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ABSTRACT 

We show that the indentation size effect for crystalline materials can be accurately modeled using the 
concept of geometrically necessary dislocations. The model leads to the following characteristic form for 
the depth dependence of the hardness : 

where His the hardness for a given depth of indentation, 11, H,] is the hardness in the limit of infinite depth 
and h* is a characteristic length that depends on the shape of the indenter, the shear modulus and H,). 
Indentation experiments on annealed (111) copper single crystals and cold worked polycrystalline copper 
show that this relation is well-obeyed. We also show that this relation describes the indentation size effect 
observed for single crystals of silver. 

We use this model to derive the following law for strain gradient plasticity : 

u 2 - 0 co 
= I+&, 

where 0 is the effective flow stress in the presence of a gradient, 0” is the flow stress in the absence of a 
gradient, x is the effective strain gradient and 1 is a characteristic material length scale, which is, in turn. 
related to the flow stress of the material in the absence of a strain gradient. 

For materials characterized by the power law 

0,) = l&i: ‘I, 

the above law can be recast in a form with a strain-independent material length scale 1. 

This law resembles the phenomenological law developed by Fleck and Hutchinson. with their phenom- 
enological length scale interpreted in terms of measurable material parameters. (’ 1998 Elsevier Science 
Ltd. Ali rights reserved 

$Author to whom correspondence should be addressed. Fax: 001 650 725 4034. E-mail: nixfcc’aoc. 
stanford.edu. 
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1. INTRODUCTION 

As discussed by Fleck and Hutchinson (1993, 1997), conventional theories of plasticity 

do not include material length scales. For such theories the flow stress at any particular 
point in a solid is uniquely related to the strain at that point and is unrelated to any 

strain gradient that might be present. Yet a number of experiments have shown that 

the flow properties of crystalline solids can depend not only on the strain but also on 
the strain gradient. This is expected to be particularly important for the modeling of 

crack tip fields where the strain gradients are large. 
Fleck et al. (1994) have pointed out that the well-known indentation size effect for 

metals, wherein the hardness is observed to increase with decreasing indentation size, 
especially in the sub-micrometer depth regime (Stelmashenko et al., 1993 ; De Guzman 
et al., 1993; Ma and Clarke, 1995), can be understood by noting that large strain 

gradients inherent in small indentations lead to geometrically necessary dislocations 
that cause enhanced hardening. This same physical description was given earlier by 

Stelmashenko et al. (1993) and De Guzman et al. (1993) to account for the depth 
dependence of the hardness, but the connection to strain gradient plasticity theory 

was not made in these previous studies. Ma and Clarke (1995) used the same physical 

description and recognized its connection to strain gradient plasticity. In these descrip- 
tions, statistically stored dislocations, which are created by homogeneous strain, and 
geometrically necessary dislocations, which are related to the curvature of the crystal 

lattice or to strain gradients, both contribute to the flow stress. This nomenclature 
and these concepts follow from the early work of Ashby (1970). Similarly Fleck et al. 

(1994) have shown that fine copper wires deformed in torsion exhibit strengths that 

increase with decreasing wire diameter, whereas the tensile properties of these same 
wires are almost independent of wire diameter. They interpreted these results in terms 

of the geometrically necessary dislocations associated with the strain gradients in 
torsion. 

To account for these strain gradient effects, Fleck and Hutchinson (1993) have 

developed a phenomenological theory of plasticity, using a single, constant, material 
length scale, 1, within the general framework of couple stress theory. The couple stress 

theory used by Fleck and Hutchinson (1993) bears some resemblance to the early work 
of Kroner (1963) who studied the connection between lattice curvature associated with 
dislocations and couple stresses and developed a non-local continuum theory based 
on that connection. Xia and Hutchinson (1996) and Huang et al. (1995, 1997) have 
used the phenomenological theory to describe the stresses and strains at crack tips in 
elasticplastic solids, where the effects of strain gradients are large and must be taken 
into account. A more general formulation of the phenomenological theory, which 
involves up to three independent material length scales, has been developed by Fleck 
and Hutchinson (1997). 

