls.” The
potential of ultrasonic standing wave
fields to facilitate viral transduction rate
has been demonstrated by Lee & Peng.'®
Under acoustic exposure, suspended cells
move to the pressure nodal planes first
and form cell clusters. Then, viruses
circulated between nodal planes use the
pre-formed cell clusters as the nucleating
sites to attach on to. In the past, several
macroscale applications of acoustic levi-
tation have been demonstrated, including
non-contact thermophysical property
measurement of liquids.'>!> The suspen-
sion of liquid drops will be addressed in
tutorial 16.%*

In the absence of solid boundaries,
simple sound waves usually have an
irrotational character. Interaction with
solid boundaries generates vorticity
whereby nonlinearities set in within a
thin layer (called the Stokes layer or the
shear-wave layer) at the boundary. As
discussed in tutorials 2 and 13,2 non-
linearities can lead to a steady flow
component that we refer to as streaming.
This steady streaming persists outside the
Stokes layer with vorticity.

This physical phenomenon may be
characterized by considering a body of
typical dimension a that oscillates with
frequency w and velocity Uycos(wt) in a
viscous fluid. If the parameter ¢ = Uy/wa
« 1, then, although the leading order
solution in powers of ¢ is oscillatory,
higher order terms include not only
higher harmonics but steady contribu-
tions to the velocity. This can be
explained mathematically by existence
of the nonlinear terms which may have
a steady non-zero component. For high
frequency we apply the condition ¢ « 1,
which implies that the amplitude of the
oscillation is small compared with a.

The existence of such steady streaming
was first pointed out by Rayleigh'* in his
work on Kundt’s dust tube and was later
studied in the boundary layer context by
Schlichting? who considered flows with
the additional constraint |M]* = wa*/v >
1, where v denotes the kinematic viscosity
of the fluid. Here, the parameter |M]| is
also known as the Womersley number
with the notation «. For such a flow it is
now well established that the first order
fluctuation vorticity is confined to a

Stokes layer region of thickness O((v/
) = O(a/|M)), beyond which steady
velocities O(eUy) persist. At leading order
in ¢, the bulk of the flow is irrotational
with zero mean over time. To O(g), this
region has a non-zero time-averaged
velocity field. As mentioned earlier, this
steady flow is referred to as streaming
that propagates into the bulk. The
analytical procedure that we follow con-
sists of perturbation expansions in small
¢ and large |M|. Since ¢ appears in front
of the highest derivative in the momen-
tum equation (see e.g., the review by
Riley®?), the expansion procedure needs
to be singular in character. This requires
inner and outer expansions with stretch-
ing of the inner variable. However, it
should be noted that if we were interested
only in the outer-region streaming, the
procedure developed by Nyborg'! could
be employed. With this procedure, the
leading-order nonlinear terms when time-
averaged, appear effectively as a con-
servative force in the next order. This
method has been applied by Lee &
Wang® for outer streaming associated
with flow between parallel plates, as well
the sphere and the cylinder placed
between velocity node and antinode.
Further extension of Nyborg’s proce-
dure,! has been recently carried out by
Rednikov & Sadhal,'® with the inclusion
of non-adiabatic effects. Nevertheless, in
order to fully understand streaming
within the Stokes layer, inner and outer
perturbation analysis is necessary.
Microfluidic applications and the rele-
vance of streaming in liquids has been
discussed by Bruus' in tutorial 2, as well

Fig. 1 Ultrasound levitation apparatus. The
picture shows a levitated water-alcohol drop,
approximately 3 mm across and 1 mm high.
The bottom plate is an ultrasound transducer
operating at 20 kHz, and the top is a slightly
cupped reflector so that the system produces a
standing wave.

as in tutorials 13** and 14.?” For micron-
sized particles, the flow-visualization
work of Hagsiter et al.* is of importance
in contrasting the streaming-based Stokes
drag with the radiation force. They
observed that at 2.17 MHz on 1 um
polystyrene beads, the Stokes drag is
higher than the radiation force, while on
S5 um beads, the latter is dominant. It
should be noted here that the Stokes layer
thickness for this frequency is close to
1 pm, i.e., (W/w)"”?> ~ 1 pm, corresponding
to |M| ~ 1 in the case of a 1 um particle.

1.1 Acoustic levitators

A typical desktop levitator is shown in
Fig. 1. The main physical principle
involved here is that the acoustic field
provides the radiation pressure necessary
to levitate a liquid drop in a gravitational
field. The studies on the effects of
radiation pressure on spheres and disks
goes as far back as the 1930s. Some of the
earliest theoretical studies were carried
out by King.*” With the application of
this principle, ultrasound levitators have
been in use for many years in ground-
based experiments (as opposed to space-
based). With the widespread application
of levitation systems in the 1980s and
90s, there has been an interest in under-
standing the fluid-flow fundamentals
associated with these systems. Some of
the earlier work to characterize this flow
include the developments of Trinh &
Robey.”® An example of their work on
streaming flow visualization around a
levitated drop is given in Fig. 2.

