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This review deals with hopping conduction under dc conditions. A new theory of hopping
conduction, based on the percolation method, is put forward. This theory makes it pos-
sible to find the dependence of the resistance on the concentration and chemical nature
of impurities. It also predicts the giant hopping piezoresistance of germanium and the
glant positive magnetoresistance of AIIBV crystals in the hopping conduction region.

A theoretical analysis is made of the activation energy of hopping conduction in weakly
and strongly compensated semiconductors. All the theoretical conclusions are com-
pared in detail with the experimental results.

1. INTRODUCTION

A semiconductor is regarded as lightly doped
if the impurity concentration N is such that the
average distance between impurities N™1/3 ig great-
er than the Bohr radius a of the impurity (N&® « 1).
Two charge-transport mechanisms operate in such
a semiconductor. At relatively high temperatures
the conduction is due to electrons which are ejected
from impurity levels to the conduction band (to be
specific, we shall assume that the impurities are
donors). When the temperature is lowered, the
number of electrons in the conduction band de-
creases rapidly and jumps of electrons from donor
to donor increase in importance. These jumps oc-
cur because of the exponentially small overlap of
the wave functions of two neighboring impurity
states (free donors are usually present because of
compensation). This type of conduction is known
as the hopping process.

Experimental and theoretical investigations
of hopping conduction carried out up to 1961 are
discussed in detail in the well-known review of Mott -
and Twose [1]. During the last decade much new
work has been published. In particular, many in-
vestigations deal with hopping conduction in lightly
doped semiconductors under ‘ac conditions (see,
for example, [2, 3]). The hopping conduction ideas
are frequently used in the interpretation of the ex-

perimental data obtained for crystalline, as well as
amorphous semiconductors [4, 5]. In recent years
it has become accepted that in strongly compen-
sated semiconductors the hopping mechanism may
be observed not only in the case of light doping

but also under heavy doping conditions when N& >
1 [6]. In the absence of compensation the elec-
trons in a heavily doped semiconductor form an
almost perfect Fermi gas and the conduction is of
a metallic nature, i.e., the conductivity is high and
does not vary strongly with temperature. When a
heavily doped semiconductor is compensated by
the introduction of impurities in amounts similar
to those present initially, the metallic conduction
is destroyed [7]. This happens because the elec-
trons remaining in the conduction band collect in-
to metallic droplets separated from one another
by high and difficult to penetrate potential barriers.
In other words, the electron sea dries out and
leaves behind a few isolated lakes. If the tempera-
ture is sufficiently high, the electrons in such a
system acquire thermal energy sufficient to over-
come the potential barriers. However, at very
low temperatures the electrons are highly unlikely
to overcome the barriers and the conduction is due
to the tunneling across the barriers, i.e., due to
jumps from one potential well to another. This
mechanism can be justifiably called the hopping
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conduction. Thedifference betweenthis mechanism
and the hopping conduction in a lightly doped semi-
conductor is that the electron states before and
after a jump do not belong to the same impurity
but are due to fluctuations in the concentration of
impurities which involve many impurities simul-
taneously.

We shall not discuss these new aspects of hop-
ping conduction. We shall restrict our review to
the investigations which deal with the dc hopping
conduction in lightly doped semiconductors and with
the dependence of this type of conduction on the
concentration and chemical nature of the impuri-
ties and its dependence on the temperature, mag-
netic field, and pressure. The review will be based
on a new theory of hopping conduction, which has
been developed in a series of papers [8-12], It
follows from this theory that, in particular, the
principal results of the well-known work of Miller
and Abrahams [13] — which are frequently used in
the analysis of experimental data — are in error.
The new theory will be used to review the old data
and to analyze the large amount of new experi-
mental information on hopping conduction.

Let us start by recalling the principal experi-
mental observations [1]. At sufficiently low tem-
peratures the conductivity of a lightly doped semi-
conductor ¢ is of the form

€ _i
s=pile * 4 pgle M, (1)

where the first term represents the contribution
of the "band" conduction and the second term the
contribution of hopping conduction. At "inter-
mediate" doping levels (in the case of germanium,
these levels correspond to donor concentrations in
the range 10'® < Np < 10! cm™) in a weakly com-
pensated semiconductor, the conductivity has an
additional term p;le” £2/KT (¢, > &, > £,), whose
origin is not yet fully understood. Traditionally,
this term is called the third term. Most of our re-
view will be restricted to impurity concentrations
in which this third term p3!e~%2/KT ig negligible,
The necessary condition for the hopping con-
duction is the compensation. Let us assume that
there are Np donors and Np acceptors (Np < Np)
in a unit volume of a semiconductor. Then, at low
temperatures the Np acceptors will capture elec-
trons and become negatively charged and the Ny
donors will remain unoccupied, i.e., positively
charged. The random potential of charged impuri-
ties leads to slight differences between the ener-
gies of the levels of the various donors, and the ab-

sorption of phonons is necessary in jumps from
one donor to another. This is the reason for the
activation-type temperature dependence of the
hopping conductivity. The quantity £ depends on
the concentrations of the principal and compensat-
ing impurities, i.e., it depends on Npj and on Nj.
However, the main dependence of the hopping con-
ductivity on Np is included in the factor p;. This
factor increases exponentially with decreasing Np
and, therefore, it is convenient to write it in the
form pg = poeﬂND), When Ny, is altered by a fac-
tor of 30, the value of p3 increases by a factor of
107 [1]. The exponential variation of p; is due to
the fact that the probability of a jump Wjj of an
electron from a donor i, located at the point rj, to
a donor j, located at rj, is proportional tothe square
of the modulus of the overlap integral of the wave
functions of the ground state of an electron ateach
of the donors [13]:

woo |Jumemal. (2)

We shall assume that the electron spectrum is iso-
tropic, i.e., that the wave function of each donor is
hydrogen-like and that it decreases at large dis-
tances in accordance with the law ¥i o« exp (~|r—
ri|/a), where a = i/ (2m*E)!/? is the Bohr radius
of the ground state; E is the experimentally de~
termined ionization energy of the donor; m* is
the effective mass. Then, we find that

2ris

Wyoee o, (3)

where rj; = lri—rj | is the distance between the do-
nors i and j. At low donor concentrations the aver-
age distance between donors is Nl‘)1 3 > a and,
therefore, the probability of a jump between neigh-
boring donors is exponentially small and the re-
sistivity p; is exponentially large.

We shall begin our review by presenting the
theory of the quantity ps in the simplest case when
the wave function of an impurity is isotropic (Sec.
2). In Sec.3 we shall generalize this theory to the
case of anisotropic wave functions and discuss the
influence of pressure on the resistivity p;. In Sec.
4 we shall consider the hopping conduction in strong
magnetic fields. Sections 5 and 6 are devoted to
the activation energy ¢; in the case of weak and
strong compensation. Finally, Sec.7 deals with
the hopping conduction at very low temperatures,
when Eq. (1) is no longer valid and 0 decreases
in accordance with the law exp {—(TO/T)1/4},which
was predicted by Mott [5].




HOPPING CONDUCTION

2. RESISTIVITY p; FOR ISOTROPIC
IMPURITY STATES

We shall at first assume that the tempera-
ture is so high that there are sufficient phonons
for electron jumps. Then, the probability of a jump
Wij depends weakly on T and is given by Eq. (3).

It follows from Eq. (1) that we can find pg by cal-
culating the hopping resistivity at high tempera-
tures. Miller and Abrahams [13] have shown that
the resistivity p; can be calculated using an equiv-
alent circuit, which is a three~-dimensional net-
work of resistances in which each joint represents
"a definite donor and the resistance between any
two donors i and j is proportional to W , l.e., it

is proportional to e%Tij /@, we shall calculate the
resistance of such a random network by the method
suggested in [8]. We shall then show that the meth-
od employed by Miller and Abrahams leads to in-
correct results.

We shall consider all possible chains of donors
joining two opposite surfaces of a crystal (con-
tacts). In each chain the resistances are connected
in series and, therefore, the resistance of a chain
is governed by the elements with the largest values
of rij' We shall represent each chain by R, which
is the maximum size of the elements in it. If there
are many chains, those with lower values of R shunt
the chains with higher values of R and govern the
resistance of the whole network. Thus, the most
important are the chains with the lowest values of
R. One might assume that there is no lower limit
to the value of R for any given chain, In a random
distribution of impurities there is a very small but
finite probability that two donors will be separated
by a very short distance and that the third, fourth,
etc., donors will approach very closely the original
pair. However, if R < Np/?, this probability de-
creases very rapidly with increasing length of the
chain because it is proportional to (NDR3)m, where
m is the number of links in the chain. We are in-
terested in the formation of an infinite chain (m —
«), In this case, the probability of very close
spacing of all the donors in a chain vanishes for
R « Np/3. Thus, 2 network will not have any
chains which connect opposite faces of the sample
and which are characterized by R < NpY/ 3,

On the other hand, it is self- ev1dent that there
will be a very large number of chains with R >
NpY3. Hence, it follows that there is a critical
value R = R, beginning from which chains joining
both contacts will appear in an infinite crystal.
Moreover, it is clear that R¢ is close to the aver-
age distance between donors N[ ~1/3_ In other words,
the volume of a sphere of radlus R¢is of the or-
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der of the average volume occupied by a donor
(Np), i.e.,

&
3 NpR3 =, )

where B, is a coefficient of the order of unity. It
is not possible to calculate B, analytically. The
mathematical task of finding 8 has been consid-
ered in [14] in connection with a different physical
problem. The value of B8, was found in that paper
by the Monte Carlo method with the aid of a com-
puter., It was found that g, = 2.32, ie., Rp =
0.82Np/3. The calculations reported in [14] con-
f1rmed that there should be no chains with R < Rg.
Moreover, they showed that a considerable frac-
tion of all the donors should be localized in chains
with R exceeding Rc only by 10~159, (R ~ 0.95}/3).
Since the resistance of a chain with a specified
value of R is proportional to e?R/a and since it in-
creases rapidly with R, it follows that the resis-
tance of the whole crystal is governed by the chains
for which R is only slightly higher than R, i.e.,
we find that

pa=rpoe’ "D, f(Np)=——, (5)

,,,a
where o is about 109 larger than 2(38,/4m)Y3 =
1.64, i.e., it is close to 1.8,

The mathematical task of calculating Re, iee.,
the task of finding pj, can be formulated in the lan-
guage used to deal with the percolation of a liquid
in a random maze of channels [15]. We shall as-
sume that a "wet" donor can "wet" a neighboring
donor only if the separation between them is less
than R. Then, R¢ is that value of R for which one
"wet" donor can "wet" an infinite number of other
donors (the donor concentration Ny is assumed
to be fixed). Therefore, the method we shall use
to find py can be called the percolation method.

