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Abstract The quest for enhanced light-matter interactions

has enabled a tremendous increase in the performance of

photonic-crystal nanoresonators in the past decade. State-of-

the-art nanocavities now offer mode lifetime in the nanosecond

range with confinement volumes of a few hundredths of a cubic

micrometer. These results are certainly a consequence of the

rapid development of fabrication techniques and modeling tools

at micro- and nanometric scales. For future applications and

developments, it is necessary to deeply understand the intrinsic

physical quantities that govern the photon confinement in these

cavities. We present a review of the different physical mecha-

nisms at work in the photon confinement of almost all modern

PhC cavity constructs. The approach relies on a Fabry-Perot

picture and emphasizes three intrinsic quantities, the mirror

reflectance, the mirror penetration depth and the defect-mode

group velocity, which are often hidden by global analysis relying

on an a posteriori analysis of the calculated cavity mode. The

discussion also includes nanoresonator constructs, such as the

important micropillar cavity, for which some subtle scattering

mechanisms significantly alter the Fabry-Perot picture.

500 nm

Photon lifetime in photonic crystal nanocavities is mainly lim-

ited by Bloch-mode profile mismatches, and by engineering the

mirror termination, one may lower the mismatch and increase

the lifetime.

© 2008 by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim

Photon confinement in photonic crystal nanocavities
Philippe Lalanne ∗, Christophe Sauvan and Jean Paul Hugonin

Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, University Paris-Sud, Campus Polytechnique, RD 128, 91127 Palaiseau, France

Received: 11 April 2008, Revised: 24 June 2008, Accepted: 15 July 2008

Published online: 3 September 2008

Key words: Nanocavity, Fabry-Perot resonator, slow waves, taper, photonic crystal, Bragg mirrors.

PACS: 42.60.Da, 42.55.Sa, 42.70.Qs, 42.50.Pq

1. Introduction

Ultrasmall microcavities that durably trap photons in small
volumes close to the diffraction limit are essential com-
ponents for modern optics and various related fields [1].
Although it is true that the physical phenomena observed
in those cavities are similar to those previously reported in
more conventional resonator etalons, microcavities allow
the performance to be boosted by orders of magnitude and
offer a reliable platform for dense integration. They are
characterized by two main quantities: the mode volume V
and the quality factor Q. The former represents the spatial
extent of the electromagnetic confinement and the latter is
proportional to the photon lifetime in the cavity. Thus Q
and 1/V can be seen as the spectral and spatial energy den-

sity associated to the resonant mode, respectively. When
trapped for sufficiently long times in a small space, photons
strongly interact with the host material and thus create sig-
nificant nonlinear [2], quantum [3] and optomechanical [4]
effects, to quote only a few of them. The modification of
the spontaneous emission rate of atoms placed in resonance
with the microcavity mode is an emblematic effect [5].

During the last decade, the rapid development of fab-
rication techniques at micro- and nanometric scales has
enabled the successful demonstration of various types of mi-
croresonators, such as disk-shaped or wire ring resonators,
or photonic crystal (PhC) cavities, see [6] for an overview.
Consequently, many physical phenomena have been ob-
served with unprecedented compactness, integration and
power thresholds, such as the Purcell effect [7], strong
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Figure 1 Different types of photonic crystal microcavities. (a)

PhC cavity in a ridge waveguide in a silicon-on-insulator substrate

(courtesy David Peyrade, Laboratoire des Technologies de la Mi-

croélectronique [26]). (b) GaAs/GaAlAs micropillar (courtesy

Gilles Patriarche, Laboratoire de Photonique et de Nanostruc-

tures [23]). (c) L3 cavity in a 2D PhC etched in a GaAs membrane

suspended in air (courtesy Sylvain Combrié, Thalès Research and

Technology [29]).

coupling between quantum dot and cavity modes [8, 9],
light storing [10], wavelength routing [11] and buffer-
ing [12], optical bistability [13], high-speed modulation
in silicon [14, 15], lasing at ultralow thresholds [16–19]
and single-molecule sensing [20]. Total internal reflection
is solely exploited in disk-shaped or wire ring resonators,
but a hybrid confinement that combines photonic bandgaps
in one or two dimensions with index guiding is exploited
in PhC microcavities such as micropillars [21–23], PhC
cavities in semiconductor wires [24–26] or in 2D PhC mem-
branes [27–29], see Fig. 1.
In general, the light confinement in cavities relying

only on refraction is well understood as resulting from
whispering-gallery modes. Our current understanding of
the confinement in PhC cavities is much less mature, prob-
ably because the hybrid character of the confinement is
conceptually difficult to apprehend. This difficulty is re-
flected in the design strategy that often relies on a global
analysis of the cavity with 3D electromagnetic computa-
tions followed by optimisations performed by repeatedly
adjusting some cavity parameters, see [30–36] for instance.
For future applications and developments, it appears essen-
tial to deeply understand the confinement mechanisms in
these cavities. A good understanding is also important for
new designs in general.