Among the items of interest is the
information about the characteristics of
the levitation process. For example, with

Fig. 2 Visualization of streaming around a
levitated particle. The tested particle is a drop
of water with diameter 1.8-1.85 mm. The
acoustic frequency is 37 kHz, corresponding to
|M] = 110.%°
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acoustically-levitated particles there is a
residual flow field including solid-body
rotation for drops. For levitation under
near zero-gravity conditions, the drop
assumes an equilibrium position at the
velocity antinode when the external
medium is a gas (see Fig. 2 in tutorial
133 for node and antinode definitions).
If the particle phase is a fluid with higher
compressibility than the external phase
(e.g., a gas bubble in a liquid), the
equilibrium position can occur at the
velocity node. While the antinode solu-
tion has been available from Riley’s>!
classical work, the node solution is
relatively more recent.

For a levitated spherical particle posi-
tioned at the velocity antinode, Riley’s
solution?' of a vibrating sphere in an
otherwise quiescent fluid can be accom-
modated for a/A = awlc « 1, i.e., when
the particle size is small compared with
the wavelength of the standing wave. In
the next section, we discuss Riley’s
solution.?! However, before we go to
that development, we shall state the
equations of motion for the class of
problems discussed in this tutorial.

1.2 Equations of motion

The equations of continuity and momen-
tum as relevant to acoustics are given in
tutorial 2 and 13.1?* In particular, refer-
ence is made to eqn (1) and (3) in tutorial
13.23 We apply the dimensionless scaling,

”/ ! /
u=2L y= 4 , p=2
Uy U0a2 Upa
x' : r
=", t=owl, =
. a @ P poUowa (1
p'c )
= > V: V s
p poUowa a4

for velocity, axisymmetric stream function,
velocity potential, coordinate variables,
time, pressure, density and the gradient
operator, respectively. Here the typical
system constants are Uy, a, o, po and po,
representing velocity, length scale, fre-
quency, background density and back-
ground pressure, respectively. With the
incompressible flow approximation, the
momentum equation can be written as>
%—st(uxC)= %vzc, 2)
where { = Vxu is the dimensionless
vorticity. In addition we have the dimen-

sionless system constants

R=%, M2=—iwa2 and
v v
3
R U 3)

where R is the Reynolds number, and M

is the frequency parameter. For the

characterization of streaming flows, we

also define the streaming Reynolds num-

ber, R,, which is interconnected with the

above dimensionless constants as follows:
2

U
Ry=— —¢R=&*|M|*. @)
v

For the high-frequency cases that we
consider for most ultrasound applica-
tions, we take ¢ as a small parameter that
allows the possibility of various types of
perturbation expansions. For axially
symmetric flows, the
solution can be written in terms of the

incompressible

stream function . In spherical coordi-
nates (r, 0, ¢), we have

u:w(rs‘ﬁlg@dp), 5)

where é, is a unit vector in the azimuthal
direction. This formulation satisfies the
incompressible continuity equation, V-u
= 0. The momentum eqn (2) takes the
following scalar form in spherical coor-
dinates:

1 o(.D*Y)

0, 5 i
— (DY) +e 2R

2 2
ot +aDV Ly

| (6)
=—— D%,
Y
where D? is the Stokes operator,

R =) @
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Y

_ R 0,10
T (—pdor  rop’ ®
& = cosf, and the first term multiplying ¢
is the Jacobian operator,
AP.Q) _0P0Q

o(x.y)  0x dy

QP

ox 0y’ ©)

This formulation will be applied to various
problems, starting with the case of a sphere
at the velocity antinode. We refer to this
development as Riley’s solution.

2 Solid sphere at the velocity
antinode: Riley’s solution

We discuss Riley’s®! solution since it
forms a basis for various analytical
results for this class of problems. While
Riley?! considered both [M] « 1 and |M)]
> 1, the latter case (high frequency) is
the one relevant to ultrasound levitation.
For a standing wave with velocity (in
dimensional variables),
u.= Uy cos(kz")e"", (10
the local velocity in the neighbourhood
of the antinode (z' = 0) is

! 1 M J
u.=Up (1 — R -)e“’” ENGE))

Here k is the wavenumber given by k =
2nt// and i=+/—1. With a small particle at
the antinode, the surrounding field may just
be taken as the first term u, = Upe™,
whereby Riley’s®! solution is applicable. We
scale the dimensional variables according to
eqn (1) as well as (3). Writing eqn (5) in
component form, we have

10
U= — ——l/f and
2 on
1 (12)
(1—@) "2 oy
U=——""-—.
r or
The boundary conditions are
0
1//:—¢:0 on r=1, (13)
or
and
1 2 =23\ it
1//~§r (1= as r-oo. (14)

Here and throughout, we have chosen
MV2/|M|=(1+i) and & is defined in
eqn (3). The special case Ry = ¢R « 1 is
considered here and Riley’s®! development

1s summarized next.