We thus obtain f (Npy) for hydrogen-like im-
purity states. However, the percolation method
cannot be used to find the preexponential factor
po in spite of the fact that the coefficient in the
equation for the probability of a jump (3) can be
calculated quite rigorously [13]. The difficulty
arises because we do not know the exact number
of chains which make the main contribution to p,
(i.e., the chains with R > R¢) and the number of
links in each of these chains. We can only say that
these quantities depend, in a power-law manner,
on the value of ND, so that the resistivity p, is also
a power function of Np. Since the resistivity p,
does not contain any large parameter, its order
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of magnitude should be the same as that of the
"band" resistivity of N electrons, i.e., it should
be of the same order as p;. This is indeed ob-
served experimentally.

Miller and Abrahams [13] calculated the re-
sistivity p; of a random network by a more com-
plex and very artificial method. We shall give a
simple interpretation of their calculation and try
to find the physical origin of the errors they com-
mitted. Miller and Abrahams [13] assumed that
because of a random distribution of impurities in
a crystal there are regions of radius r greater
than Np? in which there are no donors, The
probability of the appearanee of a depletion re-
gion r° is given by the Poisson distribution [16]
and is equal to exp(—Npr?). Next, Miller and Abra-
hams assumed effectively that any chain of donors
connecting two contacts intersects such regions.
An electron jump across a region of this kind is
highly unlikely, i.e., a donor-depleted region has
a very highresistance, of the order of exp (r/a).
The contribution of the donor-depleted regions
of radius r to the resistance of a chain is pro-
portional to

exp (%) exp (—N prs), (6)

The product (6) has a sharp peak at the point where
R is of the order of (aNp)~%?2 =Rp,. Since all the -
resistances in a chain are connected in series,

the total resistance of the chain is dominated by
the elements of length close to Ry,. We shall find
the resistance of a chain of this kind by substitut-
ing Ry, in Eq. (6). If we assume that all the chains
have the same resistances, we find that the re-
sistivity of a crystal is given by

pg o eXp [(NDa:’)"/'}. (7)

The above expression is the main result of Miller
and Abrahams (we deliberately omitted the numeri-
cal coefficients in the argument of the exponential
function). We can see that the resistivity found by
the percolation method [Eq. (5)] for a lightly doped
(Nl')i/ 3 > @) semiconductor is much smaller than
the resistivity given by Eq. (7). The reason why
Miller and Abrahams obtained an overestimated
value is quite clear. Obviously, in addition to the
chains which intersect donor-depleted regions,
there must be a very large number of chains which
bypass such regions (Fig.1). Large donor-depleted
regions are very rare and it would not be diffi-

cult to imagine a chain which would bypass even
large regions. A clear proof of these conclusions
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Fig. 1. Circles denote donors and the solid line is a low-resistance
cbainbypassing all the random donor-depletion regions. The dashed
line represents the intersection of a donor-depletion region, as pos-
tulated by Miller and Abrahams [13].

is provided by the computer calculations reported
in [14]. The chains which bypass the donor-de-
pleted regions shunt the chains with higher resis-
tances and reduce the resistivity of the whole crys-
tal to the value given by Eq. (5).

The result given by Eq. (5) differs also consid-
erably from the equation

(V)= (®)

which was obtained by Mott and Twose [1] with the
aid of an approximate method for the averaging of
the resistances of chains suggested by Pippard.
We shall show later that the experimental data
support Eq. (5).

The fullest information on the dependence of
the hopping conductivity on the concentration of
the principal impurities is available for n- and p-
type germanium [17, 18]. However, the theory we
have employed so far is applicable only to iso-
tropic wave functions of impurities. Therefore,
strictly speaking, it cannot be applied to germani-
um because the wave functions of the impurities
in this semiconductor are anisotropic. Neverthe-
less, we can compare Eq. (5) with the data for p-
type germanium. This is because the overlap in-
tegral of Eq.(2) is dominated by the asymptotic
behavior of the wave function at large distances
from an impurity. In the case of acceptors, this
behavior is governed by the light holes [19]. Since
the ridge in the constant-energy surface of the
light holes does not exceed 69, [20], it can be ig-
nored in the first approximation to the problem.
Then, the wave function of an acceptor at large
distances from it is of the form [19]

Ir-ri|

A

ay L .
$i(r)ec e , q \/_—_Zm‘i.E , mYy=0.047Tm, (9

Here, E is the ionization energy of the acceptor;
mf is the effective mass of the light holes; m is
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Fig. 2. Dependence of the resistivity pg of gallium-doped ger-
manium on the concentration of gallium: 1) undeformed crys-
tal; 2) crystal subjected to uniaxial pressure. The degree of
compensation of all the samples was K = 0.4,

the mass of free electrons. Fritzsche and Cuevas
[18] studied germanium in which the principal im-
purity was gallium and for which the degree of
compensation was 0.4. In this case, E = 10.8 meV
and g; = 87 A, so that Eq. (5) leads to fiheor(Na) =
1.150 - 10° em™! - N3!/3 (the concentration Ny is
used instead of Ny because we are now talking of
a p-type semiconductor). The experimentally de-
termined value of log pj; is found by extrapolation
of the dependence of log p (1/T) to infinite tem-~
peratures. Points denoted by 1-in Fig.2 represent
the dependence of log p; on N3!/3 taken from [18].
We can see that this dependence is linear and that
the slope of the line gives fexp(Na) = (2.2 £
0.1)+10° cm™' - N33, Comparing f gy ,(NA) with
Stheor®™A), we find that o = 1.9 £ 0.1. This value
of @ is in satisfactory agreement with the theore-
tically predicted @ =1.8.

Fritzsche and Cuevas [18] analyzed their re-
sults using the equation of Mott and Twose (8) and
found that @ = 40 A for gallium. They remarked
on the good agreement between this value and those
obtained from the hydrogen-like model and the va-
riational calculations of the acceptor states [21].
However, we have already pointed out that the
Bohr radius, which describes the asymptotic be-
havior of a wave function, is completely unrelated
to these values. If we use the correct radius a =
ap =87 A, we find that the equation of Mott and
Twose for f(Np) diverges by a factor of more than
2 from the experimental data.

The ridge in the constant-energy surface of
the light holes in silicon does not exceed 129 and,

. therefore, Eq. (5) can be compared with the re-

- sults on the hopping conductivity of weakly com-
pensated p-type silicon [22]. Figure 3 shows the
dependence of log p; on NZ\U 3 for boron-doped sili-
con, We can see that this dependence is nearly
linear. The slope gives fexp(Na) =8.6°107% cm™ -
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N3, If the average mass of the light holes is
taken to be m;‘ =m/6 [20] and the ionization en-
ergy of boron is assumed to be E = 45 meV [23],
we find that a7 = 22.8 A. The substitution of af
into Eq. (5) gives fipeor(Na) =4.4a-1078 cm™.
N3 and a comparison of fiheor With fexp yields
o =1,9. This value is in agreement with that ob-
tained for gallium-doped germanium and is close
to the theoretical value of 1.8. However, it should
be pointed out that whereas in gallium-doped ger-
manium ¢« is obtained to within 59, in the case of
silicon the same parameter ¢ is found to within
10-159,

We shall not analyze the data on gallium- and
aluminum-doped silicon {22] because of the cor-
relation observed in the distribution of impurities
in these materials,

The good agreement between the theory and the
experimental data can be regarded as a confirma-
tion of the theory of hopping conduction based on
the percolation method. One can also assume that
the method is correct and regard the agreement
with the experimental results as a confirmation
of the correctness of our calculations of the Bohr
radii. In those cases when the Bohr radius is un-
known, it can be found by analyzing the dependence
of log p3 on Nf;/% onthe assumptionthat a = 1.8-1.9.

It is difficult to compare the theory with the
data on AIIBV crystals because, usually, the con-
centration of the principal impurity is not known
sufficiently accurately for samples with the very
lowest carrier densities. However, we shall show
that, in this case, Eq.(5) can be used to obtain some
additional information. We shall do this by con-
sidering the data reported in [24] on the hopping
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conduction in epitaxial films of n-type gallium
arsenide (Fig.4). Equation (5) is applicable to
gallium arsenide because the wave functions of
electrons localized at donors are isotropic. If we
use m* = 0.07m and E = 5.7 meV, we find that a =
97 A, If we assume that a = 1.8, we find that Eq.
(5) yields fipeor(Np) = 1.75 108 cm™ - Np}/3. Fig-
ure 4 shows the dependence of log ps on the aver-
age distance between electrons (n'1 3). Let us see
what we shall find if we assume that Np = n. Let
us draw a straight line with a slope given by the
expression for fipeor(Np) in such a way that it
passes through the point 1. We find that the same
line also passes through the point 2 (Fig. 4) and that
the intercept on the ordinate gives the usual value
log py =~ —3. Consequently, the assumptionthat n =
Np leads to good agreement between the theory and
experimental data for samples 1 and 2. Hence, we
may conclude that the compensation of these sam-
ples is weak. The point denoted by 3 is outside the
theoretical line and, therefore, it is not permissible
to assume that n = Npy in sample 3. If we shift
point 3 so that it falls on the line, we can estimate
the impurity concentration in sample 3. Such an
estimate gives Np/n ~ 2.7 (K = NA/ND ~ 0.63).
Thus, the degree of compensation can be calcu-
lated approximately with the aid of Eq. (5).

3. RESISTIVITY p3 FOR ANISOTROPIC
IMPURITY STATES

The assumption that at large distances the
wave function of an electron attached to an impuri-
ty decreases isotropically in accordance with the
law exp (—r/a) restricts strongly the range of ap-
plications of the theory proposed in Sec.2. For
example, this theory cannot be applied to n-type
germanium or n-typé silicon because the wave
functions of donors in these materials are strong-
ly anisotropic. Moreover, the isotropic form of
the theory cannot be applied to hopping conduction
in strong magnetic fields because, in this case,
the wave functions of impurities are strongly elon-
gated along the field. In this section, we shall gen-
eralize the theory to the case of anisotropic wave
functions and then compare the results obtained
with the experimental data on n-type germanium.

If the wave functions of impurities i and j are
anisotropic, the overlap integral (2) and the jump
probability Wijj depend not only on the distance
between impurities, but also on the orientation of
the vector T joining these two impurities with re-
spect to the crystallographic axes or to the applied
magnetic field. We shall consider first the i-th
impurity and construct around it a constant-over-
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Fig. 5. Circles represent donors and squares around each donor are
the anisotropic "surfaces” Sp. In the upper half of the figure the
squares correspond to larger values of L than in the lower half.