Hereafter, we review the different physical mechanisms
at work in the photon confinement of almost all modern
PhC cavity constructs. For that purpose, we abandon the
global analysis approach briefly summarized in Sect. 2 and
we consider in Sect. 3 a classical description of the con-
finement through a Fabry-Perot picture. The latter empha-

sizes three intrinsic quantities (the mirror reflectance, the
mirror penetration depth and the defect-mode group ve-
locity), which are tightly attached to the physics of the
electromagnetic confinement, but are hidden by global anal-
ysis. In Sect. 4, the main PhC cavity constructs that have a
strong impact in the domain are dissected with the Fabry-
Perot picture and the physical quantities that govern the
performances are compared. From the comparison, general
recipes for designing high-Q microcavities are discussed.
Not all PhC microcavities can be accurately analysed with
a few intrinsic quantities, and Sect. 5 is devoted to some
subtle scattering mechanisms that may significantly alter
the Fabry-Perot picture. As a whole, we expect that the
overview helps to clarify the physical mechanisms and
strategies that may be used for trapping light in subwave-
length volumes.

2. Cavity Q-factors: definition and analysis
Resonant cavities have discrete frequencies of oscillation
with a definite field configuration. This implies that, for an
ideal lossless case, the response of the cavity to external
excitation is a discrete set of infinitely narrow peaks, one
for each eigenfrequency. In a real situation, appreciable
excitation can occur for a narrow band around the reso-
nance frequency. The source of this resonance broadening
is energy dissipation. An important physical parameter that
measures the sharpness of the resonator response is the qual-
ity factor Q. In the following, we will focus on dielectric
microresonators, i.e. resonant structures with real permittiv-
ities and permeabilities. Hence, there is no absorption and
the energy dissipation comes only from the power that leaks
out of the cavity. The latter behaves as an open system.
Generally speaking, the quality factor Q of a resonator

is defined as 2π times the ratio of the time-averaged energy
stored in the cavity to the energy loss per cycle [37]:

Q = ω0
Stored energy

Power loss
= ω0

U

P
. (1)

In this definition based on an energy balance, U is the elec-
tromagnetic energy stored in the resonator and P is the
power radiated out. Eq. (1) implies that the energy stored
in the cavity is exponentially decaying in time with a decay
time τ = Q/ω0. The quality factor is therefore a measure
of the cavity-mode lifetime. This intuitive and meaning-
ful property is exploited by finite-difference-time-domain
(FDTD) methods to compute cavity Qs [28, 31–33,35].

It is relevant to consider also the frequency-domain def-
inition of the Q factor and to show that the time-domain
and the frequency-domain pictures are completely equiv-
alent. In the frequency-domain picture, cavity modes and
their associatedQ factors are defined by considering analyt-
ical continuations of Maxwell’s equations in the complex
frequency plane. The cavity eigenmodes are defined as
triplets (E,H, ω̃) that are solutions of Maxwell’s equations
without sources

∇×E = iω̃μ(r)H and ∇×H = −iω̃ε(r)E , (2)
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Figure 2 (online color at: www.lpr-journal.org) Schematic of

the cavity mode of an optical open resonator. The two surfaces

Σ1 and Σ2 can be used to define the quality factor Q.

where ε and μ are the real permittivity and permeability, re-
spectively. For the sake of simplicity, we assume isotropic
materials hereafter, but this assumption is not required.
We will show now that the Q factor of the mode can be
calculated from the imaginary part of the complex eigen-
frequency ω̃.
For that purpose, let us consider the triplet

(E∗,−H∗, ω̃∗). By conjugating Eq. (2), it is shown that the
triplet (E∗,−H∗, ω̃∗) is a solution of Maxwell’s equations,
since ε and μ are assumed to be real. Applying the Green-
Ostrogradski formula to the vector E × H∗ + E∗ × H
on an arbitrary closed surface Σ defining a volume V ,
one obtains∫∫

Σ

(E×H∗ + E∗ ×H) • dS

= i(ω̃ − ω̃∗)
∫∫∫

V

(ε|E|2 + μ|H|2)dV . (3)

Eq. (3) is a particular form of the Lorentz reciprocity the-
orem [38]. It is noteworthy that the closed surface used
to derive Eq. (3) can be chosen arbitrarily. It may enclose
the cavity (surface Σ1 in Fig. 2) or may be located outside
the resonator in the open space (surface Σ2 in Fig. 2). By
introducing the flux of the Poynting vector through the
closed surface, P = 1/2

∫∫
Σ

Re(E ×H∗) • dS, and the
time-averaged electromagnetic energy stored in the vol-
ume V,U = 1/4

∫∫∫
V

(ε|E|2 + μ|H|2)dV , Eq. (3) can be
rewritten as P = −2 Im(ω̃)U , where P and U are defined
for the cavity eigenmode. From Eq. (1), we infer that the Q
factor is given by the ratio of the real part to the imaginary
part of ω̃,

Q = − Re (ω̃)
2 Im (ω̃)

. (4)

This relation shows that a damped oscillation at a real fre-
quency ω0 with a decay time τ = Q/ω0 is equivalent to
a lossless oscillation at a complex resonance frequency
ω̃ = ω0 − iω0/2Q. Eq. (4) is often used by frequency-
domain methods for calculating quality factors. Another

usual approach that does not rely on analytical continua-
tions consists of studying the frequency response of the
resonator. For real excitation frequencies, the complex pole
ω̃ results in a Lorentzian-shaped resonance and the quality
factor is given by Q = ω0/Δω, whereΔω is the full width
at half-maximum.