2.1 Solution

For [M] > 1, the vorticity generated at
the surface of the sphere is confined to a
thin shear-wave layer of dimensional
thickness O(a|M|™'). We start out with
a perturbation expansion,
V=yoteh st ., (15)
and substitute it into the momentum eqn
(6). For the leading order, we have for
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Yo,

M| =D, (16)

2 A(D*)
ot
The solution for this is expressed by

the irrotational field

bo~ g (P} )a-meran

where it should be noted that both sides of
(16) vanish independently since D*ry = 0.
This does not satisfy the no-slip condition,
and its validity therefore remains outside
the Stokes layer. Within the Stokes layer,
an inner layer expansion of the type

Y=Y+l +0E)  (18)

is applied, together with
1 —1)(2R,)"?
1= e-nimia= TR )

and

1 Q2R,)?
Y= [ Myv2= .
| V2 2

(20)
The variable 5 represents the radial

coordinate stretched in the Stokes-layer
region. The leading-order solution is

3 1 . C(4i
Wy~ E{n_i(l_l)[l_e a+ )’7]}

x (1—p2)e.

@1

The order ¢ term may be decomposed
into steady and unsteady components in
the form

9 i _
¥ = 3 (o) + Can(me™™ | m(1— %), (22)
where {5y and {», have been found to be

5 3 .
b= qge '+ g Teosn+ e sing

1 ! 21 5 23
— lpeNsinn— - 4+ 2
21’]6 sinny 16—1—817,
{p= 0 (22— 1)(1+1i)
n=35
9\ .1 .
_ (2 \H% o, — (12
(32)2(1+1)e
(24)
+%(1+i)€7(1+i)’1+%(1+i)€72(1+i)n
1 .
— _je—(+Dn

At the edge of the Stokes-layer region (1—),

3 1 1 72
Y~ 3 {r]costf <§>\/§oos<tf Zn)}(l — )
+ 2214 10n)+ 2 (2—\&) (25)
32 2
X oS (21+ %n)] (1 —)+ O(e?).
For the outer region where (r — 1) =
O(1), using the stream function expansion

(15) to O(¢), the expression for y/; is found
to be?!

3
l//1=—< |>(1—ﬁ2)
2Rr
X CoS t—ln +
4 9

where

(26)

457 1
Yo = - (_ 5 +1)ﬁ(1—ﬂ2) (27)

represents the steady part of the flow field.

2.2 Discussion

The steady outer solution given by eqn
(27) exhibits a typical steady streaming
flow field as shown in Fig. 3. The
important aspect of this flow is that it is
a steady component arising from its
nonlinear character. In view of the
thinness of the Stokes layer, including
the recirculating region, the outer region
streaming behaves as if there was a slip
velocity at the surface of the sphere. It is

Fig. 3 The streaming flow pattern associated
with the steady flow in the case of |[M* » 1,
and R, « 1. The closed loop is a feature of the
Stokes layer. Reproduced from ref. 21.

useful to quantify this slip velocity since
it can be effectively used to calculate the
outer streaming flow field with the
application of such a velocity. Using the
second part of eqn (12) and applying it to
the steady stream function (27), the slip
velocity may be expressed as

(=)t ayy)

(slip)
uy, ' =—¢
0 r or

r=1(28)

_ 45 —2\1/2
= 816u(1 )

This development has been extended
to the case of a fluid sphere by Zhao
et al.,*® and some interesting observa-
tions have been made. This is discussed
in detail in tutorial 16.** In the next
section, we deal with a particle placed at
the velocity node of the standing wave.

3 Solid sphere at the velocity
node

In the discussion here, the problem of
interest concerns the analysis of a solid
sphere being placed at the velocity node
of the wave. This subsequently leads to
an important result for calculating the
streaming when the sphere is placed
between the velocity node and the anti-
node of the wave. We choose axially
symmetric spherical polar coordinates (r,
0) fixed in the body of the sphere such
that the radial distance r is measured
from the center of the sphere and 6 = 0
coincides with the axis of oscillation. In
this case the equation governing the
steady flow in the outer region is
Stokes’ equation.

3.1 Equations of motion

For the standing wave described in eqn
(10), if the origin is shifted to the node,
the undisturbed flow (in dimensional
form) is

u.' = —Upsin(kz"e " ,  (29)
and the velocity near the node (z' = 0) is

l H !
U= —Up (kz/— 6k3z’3 + - ~>e“”’ . (30)

For a small sphere at the node, the first
term in the expansion should suffice.