We can see that percolation along the same chain may occur at
large values of L but not at low values of this parameter.

lap surface Sy, in accordance with the equation

—InW;;(r) =L, L>1. (10)
This surface is the geometrical locus of the posi-
tions of the impurity j for which the probability of
a jump from the central impurity (i) is constant
and given by Eq. (10). For convenience, we are
using the minus sign in Eq.(10) and replacing Wij
with InWj; because the probability Wj; is expo-
nentially small. The dimensions of the surface Sy,
increase with increasing L. This follows from an
analysis of the case of an isotropic wave function
when Wj; is given by Eq. (3), and Eq. (10) is of the
form 2 |rjj|/a =L and defines a sphere of radius aL/2.
The same example also shows that if r;; lies in-
side the surface Sy, the probability Wij is greater
than e”L,

We shall assume that surfaces Sy, correspond-
ing to the same value of L are constructed around
every impurity on the assumption that every im-
purity is located at the center of a coordinate sys-
tem. It follows that in a chain of impurities in
which each donor lies inside the surface S, of the
preceding donor (Fig.5a), the exponential factor
in the resistance of such a chain does not exceed
el., The question now arises as to what is the
smallest value of L for which we can have an in-
finite chain of the type shown in Fig.5a. If L is
so small that the volume V(L) enclosed by the sur-
face 81, is small compared with the average vol-
ume occupied by one donor (Nl'jl), we cannot find
an infinite chain which will satisfy the stated con-
dition, At low values of L the surface Sy, only
rarely contains two donors. In other words, there
is no percolation for these values of L (Fig.5b). If
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L is so large that V(L) > Nl')i, the number of chains
joining both contacts is very large. Therefore,
there must exist a critical value L¢ of the con-
stant L which is a measure of the size of the sur-
face St, and at which infinite chains appear first,
i.e., the value corresponding to the onset of per-
colation. Clearly, the value of L is defined by
the condition

. V(Lo)ND.:?sy' ’ (11)
where Bg is a numerical coefficient of the order of
unity, and usually depends on the shape of the sur-
face Sy,. If we adopt the percolation approach, we
may assume that when L exceeds by 10-159 the
value L the number of infinite chains will be
large. If the coefficient B g is found by numerical
calculations and L¢ is deduced from Eq. (11), we
find that ‘
/), (12)

Py < e

where f(Np) is only several percent larger than
Le. .

We shall now consider a general method for
finding ps by analyzing the isotropic case men-
tioned above. In this case, St, is a sphere of ra=
dius qL /2 and the parameter B s is known and
equal to B, = 2.32 [see Eq.(4)]. Therefore, V(L) =
7a’L3/6 and L¢ = 1.64/N7}/%q, i.e., we again ob-
tain the result given by Eq. (5).

We shall now apply the general equation (12)
to n-type germanium. It is known [23] that the
wave function of an electron localized on a donor
is of the form

4
¥ (l‘)=2 CoFy (r) Dy (r), (13)
n=1

where &y (r) is the Bloch function for the n-th val-
ley in the conduction band and Fp(r) is the slowly
varying envelope function. Usually, the latter is
written in the form

224 y?

F, (r) = (ma%) ™" exp {—[ T+ %—Z—]/} . (14)

where the z axis is parallel to the directions of the
[111] type, along which the n-th valley is oriented.
The semiaxes of the ellipsoid (2 and b) are found
by variational calculations. However, we can show
that at large distances from a donor the exact solu-
tion of the Schrddinger equation has an exponential
factor of the type given by Eq. (14) and the param-
eters a and b are then defined by [13]
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(15)

where m¥ =0.082m, m =1.56m, and E is the
binding energy of the donor. Calculation of the
probability of a jump, carried out making an al-
lowance for the orthogonality of the Bloch func-
tions of the various valleys, gives [13]

ey
Wi e @,

n=1

(16)

where

z3; 4y, 23\
Rn=a(T+Tz‘ v Tij=E— Iy

According to the definition (10), the surface Sy, is

now the envelope of four intersecting oblate ellip-
soids oriented along the [111] axis. Each ellipsoid
is given by the equation

2 (ﬂ + —z-?—)l/’ =L

2 ) (17)
Unfortunately, the coefficient BS for such a com-
plex surface is not known and the numerical value
of the factor in the function JS(Np) cannot be found
theoretically. Nevertheless, we can say that be-
cause the semiaxes of each ellipsoid of Eq. (17)
are aL/2, bL/2, and the volume is (L/2)%4ra’b/3,
it follows that V(L) « L3a?b. If we find Lo from
Eq. (11), we then obtain

1 E'
H(Np)e Nl (a20)'h & I_VZ’— ’ (18)
Let us compare this result with the experimental
data. Figure 6 shows the dependence of p; on T™!
for n-type germanium doped with antimony [17]
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Fig. 6. Dependence of the resistivity p; on the average distance
between donors Nb‘/:": 1) antimony-doped germanium [17]; 2)
phosphorus-doped germanium [12]; 3) antimony-doped germani-
um at maximal pressure [12].
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and phosphorus [12]. We can see that at low values
of Np, when the conduction is of hopping nature,
the value of log p; is a linear function of N]—JI/”, in
agreement with the theory. The slopes of the lines
in Fig. 6 differ by a factor of 1.19. According to
the theory, this difference should be equal to the
square root of the ratio of the ionization energies
of phosphorus and antimony. This root is 1.15, so
that the agreement between the theoretical and ex-

perimental values can be regarded as satisfactory.

It is also reasonable to find that the values of log p;
for the two materials are similar to each other and
to the value of log py, which, in this case, is =3 [17].

More definite conclusions can be drawn from
the theory in the case of hopping conduction in an-
timony-doped germanium subjected to a strong
uniaxial pressure along the [111] axis. Such com-
pression reduces the energy of one valley in the
conduction band and raises the energy of the other
three [25]. At pressures of the order of 10°dyn/cm?
the splitting between the valleys is so large that
the ground state of a donor electron is associated
not with four ellipsoids (which is the case at at-
mospheric pressure), but with one ellipsoid. Pres-
sures in excess of 10° dyn/cm? do not lead to
further significant changes in the wave function.
Therefore, the pressure of ~10° dyn/cm2 can be
regarded as the limiting or "maximal." At "maxi-
mal" pressure we are left only with one term in
Eq. (13) and, therefore, also in Eq. (16). This term
represents an ellipsoid whose axis coincides with
the direction of pressure. In-this case, the sur-
face Sy, is an ellipsoid defined by Eq. (17) and
V(L) = ma?bL3/6. It is proved in [10] that the co-
efficient Bg for an ellipsoidal surface Sp, is ex-
actly equal to the coefficient Bg for a sphere, i.e.,
it is given by B, = 2.32. We can find L by apply-
ing Eq. (11). This gives

1.64

n
T a?L}N =232, L,= W .

19)

Finally, we obtain the following expression for pjs:

/(¥) (20)

P3 = Po€

a
)=
where o« is the same quantity as in Eq. (5).

In deriving Eq. (20) we have not specified the
direction of the current with respect to the com-
pression axis [111]. Clearly, the principal expo-
nential term in the resistivity p, obtained by the
percolation method is completely independent of
the direction. If L. = L¢, there may exist chains
which penetrate a crystal along all directions. All
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Fig. 7. Ellipses represent the constant-wave-function surfaces
constructed around randomly distributed donors. The z axis is the
direction of compression [111]. The wave function decreases
faster along this axis than along the others. The continuous lines
represent the jumps of an electron, which determine the resistivity
along the z and x axes; the dashed line is the path of the "head-
on” motion along the z axis, for which the resistivity is much
higher.

these chains have a resistance proportional to
exp (Lg).

If we do not use the percolation method, we
find that at first sight our conclusion on the iso-
tropy of the exponential term is paradoxical. The
wave function of a donor at "maximal" pressure
is in the shape of an ellipsoid of revolution, which
is given by Eq. (14) and is strongly flattened along
the [111] axis [the ratio of the semiaxes is a/b =
(ml’l"/m:l"_)‘/2 = 4.35]. It would be natural to assume
that conduction along any direction is due to elec-
tron jumps along this direction. The probability
of jumps over the same distance differs exponen-
tially along the [111] axis and at right angles to
this axis. Therefore, we would expect the resis-
tivity to be anisotropic and the anisotropy should
be so strong that the ratio of the values of p,
along and at right angles to the compression axis
is exponentially large. This point of view is re-
flected, for example, in [25]. However, if we ex-
amine carefully Fig.7, which shows the wave func-
tions of randomly distributed donors which are
strongly elongated along the x axis (the z axis cor-
responds to the direction of compression), we find
that, in the case of a fixed donor, the nearest
neighbor located in a narrow range of angles from
— 6 to 6 on the (x, y) surface is far away. Con-
sequently, the current along the x axis is basically
due to jumps oriented at finite but small angles 6.
The probability of such jumps is exponentially
higher than the probability of jumps at angles
comparable with 7/2. Therefore, an electron mov-
ing along the z axis is most likely to travel by way
of the most probable jumps, which are the same as
those for the x axis (Fig.7). The principal ex-
ponential term e D) in the resistivity along the
x and z directions is the same. The resistivity
pz along the z axis is slightly higher than p, be-
cause the projection of a typical jump onto the z
axis is less than onto the x axis and more jumps
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are necessary to travel a unit length along the z
axis than along the x axis. However, this is re-
flected only in the preexponential factor p.

The percolation method can be used to show
that a typical value of the angle 6 is b/a. In fact,
the resistivity is governed by jumps characterized
by L, which is close to L. For these jumps the
vector rjj lies on the surface Sp,r. Since Sy is
an ellipsoid with the semiaxes ratio b/a, a typical
angle 6 is equal to b/a. Thus, we may expect that
pz/px = a/b, i.e., that the resistivities along the
compression axis and at right angles to it differ
by a factor of 4-5.

An investigation of the extrinsic conduction
in germanium subjected to "maximal" compres-
sion along the [111] axis was reported in [25].
However, Fritzsche [25] investigated only sam-
ples with fairly high impurity concentrations,
close to the critical concentration for the Mott
transition. Our theory is applicable to low im-
purity concentrations when the overlap of the wave
functions is exponentially small. Experiments
carried out on samples with lower impurity con-
centrations (Np = 2.2-10 and 6.5 -10% cm™) were
described in [12]. At the "maximal" pressure the
‘resistivity pj3 for the first of these samples rose
by a factor of 30 above the atmospheric pressure
value, whereas the resistivity of the second sam-
ple increased by a factor of 10*! This piezoresis-
tance can justifiably be called a giant effect. The
values of p; obtained in this investigation are
plotted in Fig, 6. The slope of the line drawn
through two points allows us to check Eq.(20). This
line intersects the ordinate at approximately the
same place as the other two lines in Fig. 6, which
is in agreement with the assumption of a weak de-
pendence of log p, on the nature of the wave func-
tions of impurities. This can be regarded as evi-
dence that the slope of the straight line drawn
through two points is correct. The ionization en-
ergy of antimony in germanium is E = 9.6 meV
and, consequently, we find that

a=T1, b=16, (a2%)"=43 4, (21)

If we use these values and measure the slope
“of the straight line in Fig. 6, we find that the value
of @ which occurs in Eq.(20) is 1.9. This is in
good agreement with the theoretical values and the
values of & found in our analysis of the data on
p-type silicon and p-type germanium.