Calculating cavity Q factors in the time domain with
FDTD methods or in the frequency domain with frequency
methods is fully equivalent in principle. The calculation
basically consists of estimating global quantities such as
the stored energy or the energy leaked per unit time. In
general, it provides little physical insight into the nature
of the confinement and little recipes for further designs.
This is why the design of PhC microcavities with high Qs
and small V s has proved difficult from the beginning [39].
The usual approach is to start with a particular geometry
that is known to confine light to some degree – such as
a defect created by the absence of one or more adjacent
holes in a photonic crystal – and then to repeatedly vary the
parameters such as the size and location of the surrounding
holes until the calculated Q reaches some large value.

In order to understand why some constructs perform
better than others, several authors have introduced the con-
cept of Fourier synthesis [32, 33]. The approach consists
in calculating the Fourier transform of the cavity-mode
electromagnetic fields in a plane, and then in looking for
the Fourier components that lie within the light cone of
the cladding materials. Provided that the Fourier spectrum
analysis is performed in a plane above the cavity in the
uniform air clad (such as the planeΠ in Fig. 2), the Fourier
components within the light cone correspond to propaga-
tive plane waves that leak out of the cavity. Therefore, their
total contribution amounts to evaluate the Poynting vector
flux P or the far-field radiation diagram of the cavity [32].
In the early 2000s, this approach has led to a breakthrough
in the quest of cavity constructs with high Q factors [28]. It
was found that the cavity-mode electric field should decay
slowly in the mirrors to suppress out-of-slab photon leak-
age.

But although successful, this approach relies on an a
posteriori analysis of a global property of the cavity mode
and, since it is not intuitively clear how to relate a given
mode profile to a given cavity geometry without computing
the cavity mode itself, the Fourier analysis does not remove
much of the guess work for the cavity designer. In addition,
even if one may find an approximate analytical relation [35]
between a given field profile and the cavity geometry that
would support the profile, the global analysis approaches
do not identify the few important physical quantities that
govern the light confinement. For many interesting cavity
constructs, this can be remedied by analyzing the photon
confinement with a Fabry-Perot model. The latter as will
be discussed in the next section, represents a mesoscopic
confinement description, which relies on intrinsic physi-
cal parameters (mirror reflectance, modal properties of the
trapped mode . . . ) rather than on global properties of the
cavity mode (lifetime, far-field radiation diagram . . . ).
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Figure 3 Fabry-Perot resonator with distributed mirrors. (a)

Electric field of the cavity mode. (b) Equivalent “metallic” cavity.

The defect mode is now cycling over a larger effective cavity

length Leff = L + 2Lp between two mirrors with a metallic-

like reflection coefficient rm independent of the wavelength. The

cavities in (a) and (b) have the same resonance frequency and the

same Q factor, but their mode volumes are obviously different.

3. Fabry-Perot model of photonic
crystal cavities

3.1. Fabry-Perot model

Interpreting the light confinement in a resonator with
a Fabry-Perot model consists in approximating the cav-
ity mode as a stationary pattern formed by two counter-
propagating defect modes bouncing between two mirrors,
see Fig. 3. In a- and b-type resonators (Fig. 1), the defect
mode is the fundamental guided mode of a z-invariant
waveguide. In a c-type resonator, it is the gap-guided Bloch
mode of a z-periodic waveguide, a single-row-defect PhC
waveguide for the example shown in Fig. 1. These modes
all obey a dispersion relation ω(kz), and are thus charac-
terized by an effective index neff = kz/k0 and by a group
index ng = c(dω/dkz)−1. For classical z-invariant waveg-
uides like in a- or b-type microcavities, neff and ng only
slightly differ, but for c-type microcavities, the waveguide
potentially supports slow Bloch modes and confinement
regimes with slow photons (ng � neff) trapped between
two mirrors may be observed. The dispersion relation of
the defect mode is therefore an important quantity of the
Fabry-Perot model.
Another important quantity is the modal reflection co-

efficient r = |r| exp(iφ) of the mirror. When the defect-
guided mode impinges onto the mirror, it is backreflected
into the counter-propagating guided mode, which is again
backreflected onto the second mirror. Under the assumption
(this assumption will be always valid in the following) that
the bouncing mode is truly guided, no radiation loss occurs
when light propagates from one mirror to the other one.

As a consequence, the cavity-mode lifetime is only limited
by the imperfect mirror reflectivity, R = |r|2, a quantity
strictly smaller than 1 for propagative modes. Light can
be either transmitted into an output waveguide (often a de-
sired effect for coupling into another channel), or radiated
out into the cladding (in general a detrimental effect). The
origin of these radiation losses is the termination experi-
enced by the incident guided mode at the waveguide/mirror
interface [40].
Within the Fabry-Perot picture, a resonance at a wave-

length λ0(k0 = 2π/λ0) results from a phase-matching con-
dition for the defect mode. The total phase delay ΦT (λ0)
experienced by the guided mode along one-half cavity cycle
has to be equal to a multiple of π [41],

ΦT (λ0) = k0neffL + φ(λ0) = pπ , (5)

where L is the physical cavity length (side-to-side separa-
tion distance between the two mirrors, see Fig. 3) and p
is an integer. For narrow resonances (Δλ � λ0), the Q
factor can be straightforwardly expressed as the derivative
of ΦT (λ) and, after neglecting the dependence of |r| with
the wavelength, one obtains