This journal is © The Royal Society of Chemistry 2012
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Thus the velocity description for the ‘far
field’ is u.' = — Upgkz'e'®"

At the surface of the sphere " = a),
the no-slip boundary conditions given by
eqn (13) have to be satisfied. In terms of
a velocity potential, the far-field condi-
tions take the form, again in dimensional
variables,

)

1
o, = . 1— §k2r12(1 )+ I(ut

- (3D

We consider here the Navier—Stokes
equation in its compressible form given
by eqn (3) in tutorial 13.>* With the
scaling, and the dimensionless para-
meters being the same as in eqn (1) and
(3), the flow description is:

Continuity:

kza +Veu+ek*V-pu=0,

(32)
Momentum:
721 0 72
[1+ pek ]E +&[1+ pek®|uVu
S (33)
=—Vp+—Vu,
" p
where k& = ka is the dimensionless

wavenumber. The boundary conditions
are no-slip on the surface

u=0atr=1, (34)

and in the far-field,

u, = —kze", (35)
or equivalently, in the form of a non-
dimensional velocity potential,

1 1-
9, ==[1— gk2r2Pz(p) k2 21 e, (36)

k

where P,(fi) represents the Legendre
polynomial,

P@=1 (@ -1). G

3.2 Solution

Once again, we apply the perturbation
procedure,

u=uo+eu + O(e%) (38)

p=po+ep1 +O(&) (39)

p=po+epi+O0() (40)
on eqn (32) and (33), and construct solutions
to O(1) and O(¢). Here the overbars on p
and g, are used to avoid confusion with the
background pressure and density.

3.2.1 The leading-order solution.
Using the above perturbation expansion
in the momentum eqn (33), we obtain

6”0
= —Vpo,
o1 Po

(41)

which, according to our development in
tutorial 13,% corresponds to irrotational
flow, and may be expressed as a velocity

potential

uy = Voo, (42)
and it is not difficult to see that
_ 0
po=—32. (43
ot

This is applicable to the far-field so that
with the use of (36),

a(ﬂoc
p“‘_p@__w (44)
i 1722 - 1722 ir
_——Z 1—§kVP2([J)—6kV e

From the continuity eqn (32), the lead-
ing-order solution u satisfies
72 0P

k™ — +V-uy=0. (45)
ot
Maintaining order in £, it is not difficult
to see that only the term (—i/k)é" in jy is
needed here. Therefore,
ké" + Vouy = 0 (46)
which may be written in the form of a
potential function,

Vo + k=0, 47
where ¢o and ¢, are related by
90 = gl 0) ¢". (48)

Now, applying zero normal velocity on
the surface of the sphere, i.e.,

(49)

Ur) = —- =0 at

together with the far-field condition (36),
we obtain

(50)
1 2 2 it
—gk r +ﬁ Py(p) pe”,
and
I N T
Po=poy —I{Z—gk(i +—> )
1 2 2 - it
—gk rt3a Py(p) pe

Being potential flow, the no-slip condi-
tion cannot be satisfied, and detailed
development in the Stokes layer is
needed. In this boundary layer, we write
the velocity field in terms of normal
(radial) and tangential components,

u’ = ubé, + ubé,. (52)
As usual, with [M> > 1, the vorticity
generated at the surface of the sphere is
confined to a thin Stokes layer of
dimensional thickness O(a|M|™!). We
scale the inner variables within the
Stokes layer as

17=(r—1)%, and )= |\A/{| b (53)

Again, perturbing in powers in ¢,
u’=ul + el + OE),  (54)
PrEpy et + 0@, (55)
p" = ph +eph + 0E),  (56)

and using these expansions (54)—(56) in the
momentum eqn (33), we have for the leading-
order normal and tangential velocities,

6uf0 =_%=_M% (57)
ot or V2 o
and
(31480 6p8 16° “80
o -0 trape M

respectively. The frequency parameter [M]| >
1, and therefore from eqn (57), we may
deduce that the leading-order acoustic pres-
sure pg in the boundary layer is a function of
0 and ¢ only. Therefore, op})/on = 0, and using
this information in eqn (51), we find
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po=pp=Pol,-1=

i[ 1y 5, 1, ©

7 1 2k 9k Pr(p)|e
With use of eqn (59) and the boundary
condition

uby=0asn=0 (60)

in eqn (58), we obtain the differential
equation for uZo which, when solved,
yields

Uy = —12 sin0cos 0(1—e~ (016l (61)
Then, from the continuity eqn (32), we
obtain the equation for the leading-order
normal velocity in the boundary layer uf;o
as

oph oy 1 0
2 0 )
ot o sin000 (1 sin 0) =0.(62)

Next, the boundary condition

Wy =0atn=0 (63)
leads to the solution of uf;o as
-~ 10 - 1 .
uf;():{—kn—i- ?k{—n—l— 5(1—1)
(64)

x (1—e ) Py(m) }e.

Here, it should be noted that the first
term —kne’ represents the compressibil-
ity in the boundary layer.