The resistivity in [12, 25] was measured along
the compression axis. It would be interesting to
measure the resistivity in the transverse direction
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in order to check the theoretically predicted ap-
proximate isotropy of the giant piezoresistance.
In the preceding paragraphs we have consid-
ered the influence of uniaxial compression on n-
type germanium. Let us now see what the per-
colation method predicts for p-type germanium,
We know that uniaxial compression lifts the
degeneracy of the valence band at the point k = 0.
If the compression along the [100] axis is suf-
ficiently strong, the wave function is of the form
given by Eq. (14), where the values of ¢ and b for
gallium are 84 and 132 A and the z axis is parallel
to the direction of compression [26, 27]. In this
case, we can apply the theoretical equation (20),
which differs from Eq. (5) by the introduction of the
effective Bohr radius (2%b)!/®. In the case of gal-
lium, this radius is 98 & and it is larger than the
Bohr radius of gallium a; = 87 A for an undeformed
crystal (in such a crystal the wave functions are

1

.approximately isotropic). Therefore, in contrast

to the situation in n-type germanium, uniaxial com-
pression of p-type germanium along the [100] axis
does not increase but reduces the resistivity.

The hopping conduction in p-type germanium
subjected to pressure along the [100] axis has been
investigated by Pollak [27]. The values of p; ex-
trapolated to infinite pressures are plotted in Fig.
2 (they are denoted by 2). The slope of the line
drawn through these points can be used to find «.
If we apply Eq. (20), we find that @ = 1.7-1.8, which
is again in satisfactory agreement with the theory
and with the experimental values reported in the
preceding sections.

4. INFLUENCE OF STRONG MAGNETIC FIELDS
ON HOPPING CONDUCTION

The percolation method can be applied also to
the problem of hopping conduction in a very strong
magnetic field [9]. Such a field compresses the
wave functions of impurities and reduces strongly
their overlap. For this reason the hopping re-
sistivity increases exponentially in sufficiently
strong magnetic fields.

A rise of the hopping resistivity by a factor of
10° was reported by Halbo and Sladek [28], who in-
vestigated n-type GaAs with donor concentrations
Np = 10 em™3. The giant positive magnetoresis-

‘tance was observed earlier by Sladek [29] for n-type

InSb with Np ~ 5-10%% ecm™. At these donor con-
centrations the impurity band overlaps the conduc-

The author is grateful to G. E. Pikus and G. L. Bir for drawing
his attention to the possibility of applying the percolation meth-
od to p-type germanium.
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tion band if there is no magnetic field, and in such
cases the conduction is metallic. However, a mag-
netic field reduces the overlap of the wave func-
tions of impurities, the impurity band splits off
from the conduction band, and the hopping conduc-
tion predominates at temperaturesbelow 2°K. Furth-
er increase in the magnetic field intensity results
in an exponential rise of the hopping resistivity,
which can increase by a factor as large as 10°,
This exponentially large positive magnetoresis-
tance has also been observed in the hopping conduc-
tion region of n-type germanium [30], n-type indium
phosphide [31], and in gallium arsenide [32, 33]
purer than that used in [28].

The application of a magnetic field compresses
wave functions and, generally speaking, increases
both p; and &£;. In this section we shall consider
only the change in p;. The magnetic-field depen-
dence of €3 will be considered in the next section.

An approximate theory of magnetoresistance
in moderate magnetic fields was developed by Mi-
koshiba [34]. If the applied magnetic field is not
too strong, the probability of a jump between two
hydrogen-like donors along the field (z axis) is
still given by Eq. (3). However, if the distance be-
tween the donors satisfies the conditions

A2
= S>>, (22)
Mikoshiba [34] finds that the probability of a jump
in the transverse direction rjj LH is (for details
see Appendix)

(23)

Here g = h/(2m*E)"? = K’y /m*e? is the Bohr
radius; A = (ch/eH)!/? is the magnetic length,
and u is the permittivity. If the magnetic field is
not too strong and the semiconductor is lightly
doped, i.e., if

2> Gy (24)

and N e8<€d,
the conditions given by Eq. (23) are satisfied for
moderate distances between the impurities. Al-
though the probability of a jump is anisotropic, the
percolation paths are not yet affected by the mag-
netic field.?

This can be shown by considering a donor 1,
whose nearest neighbor 2 is located at a distance
ry, along the x axis and whose second-nearest
neighbor 3 is located at a distance ryz (ryg > ryy)

SHK LOVSKII

along the z axis. In the absence of a magnetic field
the probability of the Wy, jump is much higher than
that of the Wy; jump and the chain which reaches
donor 1 is propagated by the jump 1 — 2. It fol-
lows from Egs. (23) and (3) that the ratio of the
jump probabilities in a magnetic field is

3,
197 2(riyry)

Wis (25)

The distances r;, and r;3 and the difference be-
tween them ry3—ry, are generally quantities of the
order of N3, Therefore, it is evident from Eq.
(25) that when the magnetic field satisfies Eq. (24),
we still have Wy, > W3 and the percolation chain
continues to propagate in the same manner as in the
absence of the field. This means that, as in zero
field, the jumps in the chains which determine the
resistance are almost equally likely along all di-
rections. In particular, such chains have con-
siderable numbers of elements inclined at large
angles with respect to the z axis and characterized
by the length r ~ 0.9N}3. According to Eq.(23),
the resistance of these elements increases in a
magnetic field by a factor exp (0.06 /A*Np). The
resistance of the chains and of the whole crystal
increases in the same ratio. Thus, the refined re-
sult of Mikoshiba [34] is of the form

a
p3 (H) = p3|5ag eXP{O-Oﬁ W]

aH 22 } (26)

=p3|H_oexp{0.06 Npe? |

The present author [9] derived the dependence
p3(H) for stronger magnetic fields which do not
satisfy the conditions of Eq. (24) for which Eq. (26)
is invalid. These fields can be established quite
easily in semiconductors with small effective
masses., If A < a/(NDas)i/s, the argument in the
exponential term of the wave function of a donor
is affected strongly by a magnetic field at dis-
tances of the order of Nf)1/ 3, In particular, if A <
a, the ionization energy of a donor E(H) increases
with increasing H and the wave function is of the
form [35-37]

4i () =B exp { _z @7)

’In the percolation method we employ not the probability of a
jump, but its logarithm. It follows from Eqs. (3), (23), and (24)
that the anisotropy of In Wj; is small at distances rjj o Nb‘/s.
Therefore, the surface Sy is nearly spherical and the percolation
paths are modified only very slightly by the magnetic field.
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Here, ayg = h/(2m*E(H))!/2, the z axis is directed
along H, and B is a normalization constant, If g <
A < a/(Na®)V8, the magnetic field affects only
slightly the wave function near an impurity center,
but at distances of the order of NI')U 3 the changes
are large and the wave function is again of the type
given by Eq. (27) [9] (for details see Appendix).
Calculation of the overlap integral of two wave func-
tions of the type given by Eq. (27) yields

z3;+ iy
2)2 -

2iz,~j|}

W (r;;) =exp { — n

(28)
where xj;i = Xj ~xj. We can easily show that in
strong fields (A < a/(Na®)!/®) the anisotropy of the
probability of a jump given by Eq. (28) is so strong
that, in the case of three donors mentioned above,
we find that, in spite of the fact that ry3 > ryy, the
jump 1 — 3 is much more likely because it is
aligned along the magnetic field. This means that
a strong magnetic field modifies greatly the per-
colation paths so that a large number of jumps oc-
cur at small angles with respect to the field di-
rection (this situation is illustrated in Fig. 7 if it
is assumed that the field is applied along the x
axis).

Sladek [29] calculated pj; in strong magnetic
fields with the aid of the variational wave function
(38]

40% T 4a

O, (r) = (zn’/za'ia,,)"‘/’ exp (— (29)

22432 22 )
whose asymptotic behavior at large distances z
differs from the behavior predicted by Eq. (27).
This difference is very important because jumps
occur at small angles with respect to the z axis.
Sladek calculated the probability Wij with the aid

of the wave function given by Eq. (29) and averaged
out the probability over all the (i, j) pairs with
fixed distances lri-l. This average is governed

by the pairs whose vectors rjj are directed exact-
ly along the z axis. Obviously, the whole crystal
cannot be traversed by jumps between these
pairs alone and, therefore, the averaging must be
carried out not for one isolated pair of donors

but for chains penetrating the whole crystal. Thus,
the correct results can be obtained only by the per-
colation method.

We shall find p; corresponding to A < a/(Na’)!/8
by the percolation method and we shall start by
defining the surface Sy, which is obtained in the
present case. Equations (10) and (28) yield the
following expression for Sy,
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12+y2+ 2IZI=L_

o (30)
This surface consists of two paraboloids of revolu-
tion, which are in contact along their bases and
whose axis is directed along the field H. The height
of each paraboloid is h = gL /2 and the radius of
the base is d = A V2L. The volume of such a double
paraboloid is given by the expression

V (L) = rn\2%ale, (31)
In order to find L, we first obtain the following
expression from Egs. (31) and (11):

T2UZaN , =8, (32)
where B, is the unknown coefficient 8 for a double
paraboloid. Arguments showing that 8 p does not
differ by more than 109, from B, = 2.32 are given
in [9]. Using Eq.(32) to find Ly from Eq.(32) in
accordance with the general prescription in Sec. 3,
we find that

p3 (H) = pg exp {[k%HND]_V“}'. “(33)

When A < «,the value of ay is equal to a In"1(a/A)2
[35, 36] and, therefore, it follows from Eq. (33)
that when H — , the resistivity py(H) is propor-
tional to exp(~HY? In/? H). When A = 4, we can
find @y from the values of E(H) deduced numeri-
cally {36, 38]. We can also substitute in Eq. (33) the
values of E(H) found from the Hall effect measure-
ments in that range of temperatures in which the
conductivity is governed by activated electron tran-
sitions to an allowed band [29]. In all cases, this
leads to the dependence p3(H) o« exp (HM), where m
is somewhat larger than 0.5. For example, it is
shown in [39] that, in the range of fields 20-150 kOe,
the theoretical and experimental dependences Ey(H)
obtained for InSh can be described satisfactorily by
the equation Eg « H1/3. The application of this
equation yields agy < H /€ and py(H) o exp (H/1?).
In Sec.3 we have considered experiments in-
volving uniaxial compression of germanium and have
shown in detail that, even in the case of strong ani-
sotropy of the wave functions, the principal expo-
nential term in the resistivity p, is independent of
the direction of the current. Thus, Eq.(33) applies
to the longitudinal p, and the transverse p, mag-
netoresistance. The value of p; should be only
several times larger than p,. A more accurate
estimate of the ratio p; /p; can be obtained by cal-
culating lzij/xijl for a typical jump. The radius
vectors rjj for a typical jump end on the double
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paraboloid of Eq. (30) with L. = L. Consequently,
typical values of Izij/xijl are close to the ratio
of the height of the paraboloid h(L() to its radius
d(L¢):

lzi51  k(Lg) ag\3 1
- Tea 1 =T (Zy) =04 (T) (Vpei)™

In the case of samples subjected to the highest mag-
netic field (H = 28 kOe) used in [29], we find that

A =150, ay =500 &, and (Npadp4 ~ 1. If we use
these quantities, we find that lzi-/xijl = 2.3. Thus,
we can say that, in this case, p, /p,=2-3. This
conclusion is in good agreement with the experi-
mental results, Sladek [29] reports that in H = 28
kOe the magnetoresistances p, and p, increase by
a factor of nearly 10°, whereas their ratio pL/py
is still about 2,5 (sample B-1).