Q =
π

1−R

[
2Lng
λ0

− λ0

π

(
∂φ

∂λ

)
λ0

]
. (6)

It is relevant to introduce the penetration length into the

distributed mirrors, Lp = −λ2
0/(4πng)(∂φ

∂λ )λ0shown in
Fig. 3, so that Eq. (6) is simply rewritten

Q =
k0

1−R
ng(L + 2Lp) . (7)

The quantity Leff = L + 2Lp that is often called the ef-
fective cavity length has a simple analogy. It represents
the physical length of an equivalent cavity formed by two
metallic mirrors. The cavity with PhC mirrors is analogous
to a cavity formed by the bouncing of the same waveguide
mode between two metallic mirrors separated by a distance
Leff. In particular, both cavities possess the same resonance
wavelength, given by Eq. (5), and the same Q factor, given
by Eq. (7), provided that the metallic reflectors possess a
reflection coefficient rm independent of the wavelength and
equal to rm = |r| exp[i(φ− 2k0neffLp)].
According to Eq. (7), only three physically meaningful

quantities govern the Q factor, namely the group index ng

of the trapped mode, the effective length Leff and the modal
reflectivity R. As will be shown in Sect. 4, all these quanti-
ties significantly impact the performance of PhC cavities.

3.2. Validation of the Fabry-Perot model

PhC cavities exhibit various appearances and, a priori, it
is not obvious to predict whether a specific construct be-
haves as a simple Fabry-Perot resonator or not. According
to the classification table of the review article by Vahala [6],
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Figure 4 (online color at:

www.lpr-journal.org) Val-

idation of the Fabry-Perot

model for nanocavities in a

two-dimensional PhC mem-

brane. (a) Sketch of L1, L2

and L3 cavities with N =
1, 2, and 3 missing holes.
(b) and (c) Comparison be-

tween fully vectorial cal-

culation data (blue circles)

and Fabry-Perot model pre-

dictions (red solid curves)

for the cavity Q and for

the resonance wavelength

λ0 as a function of the nor-

malized hole displacement

d/a. The experimental data
obtained in [28] are shown

with squares for N = 3.
(d) Two examples of mir-

ror reflectivity spectra R =
|r(λ)|2 used in the Fabry-
Perot model to compute the

red curves in (b).

only a- and b-type resonators (see Fig. 1) would behave as
Fabry-Perot resonators, whereas the confinement method
for c-type cavities in 2D PhC membranes is understood
as resulting from a different mechanism and deserves a
specific column in the table. This classification relies on
geometrical considerations rather than on an in-depth anal-
ysis of the confinement mechanisms and it is somewhat
arbitrary in our opinion. Indeed, as will be shown in Sect. 5,
light confinements in micropillars do not follow a clas-
sical Fabry-Perot description, whereas, as will be shown
now, many important c-type cavities in 2D PhC membranes
behave as classical Fabry-Perot resonators.

To illustrate our purpose, let us consider three PhC cav-
ities obtained by removing N = 1, 2, and 3 holes in a 2D
PhC slab, see Fig. 4a for a schematic view of the cavities
along with a definition of the main parameters. Figs. 4b and
4c show the Q factor and the resonance wavelength λ0 as a
function of the displacement d of the two inner cavity holes.
The blue circles are obtained by computing the resonator
complex pole ω̃ with a fully vectorial aperiodic-Fourier
modal method (a-FMM) [42]. For the sake of comparison,
we also include experimental data (squares) obtained for
the cavity with N = 3 [28]. In Figs. 4b and 4c, the solid
red curves are Fabry-Perot model predictions for Q and λ0

obtained from Eqs. (5) and (7). The predictions rely on the
sole knowledge of the dispersion curve of the single-row-
defect waveguide and on the mirror modal reflection r(λ)
computed with a generalized version of the a-FMM [43]

to analytically handle light propagation in z-periodic wave-
guide stacks. The mirror modal reflectivity R = |r|2 is
shown in Fig. 4d for two particular hole displacements,
d = 0 and d = 0.18a. The net effect of the tiny hole shift
by 0.18a is an increase of the mirror reflectivity over the
entire spectral range of interest. The reason for this effect
is analyzed in the next section.

The quantitative agreement between the Fabry-Perot
model predictions (solid red curves) and the experimental
(squares) and numerical (circles) data suggests that light
confinement in 2D PhC slab microcavities can be largely un-
derstood as a Fabry-Perot mode formed by the bouncing of
the fundamental mode of the single-row-defect PhC wave-
guide, and this even for ultrasmall cavities with a single
hole missing (N = 1). Compared to the global approaches
discussed in Sect. 2, the Fabry-Perot model clearly provides
a conceptually helpful picture, since analyzing a mirror is
much simpler than analyzing a whole cavity. It additionally
provides new hints for improving cavity performance, such
as engineering the mirror/waveguide interface to lower the
radiation losses or slowing down the group velocity of the
trapped mode.