3.2.2 The first-order solution [O(¢)]. As
with most problems in this class, the first-
order solution is much more complex than
the leading order. Our interest, however,
lies in understanding the steady streaming
outside the sphere, and we consider only
the steady-state solutions here. In this
section, therefore, all the first order
variables are time-independent, and we
shall dispense with the superscript (s) for
the steady part. Also, noting the fact that
first order is indeed O(¢), the leading-
order of the steady part is O(¢).

It is not difficult to show that the first-
order velocity field is incompressible,*
ie., V-ul = 0. Making use of eqn (54)-
(56) in the momentum eqn (33), equating
both sides in the order of &, and taking
the time average, we have

_ oub ou ub
PRI 2y + Gl ) o 9’°>

_MP ap’f iy
2 0y on?’

and
p72 0 go b CuHO
{pok >+< Upo an — >+ gy 20 >
oph 107 (©0
__ 9y | 10Uy
00 2 on?’

for the first-order normal and tangential
velocities, respectively, in the boundary
layer. Recognizing once again that |[M]?
> 1, whereby in eqn (65) the pressure
derivative term is dominant, we end up with

op

A

an

=0, (67)
which means the first order time-indepen-
dent pressure in the boundary layer is a
function of 6 only. Since the steady flow in

and

1 (ot
b 1
Y= T sin g < or > (69)

Using this stream-function form (eqn (69))
in eqn (66), with the limit ¥ = o(p) as
n—, together with the boundary condi-
tions,

oub
=0 and ﬁ:0 at n=0,
on
we obtain the solution for i as
V=
V2 oo ((25 _, 10 35 .
S oAy e e
|M\k {(72e + 3¢ cosn+1ge sinn

—n —2
+ —ne sinn+ — I ),u(l —

the boundary layer is incompressible, the 5 . 100, (70)
velocity field can be written in terms of the ~ * < 36° e
stream function 1/} so that 25, . 25
BET] e 7sm11—€11e Tsinn
1 (o)
b 1 50 425
=5\ =5 68 ey i
r r251n9<89> (68) o1t 36)H(1 )}'
z
3 —
251
2 =
151
0 0.5 1 1.5 2 25 3 r

equatorial plane

Fig. 4 Streaming in the outer region for a sphere placed at the velocity node. The detail in the
Stokes layer is shown in Fig. 4. Reproduced from ref. 29.
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The perturbation solution (70) represents
an inner solution, corresponding to the
Stokes layer. For the outer region where
r — 1) = O(1), we need to construct
another asymptotic solution. Again, it is
not difficult to demonstrate incompressibil-
ity29 so that V-u; = 0. Therefore, once more,
we introduce the stream function y, for the
outer region this time, such that

L (o
M sin 0 < 20 ) and

__ L (s
“r="sno \or )

Equating coefficients of powers of ¢ in the
momentum eqn (33), and using the above
stream function relationship, we obtain the
Stokes flow equation

(7D

DY, =0, (72)

where D? is the standard Stokes operator
given by eqn (7). After asymptotic matching,
we obtain the following expression for y/;:

25

Teg (T DRA—)

U =k

-
63

@3)
(=r ) =3 -

again demonstrating the persistence of
streaming outside the Stokes layer. As in
Section 2.2, we can obtain the slip velocity

_oy—1
(lip) _ _ (1—p")"2 0y,
“o ¢ r or

r=

—5[25
R [@ Al — )2 (74)

@ =3 a1 =2\1/2
+63(7u 3l —pr) 7 .

3.3 Discussion

The streaming flow field in the outer
region is depicted in Fig. 4. Here, unlike
the sphere at the velocity antinode, the
outer region has a pair of toroidal
vortices (only one is shown) symmetrical
about the equatorial plane. The recircu-
lating part of the Stokes layer does not
cover the entire sphere but just the
equatorial belt. Over the remaining
region in the Stokes layer, the outer flow
continues into the Stokes layer. The
detail in the Stokes-layer region is not
clear in this figure, and is shown on a
stretched radial scale in Fig. 5.
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Fig. 5 Detailed flow field in the Stokes layer on the surface with a stretched radial scale.
Reproduced from ref. 29.
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Fig. 6 Streaming about a solid sphere displaced between velocity node and antinode for kz, =
/8, k = 0.3, and |[M] = 800. With small displacement from the antinode, the flow is nearly
symmetric about the equator. Reproduced from ref. 19.
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4 Streaming around a sphere
placed between nodes

A particle levitated in a gravity field
would position itself between the velocity
node and the antinode. The analysis of a
solid sphere levitated between nodes has
been carried out. In this development,
use is made of the antinode solution of
Riley?' and the node solution (see pre-
vious two sections) through a nonlinear
combination. Full calculations within the
Stokes layer have been carried out.'
However, the details of these calculation
will not be presented since these can be
easily derived from the liquid-drop cases
(discussed in tutorial 16°*) when the
infinite-viscosity limit is taken. The basis
of the analysis is the expansion of the
standing wave for which we express the
dimensional velocity u.” such that'®

w.' = Ugcos(kz')e" = Uycos(kz)e'
= Uy [cos(kzy) — k(z — zo)sin(kzg)
+ O(k*(z — z))e", (75)

where we use the previous definition of the
dimensionless wavenumber k = ka. This
right-hand side represents the local velocity
in the neighbourhood of the sphere centered
at z = z,, the dimensionless displacement of
the center of the sphere from the velocity
antinode. The expansion splits the far-field
velocity into solutions about the velocity
node and the antinode. While the leading-
order irrotational parts combine linearly,
the streaming part is nonlinear and there
are terms in addition to the node and the
antinode solution. This procedure is
detailed in tutorial 16** for the liquid drop.
However, the solid-sphere results are rele-
vant here, and some of them are presented.