In the present paper we use the simple model of geometrically necessary dislocations 
to describe the depth dependence of hardness of crystalline materials, following the 
derivations of Stelmashenko et al. (1993), De Guzman et al. (1993). We show that 
this model leads to a characteristic relation for the depth dependence of hardness that 
is in excellent agreement with nanoindentation experiments. In particular, we present 
new experimental data for the depth dependence of the hardness of annealed (111) 
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Fig. I Depth dependence of the hardness of (I II) single crystal copper and cold worked polycrystalline 
copper, taken from the work of McElhaney et ul. (1997). Experiments were conducted with a Berkovich 
diamond indenter (tan0 = 0.358) and the effects of pile-up and sink-in were taken into account in the 

determination of contact areas. 

single crystals of copper and cold worked polycrystalline copper to support the model. 
We also show that the nanoindentation experiments of Ma and Clarke (1995) on 
single crystals of Ag provide support for the model. We focus much of our attention 
on the implications of this physical model for the theory of strain gradient plasticity. 
We show that, for materials characterized by a power law, a constant material length 
scale 1 can indeed be defined, as assumed in the present phenomenological treatments 
(Fleck and Hutchinson, 1993 ; Xia and Hutchinson, 1996; Huang et al., 1997). This 
length scale is related to a microstructural characteristic length 1 which scales with 
L’/b where L is the spacing between dislocation obstacles and b is the Burgers vector. 
We briefly discuss the implications of these results on strain gradient plasticity theory. 

2. MODEL 

The depth dependence of the hardness of copper is shown in Fig. 1 for both (I 1 I) 
single crystal copper and for a cold worked sample of polycrystalline copper. These 
measurements, which were made by nanoindentation, were taken from the work of 
McElhaney et al. (1997). Special care was taken in this study to account for the effects 
of pile-up and sink-in which occur during indentation. Thus the depth dependence of 
the hardness shown in the figure arises from real material behavior and is not associ- 
ated with errors in the contact area. We wish to describe these results using the simple 
model of geometrically necessary dislocations developed first by Stelmashenko et al. 

(1993) and De Guzman et al. (1993). The present development closely follows the 
approach of De Guzman et al. (1993) and is presented in detail here for the con- 
venience of the reader. Consider the indentation by a rigid cone, as shown sche- 
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Fig. 2 Geometrically necessary 
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Geometrically Necessary Dislocations 
a 
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dislocations created by a rigid conical indentation. 
is idealized as circular dislocation loops. 

The : dislocation structure 

matically in Fig. 2. For simplicity we assume that the indentation is accommodated 
by circular loops of geometrically necessary dislocations with Burgers vectors normal 
to the plane of the surface. As the indenter is forced into the surface of a single crystal, 
geometrically necessary dislocations are required to account for the permanent shape 
change at the surface. Of course other dislocations, called statistically stored dis- 
locations by Ashby (1970) not shown in the figure, would also be created and they 
would contribute to the deformation resistance. We take the angle between the surface 
of the conical indenter and the plane of the surface to be 8, the contact radius to be a 
and the depth of indentation to be h. If we think of the individual dislocation loops 
as being spaced equally along the surface of the indentation then it is easy to show 
that 

tan(j=b=b ba 

a s’ 
S=--, 

h 

where s is the spacing between individual slip steps on the indentation surface, as 
shown in the figure. If 2 is the total length of the injected loops, then between r and 
r + dr we have 

d;l = 2nr: = Znr$dr, 

which after integration gives 

(2) 

It= s “h nha 
o 62rcrdr = b. (3) 
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We assume that all of the injected loops remain within the hemispherical volume V 
defined by the contact radius 

V = +z3, (4) 

so that the density of geometrically necessary dislocations becomes 

To estimate the deformation resistance we use the Taylor relation to find the shear 
strength as follows : 