However, some PhC microcavities do not behave as
Fabry-Perot resonators. But even when the Fabry-Perot
model fails at predicting the performance of a specific con-
struct, it is important to be aware of that and to analyze why.
The understanding gained may then provide new routes or
recipes for further improvements, see Sect. 5.
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Figure 5 (online color at: www.lpr-journal.org) Transverse mode-profile mismatch at a waveguide/mirror interface. (a) Cross-sectional

profiles of the fundamental modesM(1) andB(1) of a z-invariant air-bridge waveguide (left) and of the associated PhC mirror Bloch
mode (right). (b) Dispersion diagram of the two fundamental modes supported by the waveguide (M(1) shown with a black curve)

and by the mirror (B(1) shown with a solid red curve). In the gap, the mirror Bloch mode B(1) is guided but purely evanescent

(kz = π/a + i Im(kz)). The computations are performed with the a-FMM for a 340-nm thick, 500-nm wide silicon air-bridge, for a
mirror periodicity a = 420 nm and for a hole diameter of 230 nm.

4. Recipes for high-Q Fabry-Perot resonators

As general design recipes, the Fabry-Perot model suggests
that three physical quantities may impact the design of
high-Q microcavities, namely the modal reflectivity R, the
group index ng of the defect mode and the effective cav-
ity length L + 2Lp. Indeed, the most important quantity
is the modal reflectivity R. Recipes for increasing R are
summarized in Sect. 4.1. Sect. 4.2 discusses cavities formed
by trapping a slow mode between two mirrors. Although it
has been shown to impact the mode lifetime of important
PhC microcavities [44, 45], slowing down the speed of the
trapped (defect) mode to boost theQ factor has not received
much attention in the literature. The cavity Q factor can be
simply increased by using a larger physical defect length,
but this is immediately compensated by an increase of the
mode volume, so that the ratio Q/V is kept unchanged. As
detailed in Sect. 4.3, the impact on Q and V of the pen-
etration depth Lp is not as intuitively clear and deserves
more attention.

4.1. Mode matching at the
mirror/defect interface

Before considering recipes for designing mirrors offering
large reflectivities close to unity, let us first consider light
reflection at an abrupt interface between a monomode wire
and a semi-infinite PhCmirror, see Fig. 5a. The total electro-
magnetic field in the z-invariant waveguide, Φ = |E,H〉,
can be expanded in terms of the complete set of normal
modes. Let us denote by M(1) the incident fundamental

mode of the waveguide and byM(−1) the associated back-
ward propagating mode. For z < z0, see Fig. 5a for a
definition of z0, we have

Φ = M(1) + rM(−1) +
∑
p>1

r(p)M(−p) , (8)

where M(−p), p > 1, are the backward-propagating ra-
diation modes and the r(p) are the modal reflection co-
efficients of the backward-propagating modes. Similarly,
in the mirror, only the forward-propagating Bloch modes
B(p), p > 0, are excited, and the total field can be written
for z > z0,

Φ = tB(1) +
∑
p>1

t(p)B(p) , (9)

where t(p) are the modal transmission coefficients of the
forward-propagating Bloch modes. In Eq. (9), a specific
Bloch mode B(1) has been isolated from the summation.
In the perturbation regime with infinitely small holes, the
mirror Bloch modes should be similar to the modes of
the z-invariant waveguide, and one may associate a Bloch
mode B(p) of the mirror to every mode M(p) (guided or
radiative) of the z-invariant waveguide. B(1) is simply de-
fined as the Bloch mode associated toM(1). Even for in-
finitely small holes, a bandgap is opened in the dispersion
relation of the periodic waveguide. Thus, the Bloch mode
B(1), which is truly guided at low frequencies, is either a
propagative mode (Im(kz) = 0) outside the bandgap, or a
purely evanescent mode (kz = π/a + i Im(kz)) inside the
bandgap. Fig. 5b shows the dispersion diagrams of M(1)

www.lpr-journal.org © 2008 by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim
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(black curve) and B(1) (solid red curve). Note that the dot-
ted red curve inside the bandgap represents the imaginary
part Im(kz) of the Bloch-mode propagation constant.
The stationary Bloch mode B(1) plays a central role in

the backreflection process, since its excitation is responsible
for the reflection of the incident mode. Because the Bloch
mode penetrates into the low-index material (the hole), the
transverse mode profiles of M(1) and B(1) are different.
The mismatch [40] is responsible for the excitation of Bloch
modes B(p) other than B(1) at the abrupt interface, and
inevitably some light leaks out in the cladding (R < 1).
As shown in Fig. 5a, the transverse mode profile of B(1)

strongly depends on the operation frequency, or for a fixed
frequency on the mirror period a. The latter thus represents
an important degree of freedom for engineering tapers that
progressively reduce the transverse mode profile mismatch
as light penetrates into them [40,46–48].

From the previous analysis, one clearly realizes that
it is critical to engineer the interface between the wave-
guide and the mirror in order to lower the mismatch. Fig. 6
summarizes the general strategies adopted so far. The first
small-V cavities in semiconductor wafers have been fab-
ricated mainly for laser applications in planar waveguides
with PhC mirrors composed of slits and ridges [49–51],
and then in wire waveguides with PhC mirrors composed

of hole chains [24, 25]. For abrupt interfaces between the
waveguide and the mirror (first row in Fig. 6), the mismatch
results in a few per cent losses at the gap-center frequency,
and the cavity Qs do not exceed several hundreds.