We have found that the results are
consistent with the outer solution of Lee
& Wang.® In Fig. 6-8, we can see the
streamlines for a solid sphere with & =
0.3. It is apparent that the asymmetry
about the equator in the streaming
pattern when the sphere is away from
the velocity antinode is because of the
asymmetric distribution of the undis-
turbed flow. There is stronger streaming
on the velocity antinode side where the
fluid velocity tends to be higher. Away
from the surface of the sphere, the flow
pattern does not depend on |M| of
course, but on the displacement kz,. It
is noted that there is a transition value

_3 1 1
=3 -2 -1

0 1 2 3

Fig. 7 Streaming about a solid sphere displaced between velocity node and antinode for kz, =
5n/16, k = 0.3, and |M] = 800. With increasing kz,, the equatorial symmetry is broken.

Reproduced from ref. 19.

kzo = Ky (with 51/16 < K, < 31/8) in the
flow pattern. When kzo < K, there exists
a thin recirculating region, limited to the
Stokes layer adjacent to the surface, quite
similar to that for a solid particle at the
velocity antinode. Since this region is
quite thin, it is not clearly visible in
Fig. 6-7. However, when kz, > K, larger
vortices appear around the north-pole
region, as shown in Fig. 8.

5 Oblate spheroid at the velocity
antinode

For non-spherical particles, the analysis
increases in complexity, and the set of
available analytical results is quite limited.
One analytical invesitgation by Rednikov
& Sadhal'’ provides a detailed set of
results with changes in the aspect ratio
for an oblate spheroid. The full analysis is
quite elaborate for the scope of this
tutorial, and only a limited aspect up to
the point of steady streaming in the Stokes
layer is being presented. The formal setup
of the problem is an oblate spheroid

vibrating parallel to the polar axis, much
like Riley’s*' problem for a sphere.

5.1 Formulation and results

The scaling of the variables and system
constants given by eqn (1) and (3) apply
once again. To accommodate the spher-
oidal geometry, an appropriate spheroidal
coordinate system was used. The relation-
ship between cylindrical (¢',z",p) and the
oblate spheroidal system (4, fi, ¢) is

d=cip, o =c(1+H)"F(1—-p)'2(76)

with0 < A<, -1 <A< 1,0<¢<2m

The parameter c is the focal radius, and the
equatorial and polar radii are
a=c(l+ )" b=ciy (17
respectively, with 2 = 1y defining the
surface of the spheroid (see Fig. 9). With
the flow being axially symmetric, eqn (5)
can be used (thus satisfying the continuity
equation) whereby the velocity compo-
nents may be expressed nondimensionally
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kzo = Tn/16

Fig. 8 Streaming about a solid sphere displaced between velocity node and antinode for & = 0.3,
and |M] = 800. Close to the node (kzo = n/2), vortices develop on the north-pole side. Reproduced

from ref. 19.
as’
T a? oy
B 201 o\ 232 o\1/2 90
(1= (i +p2)/s oz
(78)
a> oy

20+ D)2 )2 o

For the purpose of nondimensionalization,
we are using the major radius « as a length
scale. For this case of incompressible axisym-
metric flow, eqn (6) for the conservation of
momentum is applicable. We shall not give
the details which are available in ref. 17.

The boundary conditions consist of
oscillatory flow parallel to the polar axis
at infinity, and the usual no-slip and non-
penetration at the solid surface of the
spheroidal particle. Thus, in the far-field,
¥ = % (ola)*e, and with the transforma-
tion (76) we obtain

>0 - %(c/a)z(l + 31—, (79)

At the surface of the oblate spheroid, we
have
oy
A=Ay w=ﬁ=0. (80)
As for most streaming flow analyses
involving solid boundaries, the problem
here is singular and requires the detail in
the Stokes layer. Within this layer, we use
the inner variables which entail stretch-
ing of the coordinate in the direction
normal to the solid surface. With the
dimensional layer thickness being O(a/
|M)), we write

y_ G +r)"?

v |M|(2— o)