We shall now compare the dependences p3(H)
given by Egs. (26) and (33) with the experimental
results. The Mikoshiba equation (26) is valid, as
stressed in its derivation, at low donor concen-
trations and in moderately strong fields [see the
inequalities in Eq. (24)]. These conditions are
satisfied by the most lightly doped samples of ger-
manium, indium phosphide, and indium arsenide in-
vestigated by various workers [30-33]. In all these
investigations the resistivity p increases in a mag-
netic field in accordance with the law

p « exp (const H?). (34)

The activation energy 3 of the samples with fewest
impurities is independent of the magnetic field [30-
32] and, therefore, the behavior of p predicted by
Eq. (34) is entirely due to the increase in p3. Thus,
the results reported in [30-32] are in agreement
with Eq. (26).

It is reported in {26, 33] that in magnetic fields
H = 20-30 kOe the epitaxial films of n-type GaAs
with donor concentrations of (1-5) 10! cm™ (these
are the same samples as in Fig,3) exhibit a devia-
tion from the law (34) in the direction of weaker
dependence on H. If the value of Ny is reduced,
these deviations are observed in weaker fields.
Obviously, such deviations can be regarded as the
onset of the transition from the law (26) to the law
(33). The magnetic field Hy in which this transi-
tion occurs can be estimated roughly from the con-
dition A ~ a/(Na®)!/6, A somewhat more rigorous
criterion of the transition from Eq. (26) to Eq. (33)
can be obtained by equating Eq. (25) to unity for
Tyy ¥ Tyy ~ Iy —ry3 NG/ 3. This gives
4N ek

and Hy (Np) o —.

a
lﬁw (35)
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It follows from Eq. (35) that, first, H; does indeed
decrease with decreasing impurity concentration.
Secondly, Eq. (35) gives the correct order of mag-
nitude of Hy. For example, Eq. (35) predicts Hy =
25 kOe for n-type GaAs with Np = 10%% cm™3,

Halbo and Sladek [28] measured the magneto-
resistance of n-type GaAs crystals with donor con-
centrations Np = 10'® cm™3. This was done in fields
up to 140 kOe. According to Eq. (35), the transi-
tion field for these donor concentrations should be
H, ~ 50 kOe so that in a wide range of fields 50kOe
< H; < 140 kOe the resistivity p; should obey Eq.
(33). The dependence of the resistivity on (a/a, (H))?
is plotted in Fig. 8 on the basis of the results re-
ported by Halbo and Sladek [28]. Here, @, (H) is the
variational parameter describing the transverse
dimensions of the wave function given in Eq. (29).

It follows from Fig. 2 in [38] that in the range 1.6 <
(a/a 1 (H))? < 4 the quantity (a/a | (H))? is propor-
tional to H™, where m ~ 0.6. This can be demon-
strated directly with the aid of Fig.8 by comparing
the lower scale of the values of (a/a _,_(H))2 with the
upper scale, which gives the magnetic field H. The
experimental points in Fig. 8 fit straight lines satis-
factorily, which means that in strong fields the re-
sistivity p depends on H, in accordance with the law

p < exp (const HY), (36)

where m =~ 0.6.

In order to compare Eq. (36) withthe theoretical
equation (33), we must eliminate from Eq. (36) the
temperature-dependent parameter exp (S3(H)/ kT)
and separate p3(H). Since the ratio

H, T 1 1
SEH, T;; =exp {ES(H)(E—E)}(T1=L9» Ty=4.2° K)
37

depends strongly on H (Fig. 8), it follows that the



HOPPING CONDUCTION

dependence &4(H) cannot be ignored under the ex-

perimental conditions employed in [28]. On the oth-

er hand, since the same dependence log p « H™ is
obtained at different temperatures, we may con-
clude [28] that p o exp {H™(C, + C,/T)}. Thus, we
find that p3(H) < exp (const HM), where m ~ 0.6,
which is in good agreement with Eq. (33). The
reason why £, increases with increasing field H
will be considered in the next section.

In concluding this section, we shall consider
the possibility of comparing our theory with the
results reported in [27]. We have mentioned that
the wave functions of impurities in samples of n-
type InSb studied by Pollak [27] overlap strongly,
i.e., that NDa3 =~ 1. Hence, the hopping conduction
appears in these samples only when A < q, i.e.,
when the magnetic field reduces considerably the
"volume" of each of the impurity wave functions.
Thus, in this case, there is no range in which Eq.
(26) can be applied, and as soon as the resistivity
becomes exponentially large it should obey Eq. (33).
An analysis of the results given by Sladek [29]
shows that p varies in accordance with Eq. (36)
and the power exponent m satisfies the inequality
0.7 < m < 0.9. It is difficult to compare this law
with Eq. (33) because it is not possible to determine
the value of p; from the results given in [29]. One
can find p; if the dependence of p on 1/T is known
in a range of temperatures sufficiently wide to
enable us to extrapolate to T — «, However, in the
case of the results reported in [29], we are dealing
with the onset of the hopping conduction even at
the lowest temperature of T = 1.6°K. Thus, one can
compare Eq. (33) with the data on InSb only for the
results obtained at temperatures lower than those
employed in [29].

5. ACTIVATION ENERGY &; UNDER WEAK

COMPENSATION CONDITIONS

The existence of an activation energy in the

case of very weak compensations (K < 1) has been
explained by Mott [1, 40]. If the compensation is
~ weak, a large proportion of donors are occupied by
electrons and only a few are vacant. These vacant
donor states can be regarded as carriers: A tran-
sition of an electron from an occupied to a vacant
donor is equivalent to the motion of a positive va-
cancy in the lattice. At low temperatures all such
vacancies are in the states of minimal energy, i.e.,
they are located in the direct vicinity of the negative-
ly charged acceptors. In other words, electrons
occupy all the donors except those whose energy
levels are lifted sufficiently high by the nearby ac-
ceptors (Fig.9). Therefore, the Fermi level lies
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Fig. 9. Energy level scheme ofa weaklycompensated semicon-
ductor. The continuous lines represent the bottom of the con-
duction band and the top of the valence band., The black dots
are the electrons occupying donor and acceptor levels. The
dashed line is the position of the Fermilevel, The first acceptor
on the left forms a 2-type complex and the second a O-type
complex. The density of donor states is plotted on the right.
The occupied states are shown shaded.

above the energy of isolated donors and the gap
between them is of the order of the energy of the
Coulomb interaction between an acceptor and the
nearest donor: eZM‘INf)V:". If K «< 1, the acceptors
are separated by large distances and, therefore, a
vacancy cannot jump directly from one acceptor

to another. In order to travel along a crystal a va-
cancy must absorb a phonon, become detached from
an acceptor, and jump between donors which are
separated by large distances from the acceptors.
The levels of such donors are shifted very little

by the potential of the charged acceptors and do-
nors (Fig. 9) and, therefore, the activation energy
is described quite accurately by the difference be-
tween the Fermi level and the energy of isolated
impurities. This leads to Mott's estimate

e2Nll/;‘
&3 lxpo= C_—-/,— ’ (38)
where C is a numerical coefficient of the order of
unity.

In order to find the value of this coefficient we
must determine accurately the position of the Fermi
level y for T — 0. This can be done if we know
the energy distribution of the donor states. Miller
and Abrahams [13] calculated y and C on the as-
sumption that the probability of enhancement of the
donor energy by an amount £ is proportional to the
probability that an acceptor is located at a distance
e*/we from this donor. However, they ignored the
possibility that a second vacant donor might be lo-
cated near the acceptor and the potential of this
donor could alter strongly the energy of the first
donor. Consequently, the value C = 1,61 found in
[13] differs considerably from C = 0.99 obtained in
{10, 11]. We shall now reproduce the general argu-
ments given in [10, 11] and compare in detail the
results derived in this way with the experimental
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data. In order to find the Fermi level in a semi-
conductor with K < 1, we shall consider the donors
located in the direct vicinity of an acceptor and we
shall ignore the interaction between these donors
and the other acceptors (this interaction will be
allowed for later). We shall then determine the num-
ber of ionized donors in the vicinity of one accep-
tor, corresponding to some positive value of yu (like
all the energies, the Fermi level will be measured
upward from the level of an isolated impurity). We
may find that there is not a single ionized donor
near any given acceptor (this will be known as the
0-type complex). This can happen in the case of

an accidental donor-depletion region around an ac-
ceptor: In this case the increase in the energy of
an electron located at a donor which results from
the presence of the nearest negative acceptor does
not exceed . We can also have a situation inwhich
there is only one ionized donor near an acceptor
(1-type complex). Finally, we shall consider the
case when there are two ionized donors near an
acceptor (2-type complex). We shall postulate that
these donors are located in such a way that the lev-
el energies at each of them are raised above u be-
cause the potential generated by an acceptor at any
of the donors is considerably greater than the po-
tential due to the presence of the second donor.
Such a complex may form when two donors are lo-
cated close to an acceptor but are on opposite
sides of the latter. Examples of 0- and 2-type com-
plexes can be seen in Fig. 9.

We can easily show that, in the case of posi-
tive u, we cannot have three ionized donors near
one acceptor. An equilateraltriangle with the ion-
ized donors at the three corners and the acceptor
at the center represents a configuration which is
extremal in the sense of the maximum proximity
of all three donors to the acceptor and the maximum
remoteness of these donors from one another. How-
ever, a simple calculation of the energy shift of
each of the donors shows that even in this case this
shift is negative.