Lowering the mismatch may be achieved by engineer-
ing the interface between the waveguide and the mirror
to implement tapered mirrors [40, 46]. The single-hole-
displacement approach discussed in Fig. 4d is an illustrative
example [44,45]. Nowadays, efficient tapers (second row in
Fig. 6) are designed in a systematic way by using a progres-
sive variation of the geometric parameters. They are com-
posed of a series of intermediate sections, which support
Bloch modes that implement a gradual Bloch-mode-profile
variation fromM(1) to B(1) [46, 47]. The first attempt to
fabricate cavities with tapered mirrors was performed for
ridges with Bragg mirrors composed of slits [52], but the
experimental evidence of the beneficial effect of the taper
has been plugged by mode mixing in the multimode ridge,
as evidenced by further near-field measurements of the cav-
ity mode [53]. The most sophisticated tapers [26, 54–57]
currently involve three to four sections and provide a very
gradual profile variation. It is crucial to implement the ta-
per between the mirror and the defect waveguide, since
at resonance photons experience many times the transi-
tion before escaping the cavity, but it is also important to
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Q (exp.) R (exp.) ng Leff (μm) V(λ3)

Ridge PhC cavity [55] 60 000 0.9996 4 1.2 0.014

L3 cavity [28] 45 000 0.997 13 2.6 0.019

Heterostructure cavity [59] 600 000 0.9993 16 6.7 0.028

Table 1 Physical parameters of representative

high-Q PhC cavities.

taper photons out of the cavity for the sake of absolute
transmission enhancement [56]. When associated to form a
cavity, these tapered mirrors provide typical experimental
Q values in the range of 10 000–200 000 for single-defect
resonators in semiconductor ridges on silicon-on-insulator
substrates [26, 54–57] or in PhC waveguides in various
semiconductor membranes in air [58]. In general, the taper
is designed by purely numerical optimisation techniques,
but hand-driven designs relying on evanescent Bloch-mode
engineering have also been proven successful [26,46,47].
The modal reflectivity of tapered mirrors varies between
0.997 for the L3 cavity to 0.9996 for cavities in ridge waveg-
uides, see Table 1.
Another strategy that has recently resulted in a mile-

stone improvement is based on single-row-defect PhC cavi-
ties with “naturally” matched interfaces (third row in Fig. 6).
In the so-called heterostructure nanocavity [59], the wave-
guide and mirror geometries are very similar. Even without
engineering the interface, the mirror performance is remark-
able (R = 0.9993), see Table 1. Further engineering of the
interface by tapering leads to experimental Q values in
the excess of 106 with theoretical predictions greater than
107 [59–61].

4.2. The group-velocity effect

For classical Fabry-Perot resonators in z-invariant waveg-
uides like micropillars or PhC cavities in ridge waveguides,
the defect-guided mode possesses group and phase veloc-
ities that are essentially comparable. The situation is rad-
ically different for microcavities in 2D PhC membranes.
The defect becomes a periodic waveguide that may support
a slow mode. Potentially, if the frequencies of the slow
mode and of the cavity mode are matched, not only is the
light trapped between the mirrors as in a classical Fabry-
Perot resonator, but it also travels slowly from one mirror
to the other, still increasing the cavity lifetime by a factor
proportional to the group index of the defect mode. Table 1
shows the group indices of the defect mode for various PhC
cavities. For cavities in ridge waveguides, the group index
(ng = 4) is nearly equal to the refractive index of the host
material and no slowdown effect is expected. The situation
is different for microcavities in PhC waveguides, like the
L3 (ng = 13) and the heterostructure (ng = 16) cavities,
for which the slowdown effect results in a 3- to 4-fold Q
factor enhancement.
Boosting the Q factor of PhC cavities by trapping slow

waves has been first proposed in [44,45], in order to inter-
pret part of the surprising experimental observation of the
Q-factor enhancement in the L3 cavity by slightly shifting

the two inner holes, see Fig. 4. Although intuitively clear,
this strategy has not been much considered in the literature
as a recipe for designing high-Q microcavities. For in-line
geometries, designs exist for ng = 25 but they have not
been tested experimentally [45, 62]. The concept has been
recently extended to 2D Bloch modes by considering slow
Bloch modes at the band edges of a 2D PhC slab. In these
entirely new constructs that abandon the in-line geometry,
the 2D Bloch mode may operate below the light line of
the cladding material offering ultrahigh Q values [63] or
above the light line with moderate Q values (Q ≈ 40 000),
but with a highly directional out-of-plane radiation pat-
tern that may be useful for active device applications like
vertical-emission lasers [64].

4.3. Comparison of various PhC cavities

Table 1 summarizes our discussion and describes the main
lessons learned by applying a Fabry-Perot model to inter-
pret light confinement in modern PhC microcavity con-
structs. The experimental Q and calculated V data are both
taken from the related publications. For every cavity, we
have calculated the group index ng of the defect mode
for the resonance wavelength λ0 and for the geometrical
parameters (hole diameter, hole separation distances . . . )
deduced from MEB observations of the actual samples.
We have also calculated the modal reflection coefficient
r = |r| exp(iφ) of the PhC mirrors by using a fully vec-
torial modal method [43]. The reflectivity R = |r|2 de-
pends on the in-plane coupling of loaded cavities. Addition-
ally, it is likely to be sensitive to fabrication errors such as
the inevitable surface roughness or the actual deviation of
the hole sizes from one hole to the other. However, as we
checked numerically, the penetration depth Lp that is essen-
tially given by (∂φ/∂λ) weakly depends on the fabrication
errors and on the loading, hence the effective cavity length
Leff = L + 2Lp can be reliably estimated numerically. We
have then extracted the modal reflectivity R (third column)
from the experimental values of the Q factor by applying
Eq. (7). Thus, the R data can be considered as experimen-
tally inferred reflectivities that take into account fabrication
errors and loading effects.
As shown by the table, state-of-the-art PhC microcavi-