(81)

and
¥ =My (82)
Leading order oscillatory flow.
Sparing all the detail, the solution for

the outer irrotational flow is found to
bel7

2
Y = (C/T“) (1422 —(1+75)
) , (83)
(1+2%) arccot(A)— 1 (1— )t
—)e",
(1 +),%) arccot (o) — Ao !
and for the Stokes layer,
oo _ AQ+R)"
NV
(A9 + 1) (84)

x {Y— % [1—5“]}(1—#)5)“
where vi=(1+1)/v2 and
(c/a)

(14 42) arccot (Ag)— Ao

(85)

The superscript (1) refers to the unsteady
flow. Next, we consider the steady part of
the flow in the Stokes layer.
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Steady streaming in the Stokes layer.
Again, leaving out all the details, the O(e)
result in the Stokes layer, keeping only
the steady part denoted by the super-
script (s), is

o A" a0 —)

P —
Va(c/a) G+ )
i (86)
Y\ 1—n& Y
" {‘(&)W”’Z(ﬁ)
with

fi(z)=ze “sinz+3e “cosz+2e “sinz

I .. 3 13 (87)
e T+ z——,

*y 2° 4

fr(z)=2ze “sinz+5e “cosz+3e “sinz
. 521 (88)

e T4+ -z—

27 4>

Sl

+

and A is given by eqn (85). It should be
noted here that the ordering for the
steady and unsteady flows corresponds
to ¥ = ¥® + ¢¥®. We now examine the
edge of the Stokes layer by letting Y—o°.
Upon examining d¥/0Y as Y—%, we
see that there is a nonzero velocity in the
direction which is tangential to the solid
surface. Detailed calculations'” show
that the effective slip velocity is

WP =iy,
(-2 39)
G+ ]

_ A gy
Ac/ay’ | g+

The sign of the slip velocity in eqn (89) is
such that the flow takes place from the
equator towards the poles. The distribu-
tion (89) is shown in Fig. 10 for various
aspect ratios of the oblate spheroid.

In place of the coordinate , the scaled
distance s along the surface is used with
—1 < 5 < 1 and s = 0 defined to be at
the equator of the spheroid, while s = +
1 correspond to the poles. In view of the
symmetry with respect to the equatorial
plane, the distribution over only one
hemisphere is shown in Fig. 10. For any
given aspect ratio b/a, the parameter /g is
determined from (77) for a given value of
bla while ¢ = al(1 + ),%)”2.

5.2 Discussion

The streamlines for the steady flow in the
Stokes layer are represented in Fig. 11
corresponding to eqn (86). Here the

vertical scale is highly exaggerated, and
again the scaled relative distance along
the surface is used in the plot.

The results depicted in Fig. 10 and 11
show that the streaming intensity sharply
increases with decreasing the ratio b/a of
the oblate spheroid, the other constraints
being the same. Besides, as the intensity
increases, the center of the streaming
(location of the maximum intensity)
becomes strongly displaced towards the
sharp edge (equatorial plane, s = 0) of the
particle. Another effect of the aspect
ratio change is that the streamlines
become much denser around the sharp-
edged equator than they are in other
parts of the region when b/a gets smaller.
The zone of recirculation covers the
entire spheroid in a manner quite similar
to that of a sphere (Fig. 11). However, in
contrast from the sphere, the thickness of
this zone becomes slightly nonuniform.

Among the major purposes of this
study was to see how changes in the
aspect ratio and the deviation from
sphericity play into the streaming beha-
vior of the flow field. It is therefore of
interest to discuss the asymptotic beha-
vior of the streaming characteristics as
the ratio of the minor to the major axes,
bla, tends to zero as for the circular disk
limit (i.e., 4p—0). For this illustration, A
is chosen as the smallness parameter, and
the scalings for the variables ui-f), sand f
are established in the zone of the most
intense streaming. These are obtained by
following the maximum of the effective
slip velocity (89). From eqn (77), the
geometric parameters can be examined
for small Jy. Simple expansions yield

bla = dg + 00>,
ale =1+ 00\, as 1g—0.  (90)
From (89), and following the detailed
calculations of Rednikov & Sadhal,'” we
obtain

uy = 00 ).
5= 00d), i = 0(Jo) as ig—0 (91)

from which we can see that ui-f) ~1/s, a
characteristic observed in Fig. 10 for
small /.

It is also noteworthy that the radius of
curvature R. taken at the sharp-edged
equator of the oblate spheroid is

Rda = 0(2) as ig—0.  (92)

Focal point
p=c,z=0

#=-05

=-1
# #=-085

Fig. 9 Schematic of the oblate spheroidal
coordinate system. Reproduced from ref. 17.
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Fig. 10 Slip velocity distribution as a function
of scaled distance from the equator for various
values of b/a. Reproduced from ref. 17.