7 = ai&& = wb&,;+p,, (6) 

where pr is the total dislocation density in the indentation, ps is the density of 
statistically stored dislocations, ,U is the shear modulus, b is the Burgers vector and SI 
is a constant to be taken as 0.5 in all of the analyses below. We note that pj is not 
expected to depend on the depth of indentation. Rather it depends on the average 
strain in the indentation, which is related to the shape of the indenter (tanN). We 
assume that the von Mises flow rule applies and that Tabor’s factor of 3 can be used 
to convert the equivalent flow stress to hardness : 

G = J 32, H= 3~. (7) 

With these relations we may now write the hardness using both eqns (5) and (6) as 

H hT 

H,= J 1+7, (8) 

where 

Ho = 3J,&bJz, (9) 

is the hardness that would arise from the statistically stored dislocations alone, in the 
absence of any geometrically necessary dislocations, and 

h* =tba’tan’H 
3 

(10) 

is a length that characterizes the depth dependence of the hardness. We note that h* 
is not a constant for a given material and indenter geometry. Rather it depends on 
the statistically stored dislocation density through Ho. 

3. COMPARISON WITH INDENTATION EXPERIMENTS 

The characteristic form for the depth dependence of the hardness shown in eqn (8) 
suggests that the square of the hardness should be plotted against the reciprocal of 
the depth of indentation. When the data of Fig. 1 are plotted in this way a good 
straight line is found, the intercept of which is H,, and the slope of which is h*. Then 



416 W. D. NIX and H. GAO 

Depth Dependence of Hardness 
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Fig. 3. Depth dependence of the hardness of (111) single crystal copper, taken from Fig. 1, plotted according 
to eqn (8). 
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Depth Dependence of Hardness 
cold worked polycrystalline Cu 

Ho = 0.834 GPa 

h’ = 0.464 pm 
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Fig. 4. Depth dependence of the hardness of cold worked polycrystalline copper, taken from Fig. 1, plotted 
according to eqn (8). 

the data can be displayed as a plot of (H/HJ2 vs l/h, as shown for the (111) single 
crystal copper in Fig. 3 and for the cold worked polycrystalline copper in Fig. 4. 
Hardness data for indentation depths less than about 0.1 pm have been excluded from 
Fig. 1 and Figs 334 both because the shape of the indenter is not self similar at small 
indentation depths, as assumed in the model, and because uncertainties in the contact 
area arise at small depths of indentation. We observe excellent agreement with the 
predictions of the model. 
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Fig. 5. Depth dependence of the hardness of (100) single crystal silver. taken from the work of Ma and 
Clarke (1995), plotted according to eqn (8). 
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Depth Dependence of Hardness 
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Ma and Clarke (1995) 

h* = 0.423 pm 

0.01 “““,““,“““I”“I,“‘l 
0 1 2 3 4 5 6 

l/h (pm-‘) 

Fig. 6. Depth dependence of the hardness of (I 10) single crystal silver, taken from the work of Ma and 
Clarke (l995), plotted according to eqn (8). 

To illustrate the utility of this model for describing the depth dependence of 

hardness of metals we plot the hardness data of Ma and Clarke (1995) for (100) and 
(110) single crystals of Ag in Figs 5 and 6, again using the form of eqn (8) as a guide. 

As in the case of the copper data, we have excluded hardness data for indentation 
depths less than 0.1 pm. Again we find good agreement with the predictions of the 
model. 

As discussed above, the quantities H,, and h*, as described by the model, are not 
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Table 1. Comparison of predicted [eqn (lo)] and measured values of the characteristic 
length, h* 

h (predicted) 
Material (pm) 

(111) single crystal Cu (annealed) 0.58 I 1.60 42 0.256 0.5 1.73 
Polycrystalline Cu (cold worked) 0.834 0.464 42 0.256 0.5 0.840 
(100) single crystal Ag** 0.340 0.757 26.4 0.286 0.5 2.23 
(110) single crystal Ag** 0.361 0.432 26.4 0.286 0.5 1.98 

**Ma and Clarke (1995). 

independent. Rather they are related through eqn (10). Thus a check of self consistency 
can be made by computing the expected value of h* from the measured values of H,, 
using the model and the known shape of the indenter. All of the experiments described 
here were conducted using a three-sided Berkovich indenter for which the nominal 
contact area varies as 

A, = 24.5h2 = xa2. 