ties all possess a remarkably high modal reflectivity, close
to 0.999. This corresponds to two additional nine digits
in comparison with the first photonic bandgap microcav-
ity (R = 0.96 for the cavity in Fig. 6a) fabricated in the
late 1990s [25]. However, it is worth mentioning that state-
of-the-art reflectivities for dielectric Bragg mirrors with
up-to-date automated deposition techniques are still much
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larger [65]. In addition, we note that one is currently con-
cerned with controlling uniformity and roughness on 10-
cm2 scales in thin films coatings, whereas the PhC reflectors
are concerned with guided modes with μm2 cross sections.
It is also noteworthy that the microcavities in PhC waveg-
uides take benefit from a slowdown effect that boosts the
cavity Q factor by a factor 3 to 4 in comparison to cavities
in classical z-invariant ridge waveguides.
Clearly, increasing the physical cavity length L of the

cavity is of no help, since V and Q both scale linearly with
L(Q/V remains unchanged). Note that similar conclusions
do not hold if the objective is to enhance nonlinear phe-
nomena since the operation powers do not generally scale
as Q/V . The impact of the penetration depth Lp on Q/V
is subtler. As we learn from classical textbooks [66], the
penetration depth of classical quarter-wave Bragg mirrors
is related to the number of dielectric pairs required for ef-
ficient reflection. Thus, one could naively expect that the
mode volume scales linearly with Lp and that an increase
of Lp is also not beneficial. This is actually not true, simply
because the mode volume is not related to Lp in general,
but rather to the decay length δ of the electromagnetic field
in the mirror, see Fig. 3. This length is given by the imag-
inary part Im(kz) of the predominant mirror Bloch mode
B(1). Only for classical Bragg mirrors used at the Bragg
wavelengths, are Lp and δ related. In Table 1, it is inter-
esting to note that the heterostructure cavity possesses the
highest Leff value. The latter is five times larger than that
of the ridge PhC cavity and is more than two times larger
than that of the L3 cavity. In comparison, the associated
mode-volume increase is rather modest. As discussed in
the supplementary information of [59], the increase of the
mode volume remains small because the decay length of
the mirror Bloch mode is abnormally small for such an
operating wavelength in the close vicinity of the band edge.

5. Beyond the Fabry-Perot model of
photon confinement

Although the use of a Fabry-Perot model is clearly the
prime approach for analysing the physics of photon con-
finement in cavities, not all microcavities are expected to
behave perfectly as Fabry-Perot resonators. As illustrated in
Fig. 4, small deviations of theQ factor and of the resonance
wavelength are obtained for N = 1 and N = 2. The rea-
son is that in the Fabry-Perot picture, the energy transport
between the two mirrors is assumed to be solely ensured
by the fundamental propagating modeM(1) of the defect
waveguide, with all other energy-transport routes being ne-
glected. These other routes are the modes M(p), p �= 1.
Two study cases may be considered depending on the exis-
tence of guided modes other than the fundamental one in
the defect waveguide.

For monomode waveguides as in Fig. 4, the other modes
M(p), p �= 1, are all radiative. They leak out of the wave-
guide and their leakage guarantees that their impact on

the cavity-mode lifetime vanishes as the defect length in-
creases. This trend is clearly observed in Fig. 4. Although
kept at a negligible level for the L1–L3 cavities, the impact
of the leaky modes on ultrasmall resonators can be very
important for globally optimised structures. For instance,
PhC cavities optimized by finely tuning the position and
the diameter of the two inner holes of the mirrors in a ridge
waveguide may offer Q values as high as 105, although the
mirror performance is kept at a modest level, R < 0.99.
This counterintuitive effect has been interpreted as a re-
cycling of a substantial fraction of the mirror radiation
losses by leaky waves that are excited at the defect/mirror
interfaces and that contribute to efficiently transfer energy
between the two mirrors [34]. The recycling effect has been
observed from transmission measurements performed for
cavities formed in planar waveguides with mirrors com-
posed of ridges and grooves [67] or with mirrors composed
of holes [68], and Q values in excess of those predicted
by a Fabry-Perot model have been effectively measured.
Similar phenomena are probably encountered in many PhC
cavity constructs that are designed through a global strat-
egy by repetitively varying the locations and the diameters
of the nearest-neighbor holes to optimize the cavity Q. In
general, for subwavelength defect lengths, the optimization
process is successful and recycling and tapering processes
join together to achieve large enhancements of the Q fac-
tor. Although full assessment would require that the mirror
reflectance be calculated, the single-hole-defect cavities
in [17, 32, 69] are likely to combine these two effects.