Considering that s~ RJ/a as 1o—0, we
can interpret that the most intense
streaming occurs on the scale of the
equatorial radius of curvature which
turns out to be a significant parameter
for streaming intensity. With detailed
scaling arguments,'” it is shown that to
maintain validity of the results close to
the disk limit (1o—0), the flow para-
meters ¢ and |M| need to be more
restrictive than ¢ « 1 and [M]* > 1.
The radius of curvature becomes a
relevant length scale for this purpose,
and for the Stokes layer to remain thin,
|M*~ M 2g>1. (93)

. &
i~ —«1
R

0

There has been considerably more
work done on this problem,!” particularly
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Fig. 11 Streamlines in the Stokes layer for
various values of b/a. Here s = 0 corresponds
to the equator and s = 1 to the pole of the
spheroid. The vertical scale is stretched coor-
dinate normal to the spheroid. Reproduced
from ref. 17.

in relation to streaming outside the
Stokes layer. It turns out that for Ry «
1, to the leading order (O(¢) in this case),
the outer streaming is described by the
fourth-order Stokes equation for the
stream function, and the use of the non-
penetration boundary condition together
with the slip velocity (89) gives the flow
field. While the outer streaming flow field
is quite interesting, and changing the
aspect ratio leads to substantial deviation
from the sphere case, the discussion is
outside the scope of this tutorial which is
kept limited to the Stokes layer for this
problem.

6 Conclusions

In this tutorial, we have provided tech-
niques for tackling streaming-flow pro-
blems that arise when solid particles
interact with sound waves. The cases of
a sphere at the velocity antinode (pres-
sure node) and the velocity node (pres-
sure antinode) of a standing wave have
been presented, and dealt with analyti-
cally by the singular perturbation
method. With all cases considered, a
typical small dimensionless parameter
e = (Upwa) « 1, coupled with the
frequency parameter |M|” = wd®lv > 1,
facilitate the analysis. Considerable
depth of understanding is achieved with
limiting cases of the streaming Reynolds

number R, = Ui/wy = &I M]? being small.
This is the Reynolds number associated
with the mean time-independent flow
that arises as a result of the nonlinear
interaction of the sound wave with a
solid surface. It has been established that
for the flow parameters under considera-
tion, the leading-order streaming flow is
typically an order higher than the pri-
mary oscillatory flow.

Also presented was the situation cor-
responding to a spherical particle
between nodes, followed by an oblate
spheroid at the velocity antinode. The
first case of a particle at the velocity
antinode is mathematically equivalent to
a sphere vibrating in an otherwise
quiescent fluid, provided the wavelength
is large compared with the particle size.
The analysis can be carried out with the
incompressible flow approximation. The
interesting aspect of the streaming flow
field is the existence of a thin recirculat-
ing zone at the surface of the sphere.
Such a zone is also present in the case of
a sphere placed at the velocity node.
However, the recirculating region does
not envelope the entire sphere but rather
just an equatorial belt with coverage
depending on the flow parameters. The
calculations for this flow field demand
the compressible flow analysis which
does not lend itself so easily to the usual
stream function formulation that works
for axisymmetric flow.

The flow field for the case of the
sphere between nodes is a nonlinear
combination of the node and antinode
solutions. The results are more interest-
ing with the presence of vortices corre-
sponding to the streaming in the Stokes
layer as well as the bulk region. In
particular, there are full toroidal vortices
present near the polar region of the
oncoming streaming flow, qualitatively
resembling the visualization exhibited in
Fig. 2. However, it is possible to attribute
such vortices to the presence of chamber
walls of a levitation system.'>

The analysis of an oblate spheroid at
the velocity antinode, while a complex
problem, is interesting from the stand-
point of changing aspect ratio and edge
curvature. The results presented here
were limited to the steady streaming in
the Stokes layer. With increasing major
to minor axis ratio, the streaming vor-
tices in the Stokes layer shift towards the
equator. Also seen is an increase in the

streaming intensity with this aspect ratio
increase. The radius of curvature about
the equator is an important determinant
for this streaming intensity which varies
inversely with the radius. Not surpris-
ingly therefore, the slip velocity near the
equatorial region is in inverse proportion
to the square of the radius of curvature.

In this tutorial we have presented a
limited set of results concerned with
acoustic streaming that takes place when
ultrasound waves interact with solid
particles. In particular, for ¢ « 1 and
|M| > 1, there is intense streaming in the
thin Stokes layer near the boundary. The
streaming propagates into the bulk of the
fluid with intensities an order higher in ¢
than the leading-order flow. It should be
noted that the bulk streaming (i.e., out-
side the Stokes layer) can be analyzed by
considering an effective slip velocity on
the boundary.®!'!"!8 As far as the stream-
ing phenomenon is concerned, there are
several other interesting results such as
the effect of two orthogonal ultrasound
beams interacting with a particle.®'¢
With the beams being coherent but out
of phase by n/2, there is a net torque on
the particle which, if free to move,
rotates. This mechanism has been used
with levitation work when it is desired to
spin a levitated particle.® Streaming
phenomenon is also seen when a particle
experiences rotational oscillations in an
otherwise quiescent fluid.> However, it is
not immediately obvious if an ultrasound
wave would produce an equivalent flow
field.
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