Using this relation together with eqn (1) gives 

(11) 

tan(j=h: 
a J- &5 = 0.358. (12) 

Table 1 shows the predicted values of h* for the four sets of indentation data discussed 
above using eqn (10). The data needed to make these calculations are given in the 
table. We note that the predicted values of h* are in reasonably good agreement with 
the measured values. It should be noted that the results of these calculations are quite 
sensitive to the chosen value of CL As mentioned above, we have used a = 0.5 for all 
of these analyses. Slightly different but still reasonable values of CY would be required 
to make the predicted and measured values of h* coincide exactly. 

The model developed here suggests that the hardness of a material should not 
depend strongly on the depth of indentation if the material is intrinsically hard. 
Specifically, large values of Ho would cause h* to be very small [eqn (IO)] and this 
would cause the hardness to depend less strongly on depth at a given depth of 
indentation. This is shown in Fig. 7 for fused quartz, where the hardness is essentially 
independent of depth of indentation. If the hardness at a depth of 200 nm is taken to 
be about 9 GPa, then the hardness at a depth of 600 nm would be predicted by eqn 
(10) to be only slightly lower, 8.95 GPa, provided we use a shear modulus of p = 30 
GPa, a “Burgers vector” of b = 0.25 nm and tan 0 = 0.358 in the analysis. Naturally, 
the present model is based on crystalline materials and the dislocation model does 
not strictly apply. Nevertheless, the relative independence of hardness on depth of 
indentation of quartz illustrates the behavior of intrinsically hard materials and is 
consistent with the predictions of the model. 
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Fig. 7. Depth dependence of the hardness of fused quartz. Essentially no variation in hardness is observed. 
as expected from eqn (8) for a material with high intrinsic hardness and small /I*. 

4. A LAW FOR STRAIN GRADIENT PLASTICITY 

As discussed by Fleck et al. (1994) and Ma and Clarke (1995), the depth dependence 
of the hardness, which is expected to arise from the presence of geometrically necessary 
dislocations, can be associated with the strain gradient. Here we use the simple model 
of geometrically necessary dislocations to derive a law for strain gradient plasticity. 
For the indentation problem a measure of the strain gradient is 

(13) 

Using this relation, together with the von Mises flow rule, Tabor’s correction, eqns 
(1) and (10) and cc = 0.5, the expression for the depth dependence of the hardness 
[eqn (S)] may be written as 

or, more simply, 

(14) 

(15) 

where d is the effective flow stress in the presence of a strain gradient and cc, is the 
flow stress in the absence of a gradient. We recognize the quantity 

2 

(16) 
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as a length scale with which any strain gradient must be compared to determine the 
effect of the strain gradient on the flow stress. We note i is not constant for a given 
material but is required to change as the flow stress in the absence of a strain gradient 
changes. Specifically, in ordinary strain hardening the flow stress rises with increasing 
homogeneous strain, thus causing the characteristic length scale 1 to decrease accord- 
ing to eqn (16). 

It may be useful to provide a microscopic interpretation of the length scale 1. 
For the case of pure FCC metals, which are strengthened primarily by dislocation 
interactions, 1 has a clear microstructural meaning. Using eqn (9) to obtain 

co = $apbJp,, (17) 

and noting that the density of statistically stored dislocations can be expressed 
approximately as 

(18) 

where L, is the mean spacing between statistically stored dislocations, the material 
length scale becomes 

jzb !k2=!~=% 0 a0 3 bp, 3 b (19) 

Thus 1 depends on the mean spacing between dislocations and the Burgers vector, 
both natural physical dimensions for this problem. For the case of materials streng- 
thened by dispersoids or precipitates, the flow stress in the absence of gradients might 
be expressed in terms of the mean spacing between particles, Lp, according to 

aoz&$. 
P 

For this case, 

(20) 

(21) 

Again we find that 1 is related to the microstructural dimension Lp and b, as expected 
physically. For these reasons, we shall call 1 the microstructural length scale for strain 
gradient plasticity. 