It follows that the 0-type complexes are nega-
tively charged, whereas the 2-type complexes are
positively charged. The chemical potential p is
governed by the condition of neutrality, i.e., by the
condition that the concentrations of the 0- and 2-
type complexes Ny(u) and Ny(u) are equal. The
concentration Ny(u) can be found quite easily. We
know that a 0-type complex exists when there are
no donors at distances r, = e* /wnp from a fixed
acceptor. The probability of this situation is exp-
(—47rNDr3u/3). Thus, we find that Ny(p) is given by
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4n €SN p ) (39)

Ny (p) =N, exp (— ENEETR

Calculation of Ny(u) is much more difficult. The
results of computer calculations of Ny(u) are re-
reported in [10, 11]. Next, we can calculate the
chemical potential y. We thus find that

eZNlI/,’

eg=p=0.,99 .

®

(40)

The precision of the computational procedure used
in [10, 11] for €3 is in excess of 19. It is interest-
ing to note that the concentration of the 0-type
complexes corresponding to the value of y defined
by Eq.(40) is 1.39 of the total acceptor concentra-
tion. This can be shown by substituting Eq. (40)
into Eq.(39). The number of the 2-type complexes
is the same. Theother 97.4% ofthe acceptors form
neutral 1-type complexes. The nature of the ran-
dom distribution of donors around an acceptor de-
termines which complexes are formed. The dis-
tributions of the different complexes in space are
random.

We have ignored the influence of electric fields
of the charged complexes on the energy levels of
the remote donors, which is justified only for very
small values of the degree of compensation K. This
influence must be allowed for if we wish to find the
correction to &4 which contains K. We have al-
ready mentioned that the concentrations of the pos-
itively charged 2-type complexes and the negative-
ly charged 0-type complexes are equal for the crys-
tal as a whole. However, because of the random
distribution of complexes, a given finite volume
may have an excess or deficiency of charges of
particular sign. Such fluctuations of the charge
density give rise to fluctuations of the large-scale
electrostatic potential ¢(r), which modulate the
energy levels of donors. It is shown in [11] that

. this modulation leads to a correction proportional

to K4 and the final expression for £ obtained for

low values of K is

e2N‘1/,'
*

63=0.99 (1 — 0.3k'). (41)
We have already mentioned that Miller and Abrahams
[13] found €4, ignoring the existence of the 0- and
2-type complexes, i.e., they used an incorrect en-
ergy distribution of the donor levels. Their result

for K< lis

ezN‘If,’
*

g =1.61 (1 — 1.35K"5). (42)
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Fig. 10. Dependence of the activation energy e, of hopping con-
duction in germanium on the concentration of principal impuri-
ties in weakly compensated samples: 1) phosphorus-doped ger-
manium [12]; 2) gallium-doped germanium [41]; 8) antimony-
doped germanium [17]; 4) two antimony-doped samples [12]; 5)
the same two samples under "maximal" uniaxial compression.
The continuous straight line is the theoretical dependence (41)
plotted for K = 0. The dashed line represents the Miller and
Abrahams equation (42) for K = 0,

Equation (41) differs quite strongly from Eq. (42).
At the lowest values of K this difference amounts
to 60%. We shall now show that the experimental
results support Eq. (41).

Figure 10 shows the dependence of the experi-
mentally determined activation energy €, on the
concentration of the principal impurities in weakly
compensated samples of n- and p-type germanium
{12, 17, 41]. The continuous straight line rep-
resents the results obtained in {10, 11], which are
given by Eq. (41) for K = 0. The dashed line shows
the dependence which follows from the Miller and
Abrahams equation corresponding to K = 0 [13].

We shall start by considering the samples with
the fewest impurities. The points representing
these samples lie quite close to the continuous
straight line but are still below it. This small dis-
crepancy is due to the finite degree of compensa-
tion. Estimates given in [12, 17, 41] show that the
degree of compensation for their samples is K <
0.06. At these degrees of compensation the value
of £3 of Eq.(41) should decrease by 10-15%. This
is the order of magnitude of the discrepancy in Fig.
0. Thus, the experimental values of €5 obtained
. for low donor concentrations Np are in good agree-
ment with Eq. (41). Because Eq. (41) depends strong-
" ly on the degree of compensation, the same re-
sults can be matched also with Eq. (42). However,
it is then necessary to assume that the accidental
compensation lies within a very narrow range (3-
3.5%) for the samples used in [12, 17, 41]. This
assumption is artificial and very unlikely to be cor-
rect,

At higher values of the donor concentration Np

the activation energy £4 deviates from Eq. (41) and
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gradually decreases to zero. This can be inter-
preted as follows. At low values of K the levels of
most of the donors are very little perturbed and
their energies are very close to one another. There-
fore, the overlap of the wave functions of the res-
onant states leads to the formation of an impurity
band of width © which increases exponentially with
rising Np (Fig.11). The influence of the overlap
on the position of the Fermi level is initially weak.
This is because the donors present in acceptor com-
plexes do not resonate because of the difference
between the potentials which is established between
them by the electric field of the complexes. The
difference between the energies of electrons lo-
cated at two donors near an acceptor is A ~e2N%3/n.
As long as © < A, the shift of the donor levels in
such complexes is of the order of 2% A and is consid-
erably smaller than the width of the impurity band.
Therefore, when @ « A, i.e., when the quantum ef-
fects in the case of &3 are still small, we can ig-
nore the shift of the Fermi level because the dom-
inant effect is the increase in the width of the im-
purity band with increasing donor concentration Np.
The states near the upper edge of the impurity band
are characterized by a high mobility, Since these
states are separated by very small gaps from the
Fermi level, they dominate the conduction pro-
cesses. Thus, the activation energy can be less
than 4 and can decrease rapidly with increasing Np.

This point of view is supported by a compari-
son of the results obtained for germanium doped
with different impurities. It is shown in Secs. 2 and
3 that the effective Bohr radii of gallium, antimony,
and phosphorus are related by @Ga > Agp > ap-
Therefore, the influence of the overlap at a fixed
impurity concentration should be strongest for gal-
lium, weaker for antimony, and still weaker for
phosphorus. It is evident from Fig. 10 that this
conclusion is in agreement with the experimental
results, When the impurity concentration is in-
creased, the overlap effects increase in importance
in the same sequence (Ga, Sh, P).

The validity of the quantum treatment of the de-
viations from the classical law (41) is supported

t— -

Fig. 11. Increase in the width of the impurity band as a possible
cause of the reduction in gz with increasing impurity concentration.
The chain line represents the Fermi level and the dashed line is the
energy of the unperturbed impurity level. The states in the impurity
band are shown shaded.



1068 B. I.

even more strongly by the results obtained in
studies of the influence of uniaxial pressure [12,
25]. We have already mentioned that the "volume"
of a wave function and the overlap between the
neighboring donor states in n-type germanium de-
crease under pressure. Therefore, the application
of pressure should reduce strongly the deviation of
g3 from the value given by Eq. (41). It is evident
from Fig. 10 that this did indeed occur in the ex-
periments [12] on a sample of germanium with an
antimony concentration Np = 2.2-10" cm™ (Nj§® =
2.8-10% cm™!). The value of £4 under pressure
was found to be very close to the classical value
predicted by Eq. (41). A strong rise in the ac-
tivation energy was observed in [25] for the more
heavily doped samples.

On the other hand, the pressure should not af-
fect the value of &5 obtained for the less heavily
doped samples, which satisfy approximately Eq.
(41). Even in the absence of pressure, the overlap
in such samples is of little importance and further
reduction in the overlap cannot affect £;. These
comments apply to germanium with Np = 6.5 - 1015
cm™3 (Ng3 =1,87-10° cm™Y). It is evident from
Fig. 10 that, in this case, the pressure has a negli-
gible influence on the value of €5 {12].

A strong magnetic field also reduces the over-
lap of the wave functions and, therefore, its in-
fluence on €3 of germanium is similar to the effect
of uniaxial pressure: Atlow impurity concentra-
tions a magnetic field does not affect €4, but inmore
heavily doped samples it increases g3, i.e., it bal-
ances out the deviation from Eq. (41). The latter
case is illustrated clearly by the results for gal-
lium arsenide [28] (Fig. 8), for which doubling of
€3 is observed when the H is increased from 40 to
140 kOe. A strong increase in the activation en-
ergy due to the application of a field of 5 kOe has
also been reported for n-type InSb [42]. On the
other hand, the activation energy € of lightly doped
epitaxial gallium arsenide films is independent of
H [33].

6. ACTIVATION ENERGY &3 UNDER STRONG
COMPENSATION CONDITIONS

If the compensation is strong (1-K <« 1), the
density of electrons localized at donors, n = Np—
N4, is much smaller than the donor concentra-
tion Np. Therefore, at low temperatures all the
electrons can occupy donors whose energy levels
are reduced considerably by the potential of the
neighboring charged impurities. Consequently, the
Fermi level of a strongly compensated semicon-
ductor lies below the level of isolated impurities
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Fig. 12. Energy level scheme of a strongly compensated semi-
conductor (the large-scale potential is ignored). The continuous
line is the bottom of the conduction band and the chain line is
the Fermi level. The density of donor states is plotted on the
right. The occupied states are shown shaded. The valence band
and acceptor levels are not shown.

[8] (Fig.12). The lower the electron density n, the
greater is the shift of the Fermi level toward the
middle of the forbidden band. The donors whose
energies are close to the Fermi level are sep-
arated from one another by large distances of the
order of n-1/3 and, therefore, electron jumps be-
tween such donors are very unlikely. At moderate-
ly low temperatures, electrons are more likely to
acquire energies at which the density of states is
high, i.e., their energy may increase approximately
to the energy of isolated impurity levels. Such
electrons can then jump between donors separated
by distances of the order of NpY3. Thus, to within
values of the order of the average scatter of the
donor levels ezN%’/u, the activation energy €5 of a

strongly compensated semiconductor remains equal
to the separation between the Fermi level and the
level of isolated impurities. Moreover, it is clear
from Fig. 12 that the activation energy of the band
conduction £; also increases at low values of n/Np
and this increase is such that it obeys the equality

ey =E + ¢ (43)
In order to find the value &3 as a function of
Np and n, we must determine the density of donor
states g(e). If we ignore the large-scale fluctua-
tions of the concentration of charged impurities
(this effect will be considered later), we find that
the donor levels with low energies appear primari-
ly for the following reasons [8]. A given donor may
be located at a distance r « N'I‘)‘/a from another
positively charged donor, If r >>a, the correction
¢ which must be added to the energy of the level
of the first donor is given simply by the Coulomb
potential of the second donor, i.e.,

e2
E== ——

ar *

(44)

As in Sec.5, we shall measure the values of £ and
p upward from the level of isolated impurities.
When the pair of donors under consideration ac-
quires one electron, the binding energy of a sec-
ond electron to this pair is E. Therefore, when
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p < 0,apair of donors separated by a short dis-
tance has only electron. We can find g(g) if we
calculate the concentration of pairs which have an
energy level in the interval (¢, £ +de). In other
words, we must find the number of pairs charac-
terized by a distance r in the range [r(¢), r(e) +
(dr/de)de], where r(€) = —e?/ne. The probability
of the occurrence of donor pairs separated by the
required distance is 4rNpr?(e) (dr/de)de. The con-
centration of pairs found in this way must be mul-
tiplied by Npy and then divided by 2 because, other-
wise, each donor would be counted twice. If we

use the explicit form of the function r(e), we obtain

2.8
2nNpe
edx3 -

g (e)= (45)
It is now quite easy to find the Fermi level at T =
0K from the condition that

3
S g (¢) de==n. (46)

In this way, we obtain

2 nr%s 2 s

2\t €NG  s2z\y, €Ny
Eg=|p | —'(T A —<T) " (1 - K)‘/a . (47)
Equation (47) is valid if the distances separating
the components of donor pairs r ~r, = e¥/y |ul

. H

are large compared with g, but small compared
with the average distance between impurities Np 1/3,
This imposes the following restrictions on £3:

2N s

<&y < E. (48)
The existence of a "window" between e*Ni /3/% and E
is ensured by the light~doping condition NDa < 1,
When r,, becomes comparable with a, the classi-
cal equation (44) becomes inapplicable, When
quantum effects are allowed for, it becomes clear
that even when r — 0, two donors cannot form a
level deeper than 4E. Therefore, when r — 0, the
value of 3 reaches 4E and the Fermi level is no
longer shifted downward by the donor pairs.

