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A counter-example to Kelvin’s conjecture on minimal surfaces
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ABSTRACT

Kelvin's conjecture, that a b.c.c. arrangement of his minimal tetrakaidecahedron
divides space into equal cells of minimum surface area, has stood for over one
hundred years. We have found a counter-example, in the form of a structure
analogous to that of some clathrate compounds and also related to the f-tungsten
structure. Its surface area is approximately 0-3% less than that of Kelvin’s structure.

In 1887 the Philosophical Magazine published Kelvin's classic analysis of the
following problem (Thomson 1887). What space-filling arrangement of cells of equal
volume has minimum surface area? This arises naturally in the theory of foams, when
the liquid content is small. It has an obvious solution in two dimensions, but not in
three.

Kelvin was able to draw on the rules of Plateau (1873) for equilibrium structures of
this kind. The surfaces which bound the celis must meet at 120° and the lines which are
formed by their intérsections must meet at cos™!(—1/3), the tetrahedral angle. He
proposed the body-centred-cubic (b.c.c.) structure as a likely candidate for the optimal
arrangement. What is now familiar as the Wigner—Seitz (or Voronoi) cell of the b.c.c.
structure is an orthic tetrakaidecadedron constructed from six square faces and eight
hexagons. Kelvin showed how a slight distortion of the hexagonal faces was sufficient
to satisfy Platecau’s rules. He remarked that ‘no shading could show satisfactorily the
delicate curvature of the hexagonal faces. Figure 1 illustrates this structure. The
curvature reduces the surface area of the cell by about 0-2% (Princen and Levinson
1987).

That this should be the optimal solution is an appealing conjecture, implicit rather
than directly stated in Kelvin’s original papers. It is rather like the proposition that the
density of face-centred-cubic (f.c.c.) is the maximum achievable for equal spheres, but it
resis on even less firm ground. The question has often been raised, as to whether
Kelvin’s choice can be bettered. For example, the discussions of Williams (1968), Ross
(1978) and Princen and Levinson (1987) all make interesting contributions, but no-one
has hitherto succeeded in proving or disproving the conjecture. Particularly entertaining
is the review by the botanist Matzke (1946) of various attempts to realize or observe the
Keivin structure in real systems. As for the mathematicians, they have generally
maintained an open mind, but no less an authority than Weyl (1952) gave it as his
opinion that is was unlikely that Kelvin’s construction could be improved upon.

Recently Weaire (1994) has offered some speculation on a somewhat wider issue,
that of the optimal structures of foams of finite liquid content {wet foam). In
continuation of that line of thought we have begun calculations of surface energies of
rival structures for dry foam, particularly the clathrate structures suggested by Weaire
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Fig. 2

Unit cell of thé space-filling structure reported here, with surface area minimized. It consists of six
14-sided polyhedra and two 12-sided polyhedra, as described in the text.

Isoperimetric quotient (figure of merit for area minimization) of various structures. An asterisk
indicates non-space-filling cells.

Isoperimetric
Structure (lattice) quotient
Sphere* 1-000
Structure presented here 0764
(simple cubic lattice, eight cells)

Kelvin tetrakaidecahedron (b.c.c.) 0757
Pentagonal dodecahedron* 07547
Orthic tetrakaidecahedron (b.c.c.) 0-7534
Rhombic dodecahedron (f.c.c.) 0-7405
Cube (s.c.) 0-5236

columns, the cells in each column being joined by their hexagonal faces. The
pentagonal dodecahedra lie between them on a b.cc. lattice. The overall lattice
periodicity is simple cubic.

Note that the cell faces of this structure are irregular. Only the hexagonal faces
remain planar (since they lie in symmetry planes of the structure).

There is another, and for some purposes simpler, way of describing the structure.
The cell centres are the atomic positions of the B-W structure illustrated in fig. 3. This is
one of the Frank—Kasper phases (see, for example, Pearson 1972). N. Rivier (private
communication, 1993) has suggested that these should be of relevance to foam
structures.

Of course, the structure discussed here can only be accorded the same provisional
status as that previously enjoyed by Kelvin’s, and it remains to be seen for how long it
will hold the championship. In particular we have yet to check the other simple
clathrate structure composed of pentagonal and hexagonal faces which arises in
crystallography (Weaire 1994), as it has a much larger unit cell. It will be possible in due
course to make exhaustive computer searches, but the intuition which suggested the
structure here presented tends to the view that it will be difficult to surpass.
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Fig. 1

Kelvin structure, constructed using the Surface Evolver' package of K. Brakke (1992).

(1994) as a natural choice for intermediate values of liquid content. Qur first result has
immediate and largely unexpected implications. It overthrows Kelvin’s conjecture by
providing a counter-example which has a significantly lower surface energy.

The structure in question is derived from the periodic cubic clathrate structure of
NagSi, e described by Kasper, Hagenmuller, Pouchard and Cros (1965). In this context,
the cell vertices are tetrahedrally bonded Si atoms. These are entirely arranged in closed
cages which enclose guest Na atoms, and can therefore be used to define a cellular
structure. In adapting this simple clathrate to our purposes, we began with flat-sided
polyhedral cells having the same topology. These were generated by a Voronoi
construction using the Na positions as centres. The plane polyhedral cells generated by
this initial construction do not have equal volumes. To equalize the volumes and
produce the minimal structure we have used the ‘Surface Evolver’ package of Brakke
(1992). This program minimizes surface area, subject to the constraint of fixed cell
volumes, for successively finer tesselations of the original cell faces. In this way the
curvature of the minimal surface can be progressively approximated with increasing
accuracy. In the present case, the topology of the ceiluiar structure is undisturbed by
this relaxation.

Figure 2 shows one unit cell of the resulting structure. The table compares its
surface energy with that of the Kelvin structure and some others. For consistency with
some previous discussions we shall use as a figure of merit the so-called isoperimetric
quotient defined by 36w V2/A>. Here A is to be taken as the average cell surface area and
V the cell volume. We see that the new structure has a surface energy which is
approximately 0-3%; less than that of Kelvin’s solution, a remarkably large margin of
superiority in this context.

Having established this result, we may rationalize it as follows. It has been
repeatedly remarked that the ideal number of faces for a space-filling cell is close to
fourteen: various geometrical/topological arguments point to this (Weaire and Rivier
1984). The 14-sided cell of least surface energy would appear to be that which consists of
12 pentagonal and two hexagonal faces. The clathrate structure which we have used
consists mainly of such cells, with an admixture of one-third as many pentagonal
dodecahedra. The 14-hedra are arranged in three mutually perpendicular, interlocking
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Fig. 3

The B-W structure, in which the atomic positions correspond to the cell centres of the structure
depicted in fig. 2

To many the assertion that Kelvin's elegant and simple solution is not optimal will
come as a surprise, and the subject, together with its experimental counterpart in the
observation of foams and emulsions, is thereby rendered even more intriguing. Our
own experimental observations will be presented in a further paper (Weaire and Phelan
1994).
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