The comparison of the indentation size effect for annealed and cold worked copper 
provides another test of the model. The microstructural length scale ican be computed 
with eqn (16) using the measured value of Ho and Tabor’s factor of three,The resulting 
values are iannealed = 12.0 pm and icoldworked = 5.84 pm. We note that 1 for the cold 
worked sample is a factor of two smaller than the value for annealed copper, indicating 
that larger strain gradients are necessary to produce the same strengthening effects in 
cold worked Cu as for annealed Cu. This is, of course, evident in the depth dependence 
of the hardness for these two materials, Fig. 1, where the depth dependence for a 
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particular strain gradient, as defined by the shape of the indenter, is smaller for the 
cold worked sample. 

Strictly speaking, an indent with constant slope, as assumed in the previous section, 
is not entirely consistent with the approximation of a constant strain gradient. Alter- 
natively, one may use the assumption of a constant strain gradient as the starting 
point and repeat the analysis given above. In this case, the dislocation spacing becomes 
nonuniform, 

ab 1 
s(I.) = ____ 

(a-r) tan0’ 
(22) 

This leads to a higher density of geometrically necessary dislocations at the center of 
the indent, 

pGrnilx = &tan’ I). 

This is twice the average density 

pc = &tan’ 8. 

(23) 

(24) 

If pG is replaced with pcmax in eqn (6), an analysis similar to eqns (7)-( 10) leads to a 
similar expression for h* 

This is still within a reasonable range of the experimental data presented in Table 1. 

5. STRAIN GRADIENT PLASTICITY 

The indentation experiments described above suggest a strain gradient plasticity 
law of the form 

IS? = 0; +$bX, (26) 

where x measures the strain gradient. In order to compare this form of strain gradient 
plasticity with that developed by Fleck and Hutchinson (1993, 1997), we consider the 
usual power hardening law in the absence of a strain gradient 

0” = c&,&‘~“, (27) 

where II is a hardening exponent and grel. is a reference stress taken to be a measure of 
the yield stress. Inserting eqn (27) into eqn (26) yields a strain gradient plasticity law 
with a strain-independent material length scale 

(28) 
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This can be compared to the corresponding law in the Fleck-Hutchinson (1997) strain 
gradient plasticity framework, which, in the case of a single material length scale, 
becomes 

where 1 is a phenomenological length scale, p is an exponent usually taken to be 2 
(Fleck and Hutchinson, 1993), but can be generalized to an arbitrary number larger 
than 1 without destroying the basic theoretical framework (Fleck and Hutchinson, 
1997). The effective strain E and the effective strain gradient x are related to their 
tensor components by 

and 

2 
&= J -&,jE,, 3 (30) 

(31) 

where xi, is the so-called curvature tensor (Fleck and Hutchinson, 1993) which is 

related to the third order strain gradient tensor by 

xi, = eik/&jk,l (erk, = permutation tensor). (32) 

The effective strain gradient x corresponds to the invariant of the curvature tensor 
Q. A numerical factor on the order of one needs to be introduced to relate the simple 
definition of strain gradient in eqn (13) and the more rigorous definition of a tensor 
invariant. This factor is ignored here. 

The strain gradient law of eqn (28) exactly matches the Fleck-Hutchinson phenom- 
enological law (29) only under the following conditions 

(33) 

The condition n = 2 is not unreasonable for some materials, particularly some 
annealed crystalline solids. Indeed, this value is assumed by Stoken (1997) in analyzing 
Ni filament bending experiments. The phenomenological length scale I of Fleck and 
Hutchinson is now related to measurable physical parameters, and to the micro- 
structural length scale I^ previously discussed. The condition b = 1 is incompatible 
with the Fleck-Hutchinson formulation. Serious numerical problems are observed 
and reported as the value of fi is allowed to approach 1 (Fleck and Hutchinson, 1997). 
Apparently, further developments of the strain gradient plasticity theory are required. 
Begley and Hutchinson (1997) have initiated such work using the theory of Fleck and 
Hutchinson (1997) with two constitutive length parameters to model indentation 
experiments. They concluded that the length parameter associated with the so-called 
stretch gradient is especially important for describing indentation experiments. 
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However, the physical meaning of the stretch gradient has not yet been fully inves- 

tigated. 