In the analysis given above we have ignored
the large-scale fluctuations of the potential which
occur in the case of random impurity distributions.
Such fluctuations give rise to a slow spatial modu-
lation of all the energy levels in Fig.12. The in-
fluence of such large-scale fluctuations on the
values of &, and &5 has been considered in detail
in [8]. It has been found that the large-scale po-
tential leads to two neweffects, First,inthe energy
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range defined by Eq. (48), the activation energy ¢4
is of the form

207
53=v1%, (49)
i.e., we must modify Eq. (47) by replacing (2m/3)!/3
with a new numerical coefficient which is of the
order of unity. We can find v; by means of com-
plex computer calculations in accordance with the
program suggested in [8]., The second effect is
manifested by the fact that Eq. (49), but with a dif-
ferent numerical coefficient v,, applies at energies
exceeding 4E. It must be stressed that the large-
scale potential does not alter Eq. (43).

Thus, the theory shows that the value of &5 in-
creases as (1—K) “1/3 when K — 1. In the preced-
ing section we have shown that, in the K « 1 range,
the energy e3 decreases with increasing K. It fol-
lows that the function &4(K) should have a minimum
at K =~ 0.5. Such a minimum can be observed di-
rectly [1] or indirectly, with the aid of the negative
hopping photoconductivity (43]. Unfortunately, it is
not possible to calculate the exact theoretical value
of £3 corresponding to K ~ 0.5. All that we can
say is that when K ~ 0.5, the value of €5 is equal
to tezN;) 3/w, where t is a numerical coefficient
of the order of unity.

In spite of the fact that the theory of Miller
and Abrahams [13] also predicts a minimum in
£3(K), the results of this theory are invalid in the
K = 0.5 range as well as for K < 1. Miller and
Abrahams ignored the downward shift of the levels
of some donors induced by the potential of the
neighboring charged donors and also failed to take
into account the smoothly varying potential re-
sulting from large-scale fluctuations in the con-
centration of charged impurities. We have al-
ready shown that these physical phenomena are
responsible for a strong rise of £4(K) in the K —

1 range.

Equation (49) and the conclusions of the theory
put forward in [13] are compared in Fig. 13 with
the experimental data for specially compensated
p-type germanium [44], reviewed in detail in {1].
We can see that, whereas the theory of Miller and
Abrahams [13] predicts a weak variation of ¢4 in
the K — 1 range, the experimental results indi-
cate a strong rise of £3, in agreement with Eq. (49).
We have mentioned earlier that &, should increase
simultaneously with €;. An examination of Fig. 7
in the review of Mott and Twose [1] shows that the
rise of £3, which is evident in Fig. 13, is indeed
accompanied by an increase in &4 by 1-2 meV,
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Fig. 13. Dependence of g3 on K. The points are the experi-

mental results for a sample of p-type germanium with an ac-
ceptor (gallium) concentration Ny = 2,66 - 105 cm~3 [1, 44].

The continuous curve represents a graph of the function A(1—
K)‘V ’. where A is selected to ensure that the curve passes
through the experimentally determined point corresponding to
K = 0.5, The dashed curve represents the theoretical depen-

dence of Miller and Abrahams [13], ’

Unfortunately, the compensation of the samples
studied in {44] is not sufficiently strong so that e,
and the rise of &£ are of the same order of mag-
nitude as the average scatter of donors in respect
of the energy e2Nb/ 3/u; under the experimental
conditions in [44] this scatter was 1.3 meV. There-~
‘fore, a quantitative comparison ofthe results given
in [44] with Eqs. (49) and (43) is, strictly speaking,
impossible. Data on £, and £; were reported in
[45, 46] for strongly compensated n-type germani-
um; these data were similar to those reported in
[44]. A very strong (by 20 meV) rise of £, was
observed in [47, 48] for n-type Ge inthe K — 1
range. However, the hopping conduction was not
investigated in [47, 48] so that it was not possible
to check Eq. (43).
The present author is aware of only one ex-

perimental investigation in which a rise of both
activation energies £, and &3, sufficient to make
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a comparison with Eqs, (43) and (49), was ob-
served: This was the investigation of the conduc-
tion in p-type InSb doped with Mn, Ge, and Fe [49].
Figure 14 shows four typical experimental curves.
Table 1 lists the values of the corresponding im-
purity concentrations, degrees of compensation,
and the activation energies. Samples 1 and 3 were
moderately compensated. Therefore, the values
of £; for these samples were small and the values
of £ could be regarded as equal to the ionization
energy of isolated Ge and Mn impurities. Sam-
ples 2 and 4 were strongly compensated and char-
acterized by a large increase in £ and £3. Equa-
tion (43) is satisfied reasonably well by these two

.samples. The last column of Table 1 gives the

values of £5 calculated for samples 2 and 4 with the
aid of Eq. (49), in which vy =1 was substituted and
the corresponding values for samples 1 and 3 cal-
culated with the aid of Eq.(41). A significant de-
viation from the linear dependence log p on T™!
was observed for strongly compensated samples

at very low temperatures. We shall consider the
origin of this deviation in the next section.

0 170

)

1 1 1 —
0.1 02 13
11N
Fig. 14. Temperature dependences of the resistivity of lightly
doped samples on p-type InSb. The parameters of the samples
are listed in Table 1.

TABLE 1
Activation energy
Sample | Acceptor Ng—No, |Ng-ov, x
cm=3 cm-3 €y, meVig,, mev €3 (theor),
meV
7 } Ge { 2.4 .1014 3.9 0.38 10 0.6 0.5
2 3.1011 1.3 0.997 17.2 6 3.5
3 M 4.1014 6 0.33 9.5 0.6 0.6
4 n 2.5.1012 2 0.997 17 7 2.2
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7. HOPPING CONDUCTION WITH ACTIVATION
ENERGY DECREASING AT LOW
TEMPERATURES

In the preceding sections we have considered

ps and £; separately. We found the resistivity p,

by assuming that the temperature is high and the

frequency of jumps between the donors is not an
exponential function of the temperature. Having
calculated the paths of electrons optimal from the
viewpoint of the wave-function overlap and having
computed pj3, we determined £;. We found that in
the K« 1 and 1-K < 1 range the optimal paths
pass between donors with unperturbed values of
the energy. Thus, the energy €5 in both cases is
determined simply by the gap between the Fermi

level and the unperturbed level of the donor im-

purities. Obviously, this method of calculating the

resistivity is incorrect if the temperature is low,
because then the temperature affects the choice of
the optimal paths and alters considerably their
shape. Mott [5] has shown that at low tempera-
tures the hopping conductivity does not have an ac-
tivation energy but depends on T, in accordance
with the law

G o Gy exp {— ‘%) I‘} . (50)

We shall now give the derivation of Eq. (50) and
find the temperature at which the transition from Eq,
(1) to Eq. (50) occurs in semiconductors with dif-
ferent values of K. We shall start from the expres-
sion for the frequency of jumps between a pair of
donors:

N(e;— e,
-Ej>5'~,
N(es—ep)+1,
Eo’>ej1

2ry; 7,
ccexp(— = )exp— T),

where f(x) and N(x) are the Fermi and Planck dis-
tribution functions of electrons and phonons; &; and
£j are the energies of the ground states of the do-
nors i and j. The quantity ejj = Yollej=pul + lej—
ul + lsi—sj [) results from the multiplication of
the distribution functions. Equation (51) is res-
tricted, for the sake of simplicity, to isotropic
wave functions ;(r). At very low temperatures
the temperature factor in Eq. (51) leads to elec-
tron jumps which are restricted to those donors
whose energy levels lie in a narrow band on both
sides of the Fermi level (Fig.12). If the width of

2
Fe) (1 =1 (55))

T, | S Y jdsr

(51)
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this band is A ¢, the concentration of the "Ae do-
nors"is AN = Aeg(u), where g(u) is the density

of states at the Fermi level. We shall now find the
conductivity for the subset of donors with a fixed
value of Ae. For this purpose we shall replace

£ij in Eq.(51) with its maximum value Ae (this
replacement does not alter the order of magnitude
of the argument of the exponential function for most
of the jumps involved). We shall assume that the
Ag donors are distributed randomly in space.
Then the problem of finding the conductivity as-
sociated with the Ae subset reduces to the prob-
lem of the percolation in a system with an impurity
concentration AN, which has been solved above.
Therefore, the conductivity associated with the Ae
subset can be written in the form

o (Ae) = exp (— W) exp (— %) (52)
When Ae increases because of an increase in the
average distance between the Ae donors, the first
factor in Eq. (52) decreases rapidly. However, the
second factor rises rapidly when Ag — 0. There-
fore, 0(A¢e) has a sharp peak at some value Ae =
Ag, The conductivity of the whole crystal is de-
termined by the optimal subset of donors. The ex-
pression for Ag is

3

T
(g (@ a2)'”

A= (53)
In the above expression for A& we have omitted the
numerical factor because the replacement of &j;
with Ae does not allow us to find the coefficient in
the argument of the exponential function. Substitut-
ing Eq. (53) in Eq. (52), we obtain Eq. (50) and the
value of T, is then given by

To=d (e o) (54)

The coefficient 6 cannot be found in this way and
a more complex theory developed in [50] is needed
for its calculation. According to [50], 6 ~ 16 (see
also [51]).