The second study case concerns cavities for which the
defect waveguide supports several truly guided modes. This
situation is classically encountered for GaAs/AlGaAs pil-
lar microcavities. The latter have played a major role in
the development of several optoelectronic devices, includ-
ing vertical cavity-surface emitting lasers [21], and in the
realization of the first cavity quantum electrodynamic ex-
periments in the solid state [7,8,70–73]. Naively, one could
imagine that those in-line small-index-contrast III-V cavi-
ties represent archetypal Fabry-Perot resonators. For large
diameters (d > λ0), this is actually true and photolumi-
nescence experiments reveal a series of resonances that is
easily associated to the different trapped propagating defect
modes M(p), p = 1, 2 . . . The cavity modes can be seen

asM(p)−B(p) pairs that are all independent and the mode
lifetimes are basically limited by the transmission through
the top and bottom mirrors. For these cavities with large
diameters, the photon confinement almost behaves as in
the reference planar cavity and, although the spacer defect
supports several propagating modes, the Fabry-Perot model
actually applies and Q values in excess of 105 [22] can be
achieved for mirrors with a large number of pairs.

The situation is radically different for smaller diameters,
λ0/2 < d < λ0 [72]. What is happening is that the trans-
verse mode-profile mismatch between the spacer modes
M(p) and their associated mirror Bloch modes B(p) is in-
creased by the lateral confinement. Thus, the propagating
spacer modesM(p) not only excite their associated Bloch
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a planar-cavity Q of 900. The dashed black curve represent the

Fabry-Perot model predictions obtained by considering that the

pillar cavity mode is formed by the association of theM(1)−B(1)

pair only. More details of this surprising behavior can be found

in [72, 74].

modes B(p), but also other Bloch modes. The series of in-
dependent resonances is again observed in experiments, but
each individual resonance can no longer be viewed as the

associations of individual M(p)−B(p) pairs, as for large
diameters. In fact, the pairs couple together, and although
every pillar eigenmode is dominated by the cycling of a
predominant singleM(p) mode, it is slightly altered by the
excitation of other defect and mirror modes. The Fabry-
Perot picture no longer holds and the coupling results in
an intricate oscillatory behavior of the Q factor as a func-
tion of the pillar diameters, see Fig. 7. For some diameter
ranges, the Qfactors can reach values well in excess of the
Q factor of the reference planar cavity. This may appear
surprising [73], since one rather expects that the micropillar
Qs is always smaller than that of the reference planar cavity
obtained before etching, because etching offers an addi-
tional loss route, namely radiation into the air clad. But this
argument is too simplistic. The fact thatQ factors in excess
of the planar cavity Q can be obtained at small diameters is
fully understood in the mode-coupling description, see [74]
for details, and has been recently observed by measuring
the photoluminescence of InAs self-assembled quantum
dots grown in the middle of the GaAs defects in a series of
micropillars fabricated with diameters varying from 550 nm
to 1.3 μm [23].

Clearly, the Fabry-Perot model is not a panacea and
it may fail even for apparently simple in-line geometries.
However, we have no doubt that, even for these particular
cases, the Fabry-Perot model already represents a good first-
order approximation that is useful for further engineering
and optimization.

6. Conclusions

In the past decade, the performance of all types of PhC
nanocavities has seen considerable progress. This clearly
results from fabrication and material improvements, but
design is also crucial. It is noteworthy that the Q-factor
enhancements have been systematically accompanied by an
increase of the mirror reflectivity through mode-matching
strategies. The group velocity of the trapped-defect mode,
which is often completely hidden in brute-force global com-
putational analysis, is another important physical quantity
that impacts the performance of state-of-the-art nanocavi-
ties.

Presently, nanocavities in 2D PhC membranes sus-
pended in air combine mode volumes close to the theoreti-
cal limit (λ/2n)3 andQ factors that are ten times larger than
those achieved with other PhC geometries, like micropillars
or nanocavities in ridge waveguides on a substrate. One
may suspect that ultrahighQs are easier to achieve with 2D
bandgap confinements, rather than with more traditional
approaches based on 1D bandgap confinements. This is un-
clear in our opinion. First, one has to consider that 2D PhC
cavities have been supported by a drastic research effort
over the past few years. Additionally, one has to call that
large mode lifetimes are much more difficult to achieve in
constructs implemented on a substrate than in membranes
suspended in air [26].

The realization of still higherQ factors will be challeng-
ing because fabricating mirrors with very small radiation
losses in the range of 10-4 requires an accurate control of
the hole positions and diameters in the nanometer range.
However, there might be no real need to achieve such high
Q factors in the future, and it is already important to realize
all the benefits that may be taken from the present perfor-
mance for future electrically driven devices [17] or optical
nonlinearities [75].

Although often qualified as ultrasmall cavities, the typi-
cal mode volume of present PhC resonators is of the order
of a few hundredths of λ3. This volume is close to the theo-
retical limit, but it is still several orders of magnitude larger
than the volume of nano-objects like molecules or quantum
dots. Thus, despite the very high Q factors, there is a waste
of space in the interaction reinforcement. New types of
constructs that would remove this deficiency, while main-
taining a high Q, have to be designed, and in this context,
resonators relying on strong electric-field discontinuities in
slot waveguides [76] or on localized plasmon resonances
in metallo-dielectric particles [77] appear as interesting
new departures. New design strategies allowing the real-
ization of cavities that are only weakly sensitive to various
types of disorders (roughness, hole diameter errors . . . ) are
likely to be highly desirable too [78]. Such immunity would
considerably enhance the device yield.
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