6. CONCLUDING REMARKS 

We have shown that the model of geometrically necessary dislocations provides an 
excellent description of the depth dependence of hardness of Cu and Ag in the 

micrometer depth regime and that the form of the relation predicted by the model 
leads to a new law for strain gradient plasticity : 

where i is a characteristic length scale. This length scale depends on the strain rate of 

the material or, equivalently, the flow stress of the material in the absence of a strain 
gradient : 

The model of geometrically necessary dislocations shows that 1 scales naturally with 
L’,‘b, where L is the spacing between dislocation obstacles and b is the Burgers vector. 

For power hardening materials, the above law can be recast in a form with a strain- 

independent length scale I, 

Although this form resembles the Fleck-Hutchinson framework of strain gradient 
plasticity theory, exact match with that theory is not possible due to some intrinsic 

incompatibility problems. Nevertheless, the phenomenological length scale I is now 
clearly linked to meaningful physical parameters and the microstructural length scale 
i. 

Clearly the strengthening effects that arise from gradients in the strain become 

especially important when the strain gradients are large. Thus, these effects are 
expected to be significant when the material in question is plastically deformed in very 

small volumes, such as at the tips of cracks or in sub-micrometer indentations. 
However, other effects that do not appear to be associated with strain gradients can 
also be large when plasticity is constrained to occur in small volumes, and they 

should be distinguished from strain gradient effects. For example, the biaxial plastic 
deformation of a thin film on a substrate caused by thermal expansion mismatch 
between the film and the substrate typically requires much higher stresses than would 
be required for bulk deformation of the same material [Venkatraman and Bravman 
(1992)]. This is thought to arise from fine structure effects (small grain size. small film 
thickness) and not from plastic strain gradients, as the biaxial strains imposed on such 
thin films are essentially homogeneous. No significant strain gradients are thought to 
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be present when a thin film is plastically deformed in this way. One could envision 
the high strengths of such thin films to arise from the blockage of dislocations at the 
film/substrate interface, leading to the formation of dislocation pile ups in the film. 
This would lead to a plastic strain gradient in the film and also to a gradient of biaxial 
stress and elastic strain. But Doerner and Brennan (1988) and Venkatraman et al. 
(1994) have tried, without success, to find evidence for such stress gradients in the 
thin aluminum films that show the film strength effect. They used the grazing incidence 
X-ray scattering (GIXS) technique to measure the in-plane elastic strain as a function 
of distance from the free surface. They found essentially no elastic strain gradients in 
these films, except very near the free surface. Over most of the film thickness, the 
strains seem to be constant and independent of depth. This suggests that plastic strain 

gradients are not large and that the strengths of these films should not be associated 
with strain gradient effects. 

The thin film strength problem does have some characteristics in common with the 
identationstrain gradient problem. In both cases one has “extra” dislocation storage 
as a consequence of the constraints on the plastic deformation. In indentation one 
must have strain gradients and geometrically necessary dislocations. These geo- 
metrically necessary dislocations are in excess of the ones that would form by statistical 
processes. In like manner “extra” dislocations are created at the film/substrate inter- 
face in the thin film problem because of the constraint of the substrate. This extra 

storage process occurs even if all of the dislocations run right to the film/substrate 
interface. In this sense the two problems have something in common. 

For another example, the tensile strengths of finely structured microlaminate films 
are much higher than the strengths of monolithic films [Was and Foecke (1996)], even 
though these materials are not subjected to large plastic strain gradients. Again this 
strengthening is thought to be associated with the small dimensions of the individual 
layers and not with the presence of strain gradients. 

Thus, accounting for the high strengths of thin films and multilayers does not 
necessarily require the use of strain gradient plasticity. Even when these materials are 
deformed homogeneously under biaxial loading, it is still not possible to use the 
constitutive properties of bulk materials to make predictions about the mechanical 
behavior. The constitutive properties of the thin film materials themselves must be 
used for such predictions. 
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