The temperature To at which the transition
from Eq. (1) to Eq. (50) takes place is given by the
equation

/ a . &3 { (i)‘/‘}
exp (— ¥ha )exp (—— Tc) == exp|—|—F .

The values of T and T for specific semicon-
ductors can be found be discussing separately the
cases of weak (K < 1), intermediate (K = 0.5), and
strong (1-K <« 1) compensation.

(55)
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I. K « 1. If K <« 1,the Fermi level lies above
the level of isolated impurities and the gap be-
tween them is given by Eq. (40). The density of
states above the Fermi level is Nao. Therefore, an
order-of-magnitude estimate of g(u) gives Np X
(€Nl 3/n) = goK, where g, = N *n/e?. Substituting
g(n) in Egs. (54) and (55), we obtain

2 17,
e“N a
D Kl/s.

To==d(gKa%)l, T, (56)

II. K =~ 0.5. Inthis case, the Fermi level lies
in the region of the maximum of g(¢). Therefore,
we find that g(u) = ND(e'zN1 /3 /)1 = gy, and the
expressions for T, and T¢ become

2 a7/,
e“Nja

%

To=10(gad), Tg= (57)

III. 1-K <« 1. The density of states g(u) for
K — 1 can be obtained by substituting Eq. (47) in
Eq.(45). In this way we obtain g(u ) = gy(1—K)!/3
and

2 a1
e“N ja

%

Tooed(gad)t (1 — K)™, T, (58)
Our quantitative results, represented by Egs. (56)-
(58), are in agreement with the qualitative conclu-
sions of Pollak [52] pertaining to the transition from
Eq. (1) to Eq. (50).

It is evident from Egs. (56)-(58) that the tem-
perature T is very small in the K « 1 range. For
K = 0.5 and in the 1 -K <« 1 range,the temperatures
T are of the same order of magnitude and pro-
portional to N/ 3, 1t follows that the law (50) should
be obeyed at moderately low temperatures by a
semiconductor with K > 0.5 and a moderately low
donor concentration Np. Doping must not be too
weak also because the resistivity in the T £ T¢
range should remain within the limits of the ex-
perimental error. On the other hand, the doping
must be too strong or the conduction will be metal-
lic. If a semiconductor is strongly compensated,
the transition to the metallic conduction occurs at
higher values of Ny [1, 6]. Therefore, in order to
observe the conditions corresponding to Eq. (50)
one should use a strongly compensated sample
with NDa3 Z 1. The conductivity of strongly com-
pensated samples of n-type InSb [42], CdTe [53],
and Ge [54] with approximately correct values of
Npa?® do indeed exhibit a gradual fall in the acti-
vation energy and their conductivity varies approxi-
mately in accordance with Eq. (50). This gradual
fall in the activation energy is also observed in
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germanium with K = 0.4 and with impurity concen-
trations quite close to the critical concentration
necessary for the transition to the metallic state
{55]. The fall in the activation energy observed

in weakly doped samples of p-type InSb at very

low temperatures (Fig.14) is also probably due to
the approach to the conditions described by Eq.
(50). Thus, experimental data on crystalline semi-
conductors support the law (50). In earlier papers
it has been demonstrated that the conductivity of
amorphous films of Ge, Si, and Cis described satis-
factorily by Eq. (50) (see, for example, [50]).

We shall now discuss in greater detail the
theoretical assumptions on which the derivation of
Eq. (50) is based. In writing Eq.(52), we have as-
sumed that the distribution of the Ae donors in
space is random. It is quite clear that the esergies
of donors in the K ¢ 0.5 case are correlated only
over distances of the order of N]‘)‘/a. The donors
of the Ae subset are separated from one another
by large distances and, therefore, their positions
in space are absolutely random. If we ignore the
large-scale potential, we find that the same situa-
tion applies also to K — 1. This large-scale po-
tential modulates spatially the density of donor
states located at the Fermi level. If &, < 4E, this
modulation is slight [8]. However, if £, > 4E, the
modulation is very strong and an electron must
tunnel across potential humps. In this case, the
decrease in the activation energy with decreasing
temperature should not be given by Eq. (50). How-
ever, at sufficiently low temperatures, when the
length of a jump [g(u)KE]‘l/3 exceeds the correla-
tion radius of the large-scale potential, the dis-
tribution of the Ae donors should again become
random and Eq. (50) should apply.

The most important assumption made in the
derivation of Eq. (50) is the same as that em-
ployed in all other cases in the theory of hopping
conduction, i.e., that the wave functions are strong-
ly localized and the energies of donors exhibit a
large scatter [56]. Although a rigorous proof of
this assertion cannot be provided, there are good
reasons for believing it to be correct. All the ex-
perimental data reviewed in the present paper sup-
port this assertion. The decisive experimental
evidence in support of the localization of the wave
functions would be the absence of the temperature-
independent conductivity at T — 0 and verification
of Eq.(50). However, since the dependence log 0 «
T™V4 is weak, a very wide temperature range would
be needed in order to check Eq.(50). Therefore,
it seems that a more convenient method for veri-
fying the Mott model would be a study of the mag-
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netoresistance under the conditions corresponding
to Eq. (50).

The theory of the magnetoresistance in mod-
erate magnetic fields, which do not alter the per-
colation paths, can be developed in a manner sim-
ilar to the derivation of Eq. (26) in Sec.4. The
only difference is that in the region where the law
(50) is obeyed, the lengths of electron jumps are
not equal to NI')V 3 butto the average distance I—{(T)
between the Ae donors. It follows from Eq. (53)
that

R = ) 2oy b =a ()"

If we substitute R(T) into the expression for
the probability of a jump (23), we obtain

PP((}:)])) = exp { 5 %ﬁ{:_ (I%)“} ’

where sy is a coefficient of the order of 0.1 (amore
detailed theory of the type given in [50] is needed
to find the exact value of this coefficient).

It is evident from Eq. (59) that the dependences
of the magnetoresistance on H and T are quite
strong and, therefore, these dependences could be
verified experimentally quite easily.

In very strong magnetic fields, for which the
argument of the exponential function in Eq. (59) is
larger than the argument in Eq. (50), it is neces~
sary to make an allowance for changes in the per-
colation paths in the magnetic field. In this case,
the conductivity associated with the Ae donor sub-
set is proportional to exp (—~Lc) exp(— Ae/T) and
the relationship of Lo with AN and Ae can be
found from the condition rAZLZCaAN = ., which is
obtained from Eq. (32) by the replacement of Np
with AN. If we express L¢ in terms of Ag and find
the optimal Ae subset and the associated conduc-
tivity, we finally obtain

(59)

§ (H) eH s
Sor = (e [mwar] - (60)
The transition from Eq. (59) to Eq. (60) occurs when
R(T) becomes of the order of A%/a, i.e., it occurs
in a field H =~ fe(g(u)T)V4/a¥4,
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APPENDIX

We shall consider in detail the derivation of
Eqgs. (23) and (27) and the relationship between them.
We shall assume that a donor is located at the ori-
gin of a cylindrical system of coordinates (p, ¢, z)
with its z axis directed along the magnetic field.
We shall assume that the vector potential A is in
the form Ay = "3 Hp, Az = Ay = 0, Then, the
Schrodinger equation for the ground state of an
electron attached to a donor is of the form [57]

h2 e2H2p2 €2 .
Zme A+ ez ¥ — R —Egt.

- (61)
Here, Ey is the energy of the ground state (Eg > 0).
In deriving Eq. (61) we have taken into account the
fact that the wave function of the ground state has
cylindrical symmetry and is independent of the
angle ¢. We shall find the asymptotic behavior of
¥ (p, z) in the plane z = 0 and assume that p is
large. In the region in which the wave function is
exponentially small it can be found by the quasi-
classical method. We shall write §(p, 2) in the
form

$(p, 2)=B(p, z) e (62)

iS (p, 2)

—5—.
Substituting Eq. (62) into Eq. (61), we obtain the
Hamilton—~Jacobi equation for S(p, z):

a8 \2 AR R ’ e2 e2H2%p2
(5) +(5) =2 (a5 —ee)-

The ground-state wave function should be sym-
metric with respect to the z = 0 plane and, there-
fore, (85/0z),_, = 0. Integration of Eq. (63) then
gives

(63)

2 e2H2p'%

14
s
S ‘=°’=3 V (- — St ). (64)

[
The constant of integration in Eq. (64) is selected
in such a way that the wave function is not expo-
nentially small for p =z = 0.

Since Eyg = h?/ma?, the Coulomb potential at
distances p > ¢ is small compared with Ey. At
large distances this potential affects only the pre-
exponential function in Eq. (62). We are interested
in the argument of the exponential term in the wave
function and, therefore, we can ignore the term
e’/wp in Eq.(64). Then, having written Ey in the
form Eg = h?/2m *a2H, we obtain

J 3 -
2
. o P
s(p)-_-mjvl/a,f+mdp.
) . 0.

(65)
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We shall first consider the case A > g, when the
magnetic field does not alter the energy of the
ground state of a hydrogen-like atom and ay = a.
In this case, Eq.(65) leads to different results at
moderate (a < p < A%?/a) and very large (p >
A2/ a) distances from the impurity atom. If p <
A%/a, we can expand the integrand in Eq.(65) in
terms of p'?a?/4A* and, retaining the first two
terms of the expansion, we find that

3, A2
so=n(E+a5r) (a<r<r). (66)
Substituting Eq. (66) into Eq. (62), we obtain
3 A2
$(p) exp(—%)ew (—%) (a<<P<<—a-)- (67)

At large distances p > A%/a we can ignore
the term a7 in Eq. (65) and we then obtain

¢ () em(—z%) (P>L:.>a>- (68)

In the limit of very strong magnetic fields, rep-
resented by A < a, Eq.(65) shows that the wave
function is described by Eq. (68) at all distances
at which it is exponentially small.

In the range of fields considered by Mikoshiba
A> a/(NDaa)i/s, NDa3 < 1] [34], the average dis-
tance between the impurities Nbl/ 3 satisfies the con-
dition p « A%/ a and the overlap integral can be
calculated if we use the transverse asymptotic ex-
pression (67). This leads to Eq. (23).

If A < a/(Na®)!/¢ (irrespective of the rela-
tionship between A and a), the inequality p > A%/a
is satisfied at distances p = NBU 3 and the wave
function is given by Eq.(68). In this case, the over-
lap integral is calculated by means of Eq.(27) and
this leads to the jump probability given by Eq. (28).
In calculating the overlap integrals in Eqgs. (23) and
(28), we have made allowance for the fact that when
the origin of the coordinate system for A coincides
with the impurity i, the function §; acquires an
additional (compared with #j) phase factor exp-
{ie [Hri]-]r/ZHc} [581.
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